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Abstract. We obtain upper bounds for generalized indices of matrices in the class of
nearly reducible Boolean matrices and in the class of critically reducible Boolean matrices,
and prove that these bounds are the best possible.
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1. Introduction

A Boolean matrix is a matrix whose entries are 0 and 1; the arithmetic underlying
the matrix multiplication and addition is Boolean, that is, it is the usual integer
arithmetic except that 1+1 = 1. Let Bn be the set of all n×n Boolean matrices. For

a matrix A ∈ Bn, the sequence of powers A0 = I , A, A2, . . . is a finite subsemigroup
of Bn. Thus there is a minimum nonnegative integer k = k(A) such that Ak = Ak+t

for some t > 1, and a minimum positive integer p = p(A) such that Ak = Ak+p. The
integers k = k(A) and p = p(A) are called the index of convergence of A and the

period of A, respectively.
For a matrix A ∈ Bn, the digraph D(A) of A is the digraph on vertices 1, 2, . . . , n

such that (i, j) is an arc if and only if aij = 1. The girth of a digraph D is the length
of a shortest cycle of D.

A Boolean matrix A is primitive if there is a positive integer m such that Am = J ,

the all-ones matrix. Note that p(A) = 1 if A ∈ Bn is primitive.

This work was supported by Guangdong Provincial Natural Science Foundation of
China (Grant No. 021072) and National Natural Science Foundation of China (Grant
No. 10201009).
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In 1990, Brualdi and Liu [2] introduced the generalized exponents for primitive

matrices. Recently, some of the concepts in [2] have been further extended in [3] to
matrices which are not necessarily primitive.

Let A be an n × n Boolean matrix and let i be an integer with 1 6 i 6 n. The
i-th generalized index k(A, i) of A is the minimum nonnegative k such that i rows

of Ak and Ak+t are mutually equal for some t > 1. Clearly we have

k(A, 1) 6 k(A, 2) 6 . . . 6 k(A, n) = k(A).

As remarked in [3], the above integer t can be chosen as p(A).
Note that if A is primitive, then k(A, i) is just the parameter expD(A)(i) introduced

in [2].

Hence the concept of the generalized index is a generalization of both the concept
of the classical index of convergence for a Boolean matrix and the concept of the

generalized exponent for a primitive matrix.

A matrix A ∈ Bn is reducible if there is a permutation matrix P such that

PAP−1 =
(

A1 0
C A2

)

where A1 and A2 are square, and A is irreducible if it is not reducible.

It is well known that if a matrix A ∈ Bn is reducible, then there is a permutation

matrix P such that

PAP−1 =




A11 0 . . . 0
A21 A22 . . . 0
...

...
. . .

...
At1 At2 . . . Att


 ,

where A11, A22, . . . , Att (t > 2) are irreducible matrices which we call the components
of A. Clearly, D(A11), . . . , D(Att) are the strong components of D(A).
The irreducible matrix A ∈ Bn is nearly reducible if the matrix obtained from A

by replacing any non-zero entry with 0 is reducible. In particular, the 1 × 1 zero
matrix is regarded as a nearly reducible matrix. A ∈ Bn is critically reducible if A

is reducible and all its components are nearly reducible.

In this paper, we obtain upper bounds for generalized indices of matrices in the

class of nearly reducible Boolean matrices and in the class of critically reducible
Boolean matrices, and prove that these bounds are the best possible.
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2. Preliminaries

In this section we establish some lemmas that will be used later.

A strongly connected digraph D is called minimally strong provided no digraph
obtained from D by the removal of an arc is strongly connected. We observe that

A ∈ Bn is irreducible if and only if D(A) is strongly connected, while A is nearly
reducible if and only if D(A) is minimally strong.
For 1 6 i 6 n and n > 4, denote

f(n, i) =

{
n2 − 5n + 7 + i for 1 6 i 6 n− 2,

n2 − 5n + 6 + i for i = n− 1 or n.

Lemma 1 [4]. Suppose A ∈ Bn is irreducible with period p and the girth of D(A)
is s. Then

k(A) 6 n + s
(n

p
− 2

)
.

Lemma 2 [5]. Let

Gn =




0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
...
...
...
. . .

. . .
...
...

0 0 0 . . . 1 0 0
0 0 0 . . . 0 1 1
1 0 0 . . . 0 0 0
0 1 0 . . . 0 0 0




for n > 5, and G4 =




0 1 0 0
0 0 1 1
1 0 0 0
0 1 0 0


 .

Then for n > 4 and 1 6 i 6 n we have k(Gn, i) = expD(Gn)(i) = f(n, i).

Let A ∈ Bn with p(A) = p. For all i, j, kA(i, j) is defined to be the minimum
nonnegative integer k such that (Al+p)ij = (Al)ij for every integer l > k, andmA(i, j)
is defined to be the minimum nonnegative integer m such that (Aa+mp)ij = 1 for
every integer a > 0. It is easy to verify that k(A) = max{kA(i, j) : 1 6 i, j 6 n} and
kA(i, j) = max{mA(i, j)− p + 1, 1}.

Lemma 3. Suppose A ∈ Bn with n > 4 is critically reducible, and A has no

component of 1× 1. Then k(A) 6 n2 − 7n + 16.
���	�
���

. Let s0 and n0 be respectively the maximum of all the girths and

the maximum of all the orders of the strong components of D(A), let f0 be the
greatest common divisor of all cycle lengths of D(A). It follows from Theorem A
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and Corollary 2.1 in [6] that k(A) 6 n + s0(n0/f0 − 2). Note that s0 6 n0 6 n − 2
and the components of A are all nearly reducible.

Case 1. s0 6 n − 4. In this case n > 6. Hence k(A) 6 n + s0(n0 − 2) 6
n + (n− 4)(n− 2− 2) = n2 − 7n + 16.
Case 2. s0 = n− 2. Then n0 = n− 2. Corresponding to the components C and F

of A, the strong components of D(A) are cycles of length 2 and n− 2, respectively.

Suppose without loss of generality that A =
(

C 0
E F

)
. If E = 0, then k(A) = 0.

Suppose E 6= 0. For 1 6 i 6 2 and 3 6 j 6 n we have (Am)ij = 1 for nonnegative
integerm 6 n−1. ThenmA(i, j) 6 n−1+ϕ̃(2, n−2) 6 n−1+(2−1)(n−2−1) = 2n−4
by Lemma 3.2 in [7] (where for positive integers a and b with greatest common

divisor p, the generalized Frobenius number ϕ̃(a, b) is the least multiple ϕ̃ of p such
that for all multiples r > ϕ̃ of p, r can be expressed as a nonnegative integral

combination of a and b), and hence kA(i, j) = max{mA(i, j)− p(A) + 1, 1} 6 2n− 4.
It follows that

k(A) = max{kA(i, j) : 1 6 i, j 6 n}
= max{kA(i, j) : 1 6 i 6 2, 3 6 j 6 n}
6 2n− 4 6 n2 − 7n + 16.

Case 3. s0 = n− 3. Then n > 5.
If n = 5, then n0 = 3 and the cycle length set of D(A) is {2}. Hence we have

f0 = 2 and k(A) 6 n + s0(n0/f0 − 2) 6 5 + 2(3/2 − 2) = 4 6 n2 − 7n + 16 as in
Case 1.

If n > 6, then since A is critically reducible, we have n0 = n− 3. By an argument
similar to that in Case 2, we have k(A) 6 n− 1 + 2(n− 4) 6 n2 − 7n + 16.
The proof is complete. �

3. Results

First we consider the nearly reducible matrices; the results obtained will be needed

to prove an upper bound for the generalized indices for critically reducible matrices.

Suppose A ∈ Bn where n = 2 or 3 is nearly reducible. If n = 2, then A =
(

0 1
1 0

)

and k(A, 1) = k(A, 2) = 0. If n = 3, then there is a permutation matrix P such that

PAP−1 =




(0 1 0
0 0 1
1 0 0


 or




0 1 0
1 0 1
0 1 0


, and k(A, i) = 0 for 1 6 i 6 3 or k(A, 1) = 0

and k(A, 2) = k(A, 3) = 1.

734



Theorem 1. Suppose A ∈ Bn with n > 4 is nearly reducible. Then

k(A, i) 6 f(n, i),

and this bound is the best possible.
���	�
���

. Let s be the girth of D = D(A).
Case 1. A is not primitive. Then p = p(A) > 2.
If s = n or n − 1, we have p = n or n − 1, and hence k(A) = 0 or k(A) 6 2 by

Lemma 1. Hence we have k(A, i) < f(n, i) for all i.
If s 6 n− 2, by Lemma 1 again

k(A, i) 6 k(A, n) = k(A)

6 n + s
(n

2
− 2

)

6 n + (n− 2)
(n

2
− 2

)

=
n2 − 4n + 8

2
< f(n, i) for all i.

Case 2. A is primitive. Then by Theorem 1 in [5]

k(A, i) = expD(i) 6 f(n, i).

Combining Cases 1 and 2, we have k(A, i) 6 f(n, i). Note that Gn is nearly
reducible. By Lemma 2, this bound is the best possible. �

Now we turn to the critically reducible matrices.

Theorem 2. Suppose A ∈ Bn with n > 2 is critically reducible. Then k(A, i) 6
g(n, i) where

g(n, i) =

{
n2 − 7n + 13 + i for 1 6 i 6 n− 3,

n2 − 7n + 12 + i for n− 2 6 i 6 n

if n > 5 and g(n, i) = i for 1 6 i 6 n if 2 6 n 6 4, and this bound is the best
possible.
���	�
���

. Let f(n, i) = i for 1 6 i 6 n and 1 6 n 6 3. Then it is easy to verify
that

g(n, i) =

{
f(n− 1, i) for 1 6 i 6 n− 1,

f(n− 1, n− 1) + 1 for i = n,

where n > 2.
First we use induction on n to prove k(A, i) 6 g(n, i) for all n > 2.
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If n = 2, this can be easily verified. Suppose it is true for all critically reducible
matrices of order less than n. Denote by |X | the order of the square matrix X .

Claim. k(X, i) 6 f(|X |, i) for 2 6 |X | 6 n − 1 if X is nearly reducible or

critically reducible. This follows from Theorem 1 and the remark before it if X is

nearly reducible, and from the induction hypothesis if X is critically reducible.

The proof is now divided into the following three cases.
Case 1. A has no component of order 1. We have n > 4. There is a permutation

matrix P such that PAP−1 =
(

C 0
E F

)
where C and F are of orders at most n−2.

By the above Claim and the definition of the generalized index, we have

k(A, i) 6 k(C, i) 6 f(|C|, i) 6 f(n− 2, i)

=

{
i for n = 4, 5

n2 − 9n + 21 + i for n > 6

6 g(n, i)

for 1 6 i 6 2. Suppose 3 6 i 6 n. By Lemma 3, k(A, i) 6 n2 − 7n + 16 6 g(n, i).

Case 2. There is a permutation matrix P such that PAP−1 =
(

X 0
α 0

)
where

X is (n− 1)× (n− 1). Then n > 3 and

PAlP−1 =
(

X l 0
αX l−1 0

)
.

Note that k(A, i) is the minimum nonnegative k such that i rows of Ak and Ak+p(A)

are mutually equal. We have k(A, i) 6 k(X, i) 6 f(|X |, i) = f(n − 1, i) for all
1 6 i 6 n−1, and k(A, n) 6 k(X, n−1)+1 6 f(|X |, n−1)+1 = f(n−1, n−1)+1,
i.e., k(A, i) 6 g(n, i) for 1 6 i 6 n.

Case 3. There is a permutation matrix P such that PAP−1 =
(

X β

0 0

)
where

X is (n− 1)× (n− 1). Then n > 3 and

PAlP−1 =
(

X l X l−1β

0 0

)
.

Note that the n-th row of PAP−1 is independent of l. We have k(A, 1) 6 1. By
the definition of k(A, i), we have k(A, i) 6 k(X, i − 1) + 1 6 f(|X |, i − 1) + 1 =
f(n−1, i−1)+1 = f(n−1, i) for all 2 6 i 6 n−1 and k(A, n) 6 f(n−1, n−1)+1,
and hence k(A, i) 6 g(n, i) for 1 6 i 6 n.
Combining the above three cases, we have k(A, i) 6 g(n, i) for all 1 6 i 6 n.
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In the sequel we show that the above bound can be attained for every i with

1 6 i 6 n and n > 2.
For n > 5, let

A0 =
(

Gn−1 0
γ 0

)
,

where γ = (0, . . . , 0, 1, 0). Clearly A0 ∈ Bn is critically reducible, p(A0) = 1, and
D(A0) is just the digraph obtained by adding a new vertex n and an arc (n, n− 2)
to D(Gn−1). Denote m = k(Gn−1, n− 1). Note that the (n− 2, 1)-entry of Gm−1

n−1 is

zero, while Gm
n−1 is the all-ones matrix, and hence the first entry of γGm−1

n−1 is zero,
while each entry of γGm

n−1 is one. By the powers of A0, we have Am
0 6= Am+1

0 and

Am+1
0 = Am+2

0 . It follows that

k(A0, i) =

{
k(Gn−1, i) = f(n− 1, i) for 1 6 i 6 n− 1

k(Gn−1, n− 1) + 1 = f(n− 1, n− 1) + 1 for i = n

= g(n, i).

For n = 2, let

A0 =
(

0 0
1 0

)
.

Clearly we have k(A0, i) = i = g(2, i) for all 1 6 i 6 2.
For n = 3, let

A0 =




0 0 0
1 0 0
1 1 0


 .

We have k(A0, i) = i = g(3, i) for all 1 6 i 6 3.
For n = 4, let

A0 =




0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0


 .

Then k(A0, i) = i = g(n, i) for 1 6 i 6 4.
The proof is now complete. �
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