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Abstract. The behaviour of the Carathéodory, Kobayashi and Azukawa metrics near
convex boundary points of domains in 
 n is studied.
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1. Introduction

Let D be a domain in � n . Denote by O(D,∆) and O(∆, D) the spaces of all holo-
morphic mappings from D into the unit disc ∆ ⊂ � and from ∆ to D, respectively.
Let z ∈ D and X ∈ � n . The Carathéodory and Kobayashi metrics are defined by

CD(z,X) = sup{|(Xf)(z)| : f ∈ O(D,∆)},
KD(z,X) = inf{|r|−1 : ∃f ∈ O(∆, D), f(0) = z, f ′(0) = rX}.

Denote by PSH(D, � − ) the space of all negative plurisubharmonic functions on D.
The pluricomplex Green function [5] and the Azukawa metric [1] are defined by

gD(z, w) = sup{u(w) : u ∈ PSH(D, � − ), u(·) 6 log ‖ · −z‖+Ou(1)},

AD(z,X) = lim sup
λ6→0

exp g(z, z + λX)
|λ| .

It is clear that CD(z,X) 6 AD(z,X) 6 KD(z,X).
Let z0 be a C1-smooth boundary point of D and X a continuous (1, 0) vector

field at z0. Denote by XN the projection of Xz0 on the complex normal to ∂D at
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z0 and set d(z) = dist(z, ∂D). Graham [4] showed that if D is a bounded strongly
pseudoconvex domain then

lim
z→z0

CD(z,Xz)d(z) = lim
z→z0

KD(z,Xz)d(z) = 1
2‖XN‖.

The main purpose of this note is to extend the Graham result for a convex bound-
ary points.

Theorem 1. Let z0 be a convex C1-smooth boundary point of a domain D ⊂ � n .

Assume that ∂D does not contain any germ of complex line through z0. Then

(1) lim
z→z0

KD(z,Xz)d(z) = lim
z→z0

AD(z,Xz)d(z) = 1
2‖XN‖.

Theorem 2. Let z0 be a convex boundary point of a smooth bounded pseudocon-
vex domain D ⊂ � n . Assume that ∂D does not contain any segment with endpoint

at z0. Then

lim
z→z0

CD(z,Xz)d(z) = 1
2‖XN‖.

Remark. If the boundary of a bounded domain is real-analytic, then it does not
contain any real segment.

Note that, by the Lempert theorem [7], the Carathéodory and Kobayashi metrics
of a convex domain coincide. This, together with the arguments given in the proof

of Theorem 1, shows that

lim
z→z0

CD(z,Xz)d(z) = lim
z→z0

KD(z,Xz)d(z) = 1
2‖XN‖

for any C1-smooth boundary point z0 of such a domain.
On the other hand, the following examples show that, in general, the condition

for nonexistence of nontrivial holomorphic curves in Theorem 1 is essential.

Proposition 3.
(a) If G is a Cartesian product of n compact plane sets, then K � n\G ≡ 0.
(b) If D = ∆2 \

{
z ∈ � 2 : Re z1 6 0, |z2| 6 1

4

}
, then

1
8‖XN‖ 6 lim inf

z→0
AD(z,Xz)d(z) 6 lim sup

z→0
KD(z,Xz)d(z) 6 3

8‖XN‖.
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2. Proofs

���������
of Theorem 1. First, we shall prove that

(2) lim sup
z→z0

KD(z,Xz)d(z) 6 1
2‖XN‖

for any C1-smooth boundary point z0 of an arbitrary domain D ∈ � n .
It is well-known that for any point z close to z0 there exists a point π(z) ∈ ∂D

such that lim
z→z0

π(z) = z0, ‖z− π(z)‖ = d(z) and z belongs to the real normal to ∂D

at π(z). Moreover, we may find orthonormal transformations Ψz for which:
(i) lim

z→z0
Ψz = Ψz0 ;

(ii) the first coordinate v1 of Φz(·) = Ψz(· − π(z)) is the complex normal to the
boundary of the domain Gz = Φz(D) at the point 0;

(iii) the ray Re v1 coincides with the interior normal to Gz at 0.
For any ε > 0, set

Eε = {v ∈ � n : Re v1 + ε‖v‖ < 0}.

Note that there are neighbourhoods U of z0 and V of 0 such that Eε ∩ V ⊂ Gz for

any z ∈ U . Let Vz = {v ∈ � n : vd(z) ∈ V }, v(z) = Ψz(z) and Yz = (Ψz)∗Xz. Then

KD(z,Xz) 6 KGz(v(z), Yz) 6 KEε∩V (v(z), Yz) =
KEε∩Vz(−1, Yz)

d(z)
.

It is not difficult to prove that

lim
ε→0+

lim
z→z0

KEε∩Vz(−1, Yz) = KE0(−1, Yz0) = 1
2‖XN‖

which implies (2).
Let now z0 be a convex boundary point of a domain D such that ∂D does not

contain any nontrivial holomorphic curve through z0. Then there exists a bounded
neihgbourhood U of z0, for which the domain F = D ∩ U is convex. Using ideas
from the proofs of Theorem 1 and Corollary 4 in [2], and Lemma 2.1.1 in [3], we shall
prove that

(3) lim
z→z0

AD(z,Xz)
AF (z,Xz)

= 1

which completes the proof of (1). Indeed, for z ∈ F close to z0 denote by Hz the
half-space whose boundary is the real tangent hyperplane to F at π(z) and which
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contains F . If (Xz)N is the projection of Xz on the complex normal to D at π(z),
then by (3) we have

lim inf
z→z0

AD(z,Xz)d(z) = lim inf
z→z0

AF (z,Xz)d(z) > lim
z→z0

AHz (z,Xz)d(z)

= lim
z→z0

1
2‖(Xz)N‖ = 1

2‖Xn‖.

To prove (3), note that, by Lempert’s theorem [7], we have

gF (z, w) = inf{ln |α| : ∃f ∈ O(∆, F ), f(0) = z, f(α) = w}.

Since F is a bounded convex domain whose bounadry does not contain any germ of
complex line through z0, it follows that z0 is a peak point for F [9]. Although the
statement is not explicitely stated in [9], the method of the proof of Proposition 2.4

in [9] gives this result. Then normal family arguments and the maximum principle
imply that [3, 8]

(4) lim
z→z0, w∈F\V

gF (z, w) = 0

for any neighbourhood V ⊂ U of z0.

Shrinking V (if necessary), we may choose a positive number ε > 0 and another
neighbourhood W ⊂ V of z0 such that if ψ(w) = ϕ(w) + log ‖w − z0‖, C = sup

D∩∂U
ψ,

c = 1 + sup
D∩∂W

ψ, then inf
D∩∂V

ψ > max{C, c}. Fix z ∈ H = D ∩W and set u(z) =

inf
w∈D∩∂W

gF (z, w). It is easy to see that the function

v(z, w) =





gF (z, w), w ∈ H,
max{gF (z, w), (c− ψ(w))u(z)}, w ∈ D ∩ V \W,
max{(c− ψ(w))d(z), (c − C)u(z)}, w ∈ F \ V,
(c− C)u(z), w ∈ D \ U

is plurisubharmonic function in the second variable with logarithmic pole at z. We
may assume that diamU 6 1. Then v(z, w) < cu(z) and hence gD(z, w) > v(z, w)−
cu(z). It follows from (4) that lim

z→z0
u(z) = 0. Now, the equality v(z, w) = gF (z, w)

for w ∈ H shows that

lim
z→z0

inf
w∈H

(gD(z, w)− gF (z, w)) = 0

which implies (3). �
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of Theorem 2. In view of Theorem 1, it suffices to prove only the

inequality

(5) lim inf
z→z0

CD(z,Xz)d(z) > 1
2‖XN‖.

Let U be a neighbourhood of z0, for which G = D ∩ U is a convex domain whose
boundary does not contain any segment with endpoint at z0. Then we may find a

number C1 > 0 and neighbourhoodsW ⊂ V ⊂⊂ U such that dist(G\V,Hπ(z)) > C1

for any z ∈ D ∩W , where Hπ(z) denotes the real tangent hyperplane to ∂D at π(z).
Let p = exp((Φz0)1), fz = ((Φz)1 + d(z))/((Φz)1 − d(z)), and χ be a smooth cut-off
function χ with χ ≡ 1 on V and χ ≡ 0 on � n\U . For anym ∈ � , set gz,m = ∂(χfzp

m)
and extend trivially gz,m as a smooth ∂-closed (0, 1) form on D. By [6], there exists a
smooth function hz,m on D with ∂hz,m = gzm and ‖hz,m‖C1(D) 6 C2‖gz,m‖Cn+1(D)

for some constant C2 > 0 which depends only on D.
Using the Leibniz formula, we obtain

‖gz,m‖Cn+1(D) 6 4n+1‖∂χ‖Cn+1( � n )‖fz‖Cn+1(G\V )‖pm‖Cn+1(G\V ).

The Cauchy inequalities show that

‖fz‖Cn+1(G\V ) 6 (n+ 1)!
Cn+1

1

.

On the other hand, it is easy to see that

‖pm‖Cn+1(G\V ) 6 C3m
n+1 sup

G\V
|p|m.

Since p is a peak function for G at z0, it follows from the last four inequalities that
for any ε > 0 there exists m ∈ � with ‖hz,m‖C1(D) 6 ε if z ∈ D ∩W .
Then f̃z = χfzp

m − hz,m is a holomorphic function on D and sup
D
|f̃z| 6 1 + ε.

Using that fz(z) = 0 and χ ≡ 1 on V 3 z, we get

(1 + ε)CD(z,Xz) > |Xzf̃z| >
|p(z)|m‖X(z)N‖

2d(z)
− ε‖Xz‖.

Since lim
z→z0

p(z) = 1, letting z → z0 and ε→ 0+, we obtain (5). �
���������

of Proposition 3. (a) For simplicity of the notations, we will consider
only the case n = 2. The proof in the general case is analogous.
Let G = G1 × G2, z = (z1, z2) ∈ � 2 \ G and X = (X1, X2) ∈ � 2 . We may

assume that z1 ∈ � \ G1. Let M = max
t∈G2

|t| and ε > 0 be such that U := z1 +
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ε∆ ∈ � \ G1. Set f(t) = (z1 + trX1, z2 + trX2 + t2r3) for r > |X1|s/(2ε) where
s = |X2|+

√
|X2|+ 4r(|z2|+M). Then

|f2(t)| 6 M ⇒ r|tr|2 − |X2| · |tr| 6 |z2|+M ⇒ |tr| 6 s

2r
⇒ |trX1| < ε

which shows f1(t) ∈ U and hence f ∈ O( � , � 2 \ G). It follows that K � 2 \G 6 1/r
and, letting r →∞, we are done.
(b) To prove that

(6) 1
8‖XN‖ 6 lim inf

z→z0
AD(z,Xz)d(z),

let z ∈ D, |z2| 6 1
4 and

f(z, w) =
1

1 + |z2|

{
max{|w2 − z2|, ( 1

4 − |z2|)|(w1 − z1)/(w1 + z1)|}, |w2| 6 1
4 ,

|w2 − z2|, 1
4 < |w2| < 1.

Then log f is a negative plurisubharmonic function on D, with logarithmic pole at z
and

1
8‖XN‖ = lim

z→z0

(
Re z1 lim

λ6→0

f(z, z + λXz)
|λ|

)

if XN 6= 0, which implies (6).
Finally, we will prove that

(7) lim sup
z→z0

KD(z,Xz)d(z) 6 3
8‖XN‖.

In view of Theorem 1, it suffices to consider the case when XN 6= 0 and hence we
may assume that Xz = (1, X ′

z). Let a > 1, 0 6 b < 2(2a− 1)/(2a+ 1), z ∈ D and

x := Re z1 > 0. We have that 1 > B := |z2|+ x|X ′
z|(2/a+ b) for ‖z‖ � 1. Set

f(t) =
(
z1 + x

(a+ t

a− t
− 1 + bt

)
, z2 + txX ′

z

(2
a

+ b
)

+ t2(1−B)
)

and A = 1
2

√
(1 + 4B)/(1−B). We shall verify that f ∈ O(∆, D). It is clear that

|f2(t)| < 1 for t ∈ ∆. On the other hand, if |z1| � 1, then

1− | Im z1|
x

> a+ 1
a− 1

+ b = sup
t∈∆

∣∣∣a+ t

a− t
+ bt

∣∣∣

which implies |f1(t)| < 1 for t ∈ ∆. Since lim
z→0

A = 1
2 , we may assume that bA <

(a−A)/(a+A). Now, the equality inf
|t|6A

Re (a+ t)/(a− t) = (a−A)/(a+A) shows

that

|f2(t)| 6
1
4
⇒ |t| 6 A⇒ Re f1(t) > 0
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which completes our verification that f ∈ O(∆, D). Since f ′(0) = x(2/a+ b)Xz, it

follows that
lim sup

z→z0

KD(z,Xz)d(z) 6 a

2 + ab
.

Letting b→ 2(2a− 1)/(2a+ 1) and a→ 1, we obtain (7). �
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