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1. INTRODUCTION

For a poset (P,<) we can define multiplication on P by zy = z if © < y, and
a2y = y other wise. The groupoid (P, ) will be called the poset groupoid of (P, <).
Since the correspondence between posets and poset groupoids is one-to-one, posets
will be sometimes identified with their poset groupoids.

More generally, one can identify an arbitrary directed graph with loops (a set with
a reflexive binary relation) with a groupoid defined in a similar way, and then employ
methods of universal algebra to investigate various interesting classes of directed
graphs. This approach was started in [5] and continued by various authors in the
case of the class of tournaments. The variety generated by tournaments has been
investigated in [1] and [2]. In [3], we investigate in a similar way the variety generated
by equivalence relations. The variety generated by posets (partially ordered sets)
seems to be the most natural and interesting candidate in this respect. In the present
paper we start to investigate this variety.

We denote by P the variety generated by posets (or poset groupoids). For any
n > 1, let P,, denote the variety generated by all n-element posets, and let P"
denote the variety determined by the at most n-variable equations of posets. So,
P,CP,,s CPCP"! CP"foralln. Itis easy to see that the free groupoid on
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n generators in P is a free groupoid on n generators in P,,, as well as in P™. The
aim of this paper is to describe the free groupoid on three generators in P, and to
find an independent base for the equations of the variety P3. We leave as an open
problem the question whether the variety P is finitely based.

2. A BASE FOR THE EQUATIONS OF P3

It is easy to check that every poset groupoid satisfies the following five equations:

(1) az=uw, (4) z(zy-2) =2 yz,
(2) ay-x=yx, (5) (xy-2)y=zz-y.
(3) zy-y=uwy,

The following two-variable equations are consequences of (1)—(5):
(6) = -zy = xy. Proof: x-xy =3y x(vy - y) =) T - yy =) Y.
(7) = -yx = yx. Proof: & -yx =2y (yz - x) - yx =(3) YT - YT =(1) Y.
(8) @y yx = yz. Proof: zy - yz =(2) (yz - y) -y =(2) ¥ - YT =(6) Y-

For a groupoid A € P? put = < y if and only if zy = 2. We are now able to show
that this relation is an ordering on P. Reflexivity is clear. If z < y and y < z, then
vz =@ r-rz=x(vy-2) =) T -yz =xy =z, ie, xr <z Ifr <yandy < z, then
T=TY =) YT Y =Yy =1 Y-

We continue with a list of three-variable consequences of (1)—(5):

(9) xy -2z =y-xz. Proof: xy -2z =(5) ((x-22)y) - 22 =(6) (22 -y) - 12 =2) ¥ - T2.
10) @y -yz = 2y - 2. Proof: xy - yz =y vy - ((vy - y)2) =@3) vy - (vy - 2) =(6) Y - 2.
11) @y - zx =y - zx. Proof: xy - zax =(9y (22 - 2y) - 22 =(10) (22 - Y) - 22 =(2) Y - 2.

12) (z-yz)y = xz - y. Proof: (x-y2)y =) (vy - y2)y =q0) (xy - 2)y =) 22 -y
(r-yz)z = x-yz. Proof: x-yz <(3) yz <(3) 2; use the transitivity of <
14) wy - zy = x - zy. Proof: xy - 2y =5y ((x - 2y)y) - 2y =13y (T - 2y) - 2y =(3) T - 2.

15) (zy - 2)x = yz - 2. Proof: (zy - 2)x =) x(vy - 2) - o =@ (v-yz)r =(3) yz - .

x(y - xz) =y -xz. Proof: Since x(y - x2) < y-2z < 2z < z, we have z(y - zz) =

(x(y - x2))z =(5) (xz- (y-x2))z =(7) (y-2x2)z =(13) ¥ - T2.

(17) x(yx - z) = yx - 2. Proof: x(yx - 2) =(10) 2(yx - 12) =(16) Y2 - T2 =(10) YT - 2.

(18) z(y-zx) = y- zx. Proof: z(y-zx) =(2) (y-zx)x-(y-2x) =@3) (Y- 22)(y- 22) =1
Y- 2.

)
(10)
(11)
(12)
(13)
(14)
(15)
(16)

(19) zy-(yx-z) = y-x2. Proof: xy-(yx-2) =) vy - ((xy-2)2) =) vy 12 =(9) Y- T2.
(20) 2y - (zz-y) = - zy. Proof: xy - (vz-y) =14y x(v2-y) =4) T - 2y
(21) 2y - (22 -y) = zx - y. Proof: xy - (22 -y) =(14) 2(27 - y) =(17) 22 - Y.
(22) 2y - (yz-x) =y - zx. Proof: wy - (yz-x) =11 y(yz - v) =) y - 2.
(23) 2y - (2y-x) = zy - x. Proof: xy - (2y-x) =11y y(2y - x) =7 2y - .
(24) 2y - (x-yz) = x - yz. Proof: xy - (x-yz) =) y(x - y2) =(@¢) - y2.



(25) 2y - (x-2y) = x - zy. Proof: xy - (x - 2y) =(9) y(x - 2y) =(18) T - 2Y.

(26) 2y - (y-xz) =y xz. Proof: wy - (y-x2) =(10) 2y - 12 =(9) Y - T2.

(27) 2y - (y - 2x) =y - zx. Proof: xy - (y - zx) =(10) 2y - 22 =(11) Y - 2.

(28) - (z-y) — 2~y Proofs ay- (- ya) — s 21~ (=(oy-42)) ey 2(ay-37) —s)
Z - yx.

(29) (zy-2)-yx = z-yx. Proof: (zy-2)-yx =(5) (vy-2)(xy-yz) =(9) 2(TY-yT) =(8) 2°Y2.

(30) (zy-2) -2z =y-x2. Proof: (xy-2)- 12 =4 2y -T2 =(9) Yy - 2.

(31) (zy-2) - zx = yz - x. Proof: (xy-2)- 22 =0 (zy - 2)T =@5) Y2 - .

(32) (xy-2)-yz=wy-z. Proof: (xy-z) -yz =n4) 2y - yz =(0) 2y - 2.

(33) (wy-2)-zy=2xz-y. Proof: (zy-2)-2y=qo (zy-2)y =) 2 y.

(34) (v -yz)-xy =z~ xy. Proof: (x-yz)- 2y =(9) yz -2y =(11) 2 - Y.

(35) (x-yz)-yx = z-yx. Proof: (x-yz)-yx =@1) yz -y =(9) 2 - Y.

(36) (v-yz) xz =y x2. Proof: (v -yz) w2z =(9) yz 22 =(14) Y - 2.

(37) (x-yz) - zx = yz-x. Proof: (x-yz)- 20 =(11) Yz - 20 =(10) Y2 - T.

(38) (z-yz)-zy = wz-y. Proof: (z-y2)-2y =(2) (x-y2)(yz-y) =0y (T-y2)y =(12) 22-Y.

(39) (zy-2)(yx-2) =y-xz. Proof: (xy-2)(yx-2) =4 2y - (yz - 2) =(19) ¥ - 2.

(40) (zy - 2)(wz-y) = x2z - y. Proof: (xy-z)(xz-y) =@s) ((v2-y) - yz)(xz-y) =2

yz - (v2-y) =(23) TZ " Y.
(41) (xy - z)(zx - y) = 2z - xy. Proof: (xy-z)(zx-y) =qo) (Y- 2)(zx - 2Y) =(11)
z(2x - xy) =0y 2(22 - y) =) 2~ Y-
) (zy - 2)(yz - x) = yz - @ Proof: (zy-2)(yz-z) =@0) (zy - y2)(yz - ) =(0)
(vy - yz)w =(10) (vy - 2)w =(@15) Yz - T.
(vy - 2)(zy - ) = z - yx. Proof: (xy-2)(2y-x) =(23) (xy - 2)(xy - (29 - ) =(9)
z(zy - (zy - x)) =(23) 2(zy - x) =(4) 2 - Y.
(44) (zy - 2)(x - yz) = = - yz. Proof: (wy-2)(x-yz) =w (xy-2)-z(2y - 2) =
r(zy - 2) =@ - yz.
(45) (zy - 2)(w - zy) = x - 2zy. Proof: (wy-2)(x - 2y) =) (vy - 2)(zy - (x2-Y)) =(9)
z(xy - (xz-y)) =(20) z2(x - 2y) =(6) T - 2Y.
(46) (zy - 2)(y - 22z) = y - wz. Proof: (xy-z)(y-w2) = (zy - 2)(2y - 22) =(9)
2(xy - w2) =(9) 2(y - 22) =(18) Y - 2.
(47) (wy - 2)(y - zx) = y - zx. Proof: (xy-z)(y-zx) =n1) (2y - 2)(zY - 22) =(9)
z(wy - zw) =11y 2(y - 27) =(16) Y - 27

(

42
(43)

(48) (xy - 2)(z-yx) = z - yx. Proof: (xy - 2)(z - yx) =(0) (xy - 2) - yx =(20) 2 - Y.

(49) (z - y2)(zy - z) = = -yz. Proof: (x-yz)(wy-2) =u z(zy-2) - (2y - 2) =)
x(zy - 2) =) T Y2

(50) (z-yz)(yx-2) =y w2z Proof: (z-yz)(yx-2) =q9) (yz - (zy-2))(yz - 2) =9
(fﬂy : z)(ym - 2) =@39) Y x=.

(51) (z-yz)(zz-y) = xz-y. Proof: (z-yz)(zz-y) =(20) (zz - (xy - 2))(xz - y) =(9)
(wy - 2)(x2 - y) =(a0) 22 - Y.
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(22) (22 (zy - 2))(y - 22) =(11)

(56) (z-yz)(y-zx) =y zx. Proof: (z-yz)(y- 2x)

(zy - 2)(y - z) =47 Y zx.

(57) (z - y2)(z - xy)

(4) z(zy - 2) - (2 - 2y) =(38)

z - xy. Proof: (z-yz)(z- xy)

Tz XY =(9) % * TY.

(a3) T(zy-2)-

@ z(zy-2)- (2 yz)
@ (z-y2)(zy-x) =11y y2-(2y-7) =(19) 2-y2T.

(58) (z-yz)(z-yx) = z-yx. Proof: (z-yz)(z-yx)

(zy-2)(2y-2) =(10) x(2y-2)-(2y-2)

Theorem 2.1. The equations (1)—(5) constitute a base for the equational theory

of P3. The free groupoid on three generators x, y, z in P has 21 elements

0=2zy

p

h=uyz

T-yz

qg=z-zy
r=1y- T2

:ij~
k=yx-z

d=uxy

| = a2z S=1Y-2x

e=yzx

t=z- -2y

m = zZx

Tz

U=z yx

Yyz

and its multiplication table is shown below.
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Proof. Using the above listed 58 equations, it is easy to build the multiplication
table of the free groupoid on three generators x, y, z. In order to see that the 21
elements are pairwise different, it is possible to check that the 21 terms behave
differently on three-element posets. |

3. SINGLE-EXCEPTION DIFFERENCES FROM POSET GROUPOIDS

Groupoids that do not differ much from poset groupoids can be conveniently de-
scribed by a list of the exceptions ab = ¢ from the poset groupoid multiplication.
Given a poset P and a triple of elements a, b, ¢ of P, we denote by Plab = ¢] the
groupoid with multiplication defined by

cif (z,y) = (a,b),
zy =< zif x <y and (z,y) # (a,b),

yif z £ y and (z,y) # (a,b).

Similarly as in the case of tournaments ([1] and [2]), these single-exception non- poset
groupoids may turn out to be crucial for the investigation of the equational theory
of poset groupoids.

Theorem 3.1. Let P be a poset and let a,b,c be a triple of pairwise different
elements of P such that a is incomparable with b. The groupoid Plab = ¢| belongs
to P? if and only if the following conditions are satisfied:

(cl) e¢<bandc¥ a,

(c2) for any x € P, x > c implies x > b,

(¢3) for any x € P, x < a implies x < ¢,

(c4) for any x € P, x > a if and only if x > b.

Proof. First assume that Plab = c] belongs to P?. By (3) we have ¢ < b, and
hence ¢ < b. If ¢ < a, then ba =(3) ab-a = ca = ¢ ¢ {a, b}, a contradiction.

Suppose = > ¢ and © 2 b. Then bz = = and we have ax = a - bx =4 a(ab- x) =
a-cx = ac = ¢, a contradiction.

Let # < a. If x £ b, then b = xb =@) T b = za-zb =) a-xb=ab=c, a
contradiction. Hence x < ¢b, and we get xc = x-ab =4) z(va-b) = x-2b =) vb = z,
so that x < ¢ and then z < c.

Suppose z > a and x 2 b. Thenb=ab=cx-b= (ab-x)b =y ax-b=ab=c, a
contradiction.

Suppose z > b and z # a. Then ¢ = cx = ab - ax =@) b-ax = bxr = b, a
contradiction.

Conversely, it is easy to prove (1)-(5) under the assumption that (c1)—(c4) are
satisfied. O
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Theorem 3.2. The equations (1)—(5) are independent.

Proof. The first equation cannot be derived from the other ones, since it is the
only absorption equation among them. Similarly, the second equation is the single
equation among (1)—(5) with the property that the first variables of the left and of
the right side are not the same.

Let P; be the three-element antichain with elements a, b, c. It is easy to check
that the groupoid P;[ab = ] satisfies all the equations (1)—(5) but (3).

Let P; be the four-element poset with elements a, b, ¢, d, where the order relation
is the reflexive and transitive closure of a < d, ¢ < d, ¢ < b. It is easy to check that
the groupoid P[ab = (] satisfies all the equations (1)—(5) but (4).

Let P5 be the four-element poset with elements a, b, ¢, d, where the order relation
is the reflexive and transitive closure of a < d, ¢ < b. It is easy to check that the
groupoid Ps[ab = ¢] satisfies all the equations (1)—(5) but (5). O
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