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EXTREME GEODESIC GRAPHS
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(Received November 1, 1999)

Abstract. For two vertices u and v of a graph G, the closed interval I[u, v] consists of u,
v, and all vertices lying in some u–v geodesic of G, while for S ⊆ V (G), the set I[S] is the
union of all sets I[u, v] for u, v ∈ S. A set S of vertices of G for which I[S] = V (G) is a
geodetic set for G, and the minimum cardinality of a geodetic set is the geodetic number
g(G). A vertex v in G is an extreme vertex if the subgraph induced by its neighborhood is
complete. The number of extreme vertices in G is its extreme order ex(G). A graph G is an
extreme geodesic graph if g(G) = ex(G), that is, if every vertex lies on a u–v geodesic for
some pair u, v of extreme vertices. It is shown that every pair a, b of integers with 0 6 a 6 b
is realizable as the extreme order and geodetic number, respectively, of some graph. For
positive integers r, d, and k > 2, it is shown that there exists an extreme geodesic graph G of
radius r, diameter d, and geodetic number k. Also, for integers n, d, and k with 2 6 d < n,
2 6 k < n, and n − d − k + 1 > 0, there exists a connected extreme geodesic graph G of
order n, diameter d, and geodetic number k. We show that every graph of order n with
geodetic number n − 1 is an extreme geodesic graph. On the other hand, for every pair k,
n of integers with 2 6 k 6 n − 2, there exists a connected graph of order n with geodetic
number k that is not an extreme geodesic graph.
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1. Introduction

The distance d(u, v) between two vertices u and v in a connected graph G is the
length of a shortest u–v path in G. A u–v path of length d(u, v) is also referred to
as a u–v geodesic. A vertex w is said to lie in a u–v geodesic P if w is an internal
vertex of P , that is, w is a vertex of P distinct from u and v. The closed interval
I [u, v] consists of u, v, and all vertices lying in some u–v geodesic of G, while for
S ⊆ V (G), the set I [S] is the union of all sets I [u, v] for u, v ∈ S.

1Research supported in part by the Western Michigan University Research Development
Award Program.
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A set S of vertices of G is defined in [5] to be a geodetic set in G if I [S] = V (G),
while S is called convex if I [S] = S. A geodetic set of minimum cardinality is a
minimum geodetic set and the cardinality of such a set is the geodetic number g(G).
For every nontrivial connected graph G order n, it follows that 2 6 g(G) 6 n. For
example, the graph G1 of Figure 1 has geodetic number 2 as S1 = {w1, y1} is the
unique minimum geodetic set of G1. On the other hand, each 2-element subset S

of the vertex set of G2 has the property that I [S] is properly contained in V (G2).
Thus g(G2) > 3. Since S2 = {u2, v2, x2} is a geodetic set, g(G2) = 3.

u1

v1

w1 x1

y1

G1 :

u2

v2

w2 x2

y2

G2 :

Figure 1. The geodetic number of a graph

The closed intervals I [u, v] in a connected graph G were studied and characterized
by Nebeský [17, 18] and were also investigated extensively in the book by Mulder
[16], where it was shown that these sets provide an important tool for studying metric
properties of connected graphs. The geodetic number of a graph was introduced by
Harary, Loukakis, and Tsouros in [14], who showed that determining the geodetic
number of a graph is a NP-hard problem. The geodetic number of graphs and
oriented graphs have been studied further in [5, 10]. Two classes of graphical games
concerning convex sets, called achievement and avoidance, were presented by Harary
in [13]. These games were examined for the geodetic number by Buckley and Harary
in [4] and by Nečásková in [19]. Some related geodetic games as well as related
sequential and closed sequential geodetic numbers for graphs were studied in [3, 13].
Geodetic concepts in graphs are closely related to convexity concepts. A fun-

damental concept occurring in geometry, topology, and functional analysis is that
of convex sets. We quote from the initial paragraph of the foreword to the book
by Bonnesen and Fenchel [1]: “Convex figures have always played an important
role in geometry. . . (Minkowski) created the formal tools appropriate for problems
about convex regions and bodies. . . (and) above all opened the way to various
applications. . .”. Convexity in graphs is discussed in the book by Buckley and Harary
[2] and also by Harary and Nieminen in [15]. These concepts were studied further in
[8, 9]. We refer to the book [2] for concepts and results on distance in graphs and to
the books [7, 12] for terminology and notation in graph theory.
A vertex v in a graph G is an extreme vertex if the subgraph induced by its

neighborhood is complete. The extreme order ex(G) of G is the number of extreme
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vertices in G. Since every extreme vertex of a graph is an end-vertex of every geodesic
containing it, we have the following result (see [6]).

Theorem A. Every geodetic set in a graph contains its extreme vertices. In
particular, every geodetic set in a graph contains its end-vertices.

By Theorem A, 0 6 ex(G) 6 g(G) for every graph G. A graph G is an extreme
geodesic graph if g(G) = ex(G), that is, if G has a unique minimum geodetic set,
consisting of the extreme vertices of G. An extreme geodesic is u–v geodesic for some
extreme vertices u and v. Extreme geodesic graphs are then characterized as those
graphs every vertex of which lies on an extreme geodesic. The graph G1 in Figure 2
has two extreme vertices, namely u1 and w1. Since {u1, w1} is also a geodetic set,
ex(G1) = 2 = g(G1) and G1 is an extreme geodesic graph. On the other hand, the
graph G2 in Figure 2 has two extreme vertices v2 and y2 and so ex(G2) = 2. Since
{v2, w2, y2} is a minimum geodetic set of G2, it follows that g(G2) = 3. The graph
G3 in Figure 2 contains no extreme vertices, but {u3, w3} is its unique minimum
geodetic set. So ex(G3) = 0 and g(G3) = 2. Consequently, the graphs G2 and G3

are not extreme geodesic graphs.

w1

y1

x1

v1

u1

G1

u2

v2

w2 x2

y2

G2

w3

y3z3

x3

u3

v3

G3

Figure 2. Graphs G1, G2, and G3 and minimum geodetic sets

For n > 2, the complete graph Kn is the only connected graph of order n having
the largest possible geodetic number, namely n. Since every vertex of Kn is an
extreme vertex, ex(Kn) = g(Kn) = n. So Kn is an extreme geodesic graph. A
path Pn of order n > 2 has two extreme vertices, namely, its two end-vertices. So
ex(Pn) = 2. Since g(Pn) = 2, it follows that Pn is also an extreme geodesic graph.
Obviously, a cycle Cn (n > 4) contains no extreme vertices and so Cn is not an
extreme geodesic graph. Similarly, no complete bipartite graph Kr,s with 2 6 r 6 s

is an extreme geodesic graph.
If G is a nontrivial connected graph with ex(G) = a and g(G) = b, then 0 6 a 6 b.

In fact, every pair a, b of integers with 0 6 a 6 b is realizable as the extreme order
and geodetic number, respectively, of some graph, as we now show.
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Theorem 1.1. For every pair a, b of integers with 0 6 a 6 b and b > 2, there
exists a connected graph G with ex(G) = a and g(G) = b.


��������
. If a = b, then a > 2 and G = Ka has the desired properties. Thus we

assume that a < b. We construct a graph Ga,b with the required extreme order a

and geodetic number b. Let Fi (1 6 i 6 a) be a copy of K2 with V (Fi) = {si, ti} and
let Hj : uj , vj , xj , yj , uj (1 6 j 6 b − a) be a copy of the cycle C4. Then the graph
Ga,b is obtained from the graphs Fi and Hj (1 6 i 6 a, 1 6 j 6 b−a) by identifying
the a vertices ti and the b− a vertices yj and denoting this vertex by v. Since the
graph Ga,b has a extreme vertices, namely, s1, s2, . . . , sa, it follows that ex(Ga,b) = a.
Moreover, it can be verified that the set S = {s1, s2, . . . , sa, v1, v2, . . . , vb−a} is the
unique minimum geodetic set. Therefore, g(Ga,b) = b, as desired. �

For a vertex v of in a connected graph G, the eccentricity e(v) is the distance
between v and a vertex farthest from v. The minimum eccentricity among the vertices
of G is the radius radG and the maximum eccentricity is its diameter diamG. A
vertex v is called a peripheral vertex of G if e(G) = diamG. In every example
we have seen thus far, each vertex in every minimum geodetic set is a peripheral
vertex. This may not seem surprising; in fact, one may suspect that this is true
in general. However, this is not the case. Indeed, there are graphs possessing a
minimum geodetic set in which no vertex is a peripheral vertex.

Figure 3 shows the subdivision graph S(K3×K2) of the Cartesian productK3×K2.
The diameter of S(K3 × K2) is 5 and {u, v, w} is a minimum geodetic set, each
of whose vertices has eccentricity 4. In fact, this minimum geodetic set consists
exactly of those vertices that are not the peripheral vertices of S(K3 ×K2). While
S(K3 × K2) does contain minimum geodetic sets consisting entirely of peripheral
vertices, the graph H of Figure 3, which is a modification of S(K3 × K2), has a
unique minimum geodetic set, namely {x, y, z}, and so no peripheral vertex of H

belongs to any minimum geodetic set.

u

v w

S(K3 ×K2)

x

y z

H
Figure 3. Minimum geodetic sets containing no peripheral vertices
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It was shown in [5] that if G is a nontrivial connected graph of order n and diameter
d, then g(G) 6 n− d + 1. Since ex(G) 6 g(G) for every nontrivial connected graph
G, we have the following result.

Theorem 1.2. If G is a nontrivial connected graph of order n and diameter d,
then

ex(G) 6 n− d + 1.

The upper bound in Theorem 1.2 is sharp. Observe that by Theorem A, the
geodetic number of a tree T is the number of its end-vertices. In fact, the set of all
end-vertices of T is the unique minimum geodetic set of T . Therefore, ex(T ) = g(T ),
implying that all trees are extreme geodesic graphs. Let the graph G be obtained
from the path P : v0, v1, . . . , vd by joining n− (d+1) new vertices to P at the vertex
v1. Then the graph G is a tree of order n, diameter d, with n−d+1 extreme vertices,
namely, the end-vertices of G. So ex(G) = g(G) = n− d + 1.
If G is a tree of order n with a end-vertices, then ex(G) = g(G) = a. This together

with the fact that ex(Kn) = g(Kn) = n implies that every pair a, n of integers with
2 6 a 6 n is realizable as the order and geodetic number, respectively, of a extreme
geodesic graph of order n.

Theorem 1.3. For every pair a, n of integers with 2 6 a 6 n, there exists a
connected extreme geodesic graph of order n with geodetic number a.

Of course, radG 6 diam G 6 2 radG for every connected graph G. Ostrand [20]
showed that every two positive integers a and b with a 6 b 6 2b are realizable as
the radius and diameter, respectively, of some connected graph. In [5] Ostrand’s
theorem was extended so that the geodetic number can be prescribed as well. We
now present the corresponding result for extreme geodesic graphs.

Theorem 1.4. For positive integers r, d, and k > 2 with r 6 d 6 2r, there exists
a connected extreme geodesic graph G with

radG = r, diamG = d, and g(G) = k.


��������
. When r = 1, we let G = Kk or G = K1,k according to whether

d = 1 or d = 2, respectively. For r > 2, we construct an extreme geodesic graph
G with the desired property. Let C : v1, v2, . . . , v2r, v1 be a cycle of order 2r and
let P : u0, u1, u2, . . . , ud−r be a path of length d − r. Let H be the graph obtained
from C and P by identifying v1 in C and u0 in P and adding the edge vrvr+2. The
graph G is then obtained by adding k − 2 new vertices w1, w2, . . . , wk−2 to H and
joining each vertex wi (1 6 i 6 k − 2) to the vertex ud−r−1. The graph G is shown
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in Figure 4. Certainly, ex(G) = k as ud−r, vr+1, w1, w2, . . . , wk−2 are the extreme
vertices of G, radG = r, and diam G = d. Let S = {ud−r, vr+1, w1, w2, . . . , wk−2}
denote the set consisting of all k extreme vertices of G. Since I [S] = V (G), it follows
that g(G) = k. �

vr+1

vr v2

vr+2 v2r

u0
u1 ud−r−1 ud−r

w1

w2 wk−2

Figure 4. A extreme geodesic graph G with radG = r, diamG = d, and g(G) = k

The graph G of Figure 4 is the smallest extreme geodesic graph (in terms of
order) with the properties described in Theorem 1.4. Under similar conditions, we
may simultaneously prescribe the order, diameter, and the geodetic number of an
extreme geodesic graph G.

Theorem 1.5. If n, d, and k are integers such that 2 6 d < n, 2 6 k < n, and
n−d−k+1 > 0, then there exists an extreme geodesic graph G of order n, diameter
d, and geodetic number k.


��������
. Let F = Kk + Kn−d−k+2, where V (Kk) = {v1, v2, . . . , vk} and

V (Kn−d−k+2) = {w1, w2, . . . , wn−d−k+2}, and let P : u0, u1, u2, . . . , ud−2 be a path
of length d − 2. Then the graph G is obtained by identifying v1 in F and u0 in
P . Then G has order n and diameter d. Moreover, the set {ud, v2, . . . , vk} of all
extreme vertices of G is also a geodetic set of G. Therefore, ex(G) = g(G) = k, as
desired. �

2. Graphs with prescribed order, extreme order,
and geodetic number

A nontrivial complete graph is an extreme geodesic graph and so every graph of
order n with geodetic number n is an extreme geodesic graph. In fact, this statement
is true for graphs of order n with geodetic number n− 1 as well. It was shown in [6]
that a connected graph G of order n > 3 has geodetic number n− 1 if and only if G
is the join of K1 and pairwise disjoint complete graphs Kn1 , Kn2 , . . . , Knr , that is,

(1) G = (Kn1 ∪Kn2 ∪ . . . ∪Knr) + K1,

where r (> 2), n1, n2, . . . , nr are positive integers with n1 + n2 + . . . + nr = n − 1.
Since the number of extreme vertices of G in (1) is n−1, we have the following result.
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Theorem 2.1. Every connected graph of order n > 2 with geodetic number n−1
is an extreme geodesic graph.

In general, for each integer ` > 2,

(2) G = (Kn1 ∪Kn2 ∪ . . . ∪Knr ) + K`

is an extreme geodesic graph since the unique minimum geodetic set S of G is the
set of its extreme vertices, that is, S = V (Kn1) ∪ V (Kn2) ∪ . . . ∪ V (Knr ). So G is
an extreme geodesic graph with ex(G) = g(G) = n− `. In particular, if ` = 2, then
the graph G in (2) has geodetic number n − 2. Since every graph of order n with
geodetic number n or n− 1 is an extreme geodesic graph, it is natural to ask if this
is true for graphs with other geodetic numbers as well. We show next that such is
not the case.

Theorem 2.2. For every pair k, n of integers with 2 6 k 6 n− 2, there exists a
connected graph of order n with geodetic number k that is not an extreme geodesic
graph.


��������
. We consider two cases.

Case 1. k = n−2. Then n > 4. For n = 4, 5, let G = Cn, which is not an extreme
geodesic graph. Since g(C4) = 2 and g(C5) = 3, it follows that g(G) = n − 2. For
n > 6, let G be obtained from the join P +K1 of a path of order n−1 and the trivial
graph, where P : v1, v2, . . . , vn−1 and V (K1) = {v}, by adding the edges vivi+2 for
3 6 i 6 n− 3. For n = 7 and k = 5, the graph G is shown in Figure 5. Then G has
exactly n − 3 extreme vertices, namely all vertices of G except v, v2, and v3; while
g(G) = n− 2. Therefore, G is not an extreme geodesic graph.

v1 v2 v3 v4 v5 v6

v

G :

Figure 5. A graph of order 7 and geodetic number 5 that is not an extreme geodesic graph

Case 2. 2 6 k 6 n− 3. Then n > 5. Let F = K2,n−k with partite sets {u, v} and
{u1, u2, . . . , un−k}. Then the graph G is obtained from F by adding the k−1 vertices
v1, v2, . . . , vk−1 and k− 1 edges vvi, where 1 6 i 6 k− 1. Then G has k− 1 extreme
vertices, namely v1, v2, . . . , vk−1, and so ex(G) = k − 1. Since {u, v1, v2, . . . , vk−1} is
the unique minimum geodetic set of G, it follows that g(G) = k. Therefore, G is not
an extreme geodesic graph and has the desired property. �
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Theorem 1.3 and its proof suggest another problem, namely, whether it is possible
to extend Theorem 2.2 by prescribing an extreme order as well. We have no solution
to this problem, which we state as a conjecture.

For every triple a, b, n of integers with a 6 b 6 n− 2, b > 2, and n sufficiently
large, there exists a connected graph G of order n with ex(G) = a and g(G) = b.
Of course, Conjecture 2.3 is true when a = b by Theorem 1.3. By Theorem 2.2,

this conjecture is also true when a = b − 1 = n − 3. For a = b − 2 = n − 4, let G

be obtained from the graph Kn−2, where V (Kn−2) = {u1, u2, . . . , un−2}, by adding
two new vertices x, y and the three edges u1x, xy, yu2. Since u1, u2, x, y are the
only nonextreme vertices of G, it follows that ex(G) = n − 4. Next we show that
g(G) = n− 2. Since V (G) − {u1, u2} is a geodetic set, g(G) 6 n− 2. On the other
hand, let S = V (G)−{u1, u2, x, y} be the set of extreme vertices of G. By Theorem
A, every geodetic set of G contains S. However, S ∪ {w} for w ∈ {u1, u2, x, y} is not
a geodetic set of G, implying that g(G) > n− 2. Therefore, g(G) = n− 2.

3. Geodetic ratios and extreme order ratios

It is common for a parameter f defined in terms of the vertices of a connected
graph G of order n to satisfy 0 < f(G) 6 n or 0 < f(G) < n. There are numerous
instances in the literature of two such parameters f1 and f2 being studied, where
0 < f1(G) 6 f2(G) 6 n for every graph G. A common problem concerns whether
every two integers a and b with 0 < a 6 b are realizable as the values of f1 and
f2, respectively, for some graph. Normally, a considerably more challenging problem
involves, for a given integer n > 2, determining those pairs a, b of integers with
0 < a 6 b 6 n (or 0 < a 6 b < n) for which there exists a graph G of order n such
that f1(G) = a and f2(G) = b. Often, only partial results of this nature exist. Of
course, if for some pair a, b of integers with 0 < a 6 b < n, say, there exists a graph
G of order n such that f1(G) = a and f2(G) = b, then 0 6 a/n 6 b/n < 1. In this
case, we say that the rational numbers a/n and b/n are realizable as the f1-ratio and
f2-ratio, respectively, of some graph. This suggests a new, less restrictive problem
when considering such pairs f1, f2 of parameters. These ideas were introduced in
[11].
For a connected graph G of order n > 2, the geodetic ratio of G is defined in [11]as

rg(G) =
g(G)

n
.

Certainly, 2 6 g(G) 6 n for every nontrivial connected graph G. Therefore, 0 <

rg(G) 6 1. It was shown in [5] that if k and n are integers with 2 6 k 6 n, then
there exists a connected graph G of order n with geodetic number k. Therefore,
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every rational number r ∈ (0, 1] is realizable as the geodetic ratio for some connected
graph.
Similarly, we define the extreme order ratio of a graph G of order n > 2 as

rex(G) =
ex(G)

n
.

Since ex(G) 6 g(G) for every nontrivial connected graph G, it follows that rex(G) 6
rg(G). By Theorem 1.3, for every rational number s ∈ (0, 1], there exists a graph G

with rex(G) = rg(G) = s. If Conjecture 2.3 is true, then we have a solution to the
following weaker problem.

Problem 3.1. Determine all rational numbers s and t with 0 6 s 6 t < 1, for
which there exists a graph G of order n such that rex(G) = s and rg(G) = t.

Although we have only been able to verify Conjecture 2.3 in some special cases,
we can solve Problem 3.1 for a much more general range of rational numbers. For
graphs with distinct prescribed geodetic and extreme order ratios, we present the
following result.

Theorem 3.2. For every pair s, t of rational numbers with 0 6 s < t < (1+s)/2 <

1, there exists a connected graph G with rex(G) = s and rg(G) = t.

��������

. First, we assume that s > 0. Let s = s1/s2 and t = t1/t2, where s1, s2,
t1, t2 are positive integers. Since 0 < s < t < (1+s)/2, it follows that s2t1−s1t2 > 0
and s2t2 − 2s2t1 + s1t2 > 0. For an integer k > 2, let

a = ks1t2

2b = k(s2t1 − s1t2)

c = k(s2t2 − 2s2t1 + s1t2).

Let Fi (1 6 i 6 a− 1) be a copy of K2 with V (Fi) = {xi, yi}, P : v1, v2, . . . , vc, vc+1

a path, and Hj (1 6 j 6 b) a copy of K2,3 with partite sets {uj1, uj2} and
{wj1, wj2, wj3}. Then the graph G is obtained from the graphs Fi, P and Hj by
identifying the a−1 vertices yi, the vertex vc+1, and the b vertices wj1 and denoting
this vertex by v. The order of G is a + 4b + c = ks2t2. Since G contains a = ks1t2
extreme vertices, rex(G) = s. Moreover, it can be verified that the set

{u11, u12, u21, u22, . . . , ub1, ub2, v, x1, x2, . . . , xa−1}

is a minimum geodetic set, g(G) = a + 2b = ks2t1. Therefore, rg(G) = t, as desired.
For s = 0, the graph G is obtained from the b graphs H1, H2, . . . , Hb only and by

identifying the b vertices wj1 (1 6 j 6 b). The proof is otherwise identical. �
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Curiously enough, we are not aware of a single graph with rex(G) = s and rg(G) =
t with s < t for which 0 6 s < t < (1 + s)/2 < 1 does not hold. Consequently, it
may be that Theorem 3.2 cannot be improved. We leave this as an open problem.
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