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NOTE ON A VARIATION OF THE SCHRÖDER-BERNSTEIN

PROBLEM FOR FIELDS
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Abstract. In this note we study fields F with the property that the simple transcendental
extension F (u) of F is isomorphic to some subfield of F but not isomorphic to F . Such a
field provides one type of solution of the Schröder-Bernstein problem for fields.

Keywords: field, subfield, isomorphism, transcendental extension, algebraic extension

MSC 2000 : 12E99, 12F05, 12F20

In [2] there is an abelian group G that contains subgroups G1 and G2, G ⊃ G1 ⊃
G2, such that G is isomorphic to G2 but not to G1. This solution to the Schröder-
Bernstein problem for abelian groups has the additional feature that G1 is a direct

summand of G and G2 is a direct summand of G1.

In functional analysis, Gowers [1] provided an analogous solution for Banach

spaces. He constructed Banach spaces B, B1, B2 such that B ⊃ B1 ⊃ B2, B is
isomorphic to B2 but not to B1, B1 is a direct summand of B and B2 is a direct

summand of B1.

In this note, we discuss one type of solution to the Schröder-Bernstein problem

for fields. We cannot provide the direct summands because the direct sum of two
fields is generally a ring but not a field.

By an SB-field we mean a field F such that the simple transcendental extension
F (u) of F is isomorphic to a subfield of F but not isomorphic to F . Thus F and

F (u) are a solution to the Schröder-Bernstein problem for fields. Recall that the
simple transcendental extension of F is just the field of rational functions over F

([4], Section 32). Routine arguments ([4], Section 64) show that an SB-field must be
of infinite degree of transcendence (over its prime subfield). We say that a field F is
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cube root complete (square root complete) if for each y ∈ F there is an x ∈ F such

that x3 = y (x2 = y).
In Theorem I we find that a cube root complete or square root complete field F

of infinite degree of transcendence must contain an SB-subfield. It has been known

among some algebraists that if F is algebraically closed, then F must be an SB-field.
(For an easy proof, consult the secondary argument in the proof of Theorem I.) Hence,

the field of real numbers � contains an SB-subfield that is not algebraically closed
(the polynomial x2 + 1 has no zero in � ), so an SB-field need not be algebraically
closed.
Any uncountable field must be of infinite degree of transcendence, and it follows

that the field of complex numbers C is an SB-field (Theorem I). We also show
that � is not an SB-field. We seek cube root complete fields of infinite degree of
transcendence that are not SB-fields. Of course � is one such field, but we also will
construct such a countable field (Proposition 1).

Theorem I. Let F be a field of infinite degree of transcendence that is either

cube root complete or square root complete. Then there is a subfield K of F that is

an SB-field. Moreover, if F is algebraically closed, then F is an SB-field.
��
������

. We will give the proof for cube root complete F . The proof for square

root complete F is analogous, so we leave it. Let P be the result of adjoining to
the prime subfield of F all the cube roots of unity in F (there are one or three).

Let y, x1, x2, x3, . . . , xn, . . . be countably infinitely many algebraically independent
elements of F . Let F0 denote P (y, x1, x2, x3, . . . , xn, . . .).
Let W denote the family of all cube root complete subfields of F containing F0.

Then F ∈ W . By the Hausdorff Maximum Principle ([3], p. 32) there is a maximal

chain of members of W ; call it {Fa}a. Because no element can have more than 3
cube roots, we deduce that

⋂
a

Fa is the smallest member of this maximal chain. Any

field G such that
⋂
a

Fa ⊃ G ⊃ F0 and G 6= ⋂
a

Fa cannot be cube root complete. Put

Fb =
⋂
a

Fa.

Let ϕ0 be the isomorphism of F0 onto P (x1, x2, x3, . . . , xn, . . .) which leaves each
element of P fixed and maps y to x1 and xj to xj+1 for all j. Let {ϕ} denote the
family of all isomorphisms extending ϕ0 whose domain is a subfield of Fb and whose

range is a subfield of Fb algebraic over P (x1, x2, x3, . . . , xn, . . .). Then ϕ0 ∈ {ϕ}. We
partially order {ϕ} as follows: ϕ1 6 ϕ2 means that ϕ2 extends ϕ1. Again by the

Hausdorff Maximum Principle, there is a maximal chain {ϕa}a in {ϕ}. It follows
that the greatest common extension ϕb of all the ϕa is the greatest member of {ϕa}a.

We claim that the domain of ϕb is Fb. Assume, to the contrary, that it is not. Then
the domain of ϕb is a proper subfield of Fb and hence is not cube root complete. There
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is a v ∈ domain of ϕb such that the polynomials x3− v and x3−ϕ(v) are irreducible
over (domain ϕb) and (range ϕb) respectively. We extend ϕb to an isomorphism ϕ′

by mapping a zero of x3 − v in Fb to a zero of x3 − ϕb(v) in Fb, and this conflicts
with the maximality of ϕb. It follows that ϕb is an isomorphism of Fb onto a subfield

of Fb that is algebraic over P (x1, x2, x3, . . . , xn, . . .). Put K = ϕb(Fb).
Now y is transcendental and K is algebraic over P (x1, x2, x3, . . . , xn, . . .) so y is

transcendental over K. Moreover K(y) ⊂ Fb so ϕb(K(y)) ⊂ ϕb(Fb) = K. It remains
to prove that K(y) is not isomorphic to K. Note that K is isomorphic to the cube

root complete field Fb, so K is cube root complete. Now suppose K(y) is isomorphic
to K. Then K(y) is cube root complete. There must exist polynomials p(y) and
q(y) in y with coefficients in K such that (p(y)/q(y))3 = y and

(p(y))3 = y(q(y))3

where the degree of the left side is a multiple of 3 and the degree of the right side

is not a multiple of 3. This contradiction proves that K(y) is not isomorphic to K.
Hence K is an SB-subfield of F .

Now let F be algebraically closed. Let A be a (necessarily infinite) algebraic
basis of F ([4], Section 64). Let B be the result of deleting from A one particular

element w. Let P (B)∗ denote an algebraic closure of P (B) inside the algebraically
closed field F . Then w is transcendental and P (B)∗ is algebraic over P (B), so w is

transcendental over P (B)∗. But P (B) is isomorphic to P (A) because A and B have
the same cardinality. Thus P (B)∗ is isomorphic to the algebraic closure of P (A)
which in turn is isomorphic to F . It follows that P (B)∗(w) is a subfield of F that is
isomorphic to the simple transcendental extension of F . That this extension is not

isomorphic to F is proved by the same argument used in the preceding paragraph,
so we leave it. �

A cardinality argument can be used to prove that any uncountable field has infinite
degree of transcendence. From Theorem I we deduce that the real and complex fields

have SB-subfields. Moreover C is an SB-field. We have:

Corollary 1. The algebraic closure of any uncountable field is an SB-field.

We seek fields of infinite degree of transcendence that are cube root complete and

yet are not SB-fields. We find both countable and uncountable fields with these
properties.

Proposition 1. The real field � is not an SB-field. Moreover, there is a countable
subfield H of � that is cube root complete and of infinite degree of transcendence
but is not an SB-field.
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. Let H0 denote a countable subfield of � of infinite degree of transcen-

dence. Let H1 be the subfield of � generated by the set {x ∈ � : x3 ∈ H0}. Let H2

be the subfield of � generated by the set {x ∈ � : x2 ∈ H1}. Let H3 be the subfield
of � generated by the set {x ∈ � : x3 ∈ H2}. Let H4 be the subfield of � generated
by the set {x ∈ � : x2 ∈ H3}. In general Hn+1 is the subfield of � generated by
the set {x ∈ � : x2 ∈ Hn} if n is odd and generated by the set {x ∈ � : x3 ∈ Hn}
if n is even. By induction we obtain an expanding sequence of countable subfields
of � . Let H be the greatest common extension of all the Hn. It is clear from the

construction that H is cube root complete, and countable. Moreover, if y ∈ H and
y is positive, then H contains the square root of y. Of course H is of infinite degree

of transcendence because H0 is.
Let ϕ be an isomorphism of H into H . If r ∈ H , s ∈ H and r < s, then s − r is

positive, (s− r)
1
2 ∈ H , ϕ((s− r)

1
2 )2 = ϕ(s− r) = ϕ(s)− ϕ(r) > 0 and ϕ(s) > ϕ(r).

Thus ϕ preserves order on H . But ϕ maps each rational number to itself. For any

h ∈ H , h and ϕ(h) exceed the same rational numbers and are exceeded by the same
rational numbers, so h = ϕ(h). It follows that there cannot be any proper extension
of H isomorphic to a subfield of H . So H is not an SB-field. By essentially the same
argument, � is not an SB-field. �

We sum up:

The field of complex numbers is an SB-field, but the field of real numbers is not.
Any algebraically closed field of infinite degree of transcendence is an SB-field, but
an SB-field need not be algebraically closed. A cube root complete field of infinite

degree of transcendence need not be an SB-field, but it must contain an SB-subfield.
We leave open the question whether there exists a square root complete field of

infinite degree of transcendence that is not an SB-field. I conjecture yes, but the
matter could be the topic of further study. Another problem is to find a necessary

and sufficient condition for a field to be an SB-field.
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