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Abstract. For an order embedding G
h→ Γ of a partly ordered group G into an l-group Γ

a topology T
Ŵ
is introduced on Γ which is defined by a family of valuations W on G. Some

density properties of sets h(G), h(Xt) and (h(Xt) \ {h(g1), . . . , h(gn)}) (Xt being t-ideals
in G) in the topological space (Γ, T

Ŵ
) are then investigated, each of them being equivalent

to the statement that h is a strong theory of quasi-divisors.
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1. Introduction

L. Skula [22] introduced the notion of a theory of divisors for a partly ordered
group (po-group) (or, equivalently, for a semigroup with a cancellation law) as a
very natural generalization of a theory of divisors for rings and derived an extensive
theory of these po-groups.
A step towards further generalization of a divisor theory was done by K.E. Aubert

in [3], where for the first time the notion of a quasi-divisors theory was introduced.
Recall that a directed po-group (G, ·) has a theory of quasi-divisors if there exists an
l-group (Γ, ·) and a map h : G→ Γ such that
(i) h is an order isomorphism from G into Γ,
(ii) (∀α ∈ Γ+)(∃g1, . . . , gn ∈ G+)α = h(g1) ∧ . . . ∧ h(gn).
The principal tool for an investigation of these properties in po-groups seems to be
the notion of an r-ideal. We recall here that by an r-system of ideals in a directed
po-group G we mean a map X �→ Xr (Xr is called an r-ideal) from the set of all
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lower bounded subsets X of G into the power set of G which satisfies the following
conditions:

(1) X ⊆ Xr,

(2) X ⊆ Yr =⇒ Xr ⊆ Yr,

(3) {a}r = a ·G+ = (a) for all a ∈ G,

(4) a ·Xr = (a ·X)r for all a ∈ G.

One of the first characterizations of po-groups with a theory of quasi-divisors was
established by P. Jaffard [12]. He proved that a directed po-group G has a theory of
quasi-divisors if and only if the semigroup (I(f)t ,×) of finitely generated t-ideals is a
group, i.e. if and only if G is a t-Prüfer group. (For comprehensive description see
e.g. [3].)

In [14] we introduced a stronger version of po-groups with a theory of quasi-
divisors. Recall that a theory of quasi-divisors h : G→ Γ is called a strong theory of
quasi-divisors, if

(∀α, β ∈ Γ+)(∃γ ∈ Γ+)α · γ ∈ h(G), β ∧ γ = 1.

It may be proved that any strong theory of quasi-divisors is also a theory of quasi-
divisors.

It was again L. Skula [22] who proved for the first time that a theory of divisors

can be characterized by some density property. For an o-embedding G
h→ Γ of a

po-group G into an l-group Γ (Γ = �(P ) in his approach) he introduced a short exact
sequence

0→ G
h→ Γ ϕh−→ Ch → 0

and proved that h is a strong divisor theory if and only if a map ϕh has some algebraic
density property. Namely, he proved the following theorem.

Theorem ([22]). Let G be a po-group and let h : G→ �
(P ) be an o-isomorphism

into. Then the following conditions are equivalent.

(1) h is a strong theory of divisors.

(2) For p1, . . . , pn ∈ P (n � 1), the set ϕh(P \{p1, . . . , pn}) is a semigroup generator
of a divisor class group Ch.

In this paper we want to investigate some density properties of po-groups with a
strong theory of quasi-divisors which can be expressed not by using a map ϕh from
the above short exact sequence but directly by a map h. To do it we have to change
this notion of density used by Skula—instead of the density in an algebraic sense
(i.e. X ⊆ Γ is dense in Ch if ϕh(X) is a semigroup generator of Ch) we will use the
density in a topological sense, i.e. we will define a topology T

Ŵ
on Γ and investigate
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conditions under which for a set X ⊆ G, h(X) is topologically dense in (Γ, T
Ŵ
). The

principal result of this paper will be then Theorem 2.9 which introduces nine new
density conditions, each of them being equivalent to the statement that h is a strong
theory of quasi-divisors.
In this paper all po-groups are assumed to be abelian and directed. As we have

mentioned in the introduction, ideal systems are the principal tools for an investiga-
tion of po-groups with various divisors theory. Among these ideal systems, t-ideals
play the principal role. Recall that an r-system is called a v-system, if

Xv =
⋂

X⊆(y), y∈G

(y),

and it is called a t-system, if

Xt =
⋃

Y⊆X, Y finite

Yv.

An r-system r is said to be of a finite character, if

Xr =
⋃

Y⊆X, Y finite

Yr.

An r-ideal Xr is finitely generated if Xr = Yr for some finite subset Y . Clearly,
any t-system is of a finite character and for any r-system r of a finite character
on G, Xr ⊆ Xt (r � t, in symbols). An o-homomorphism ϕ from a po-group G1
with an r-system r1 into a po-group G2 with an r-system r2 is an (r1, r2)-morphism
if ϕ(Xr1) ⊆ (ϕ(X))r2 for any lower bounded subset X . If G2 is totally ordered
(i.e. an o-group) and ϕ is surjective, then ϕ is called an r1-valuation if it is an (r1, t)-
morphism. Sometimes t-valuations will be simply called valuations. Moreover, an
o-homomorphism ϕ : G1 → G2 is called essential if it is an o-epimorphism and kerϕ
is a directed convex subgroup of G1 (i.e. an o-ideal of G1). In [8, Theorem 3.8],
it is proved that the existence of a theory of quasi-divisors of a finite character is
equivalent to the existence of a family W of essential t-valuations such that
(1) ∀g ∈ G, g � 1⇔ (∀w ∈W )w(g) � 1,
(2) ∀g ∈ G, g 
= 1, {w ∈W : w(g) 
= 1} is finite.
In this case W is called a defining family of a finite character. If G

h→ Γ is a theory
of quasi-divisors then any t-valuation G

w→ Gw from a defining family W can be
uniquely extended onto a t-valuation Γ

ŵ→ Gw such that the diagram

G
h−−−−→ Γ

w

�
�ŵ

Gw Gw
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commutes. The set of these extended t-valuations will be then denoted by Ŵ . It is
clear that in this case Ŵ is a defining family of t-valuations for Γ.

Let (G, ·, �) be a po-group and let W be a defining family of valuations w : G→
Gw for G. Let r be an ideal system in G. Recall that r is then said to be defined
by W , if for any finite subset X ⊆ G,

(∀g ∈ G)g ∈ Xr ⇔ (∀w ∈W )w(g) ∈ (w(X))t

holds. Moreover, it was proved by Jaffard [12] that, conversely, any defining family of
valuationsW defines in this way an ideal system. In both these cases, any valuation
w ∈W is then an r-valuation. Now, if r is defined by W and for any lower directed
subset X ⊆ G we set Xr =

⋃
K⊆X,X finiteKr, then we obtain an ideal system of a

finite character in G and any w ∈ W is also r-valuation.

For our purposes various types of approximation theorems for valuations are of
principal importance. Let w, v be valuations of G with value groups Gw, Gv,
respectively. Then the canonical o-homomorphism G → G/[kerw, ker v], where
[kerw, ker v] is the smallest o-ideal generated by the corresponding kernels, is a val-
uation and there are o-homomorphisms dvw, dwv such that dvw · v = dwv · w. This
common valuation will be denoted by v ∧ w. Now, elements (g1, g2) ∈ Gw × Gv

are called compatible, if dwv(g1) = dvw(g2). Moreover, if W is a set of valu-
ations, an element (gw)w ∈

∏
w∈W ′

Gw (where W ′ ⊆ W ) is called compatible if

any pair (gw, gv) from this element is compatible. Finally, we say that an ele-
ment (gw)w ∈

∏
w∈W

Gw is W ′-complete for W ′ ⊆ W , if
⋃

w∈W ′
W (gw) ⊆ W ′, where

W (gw) = {v ∈ W : dwv(gw) 
= 1}. We set W (1) = ∅.
Then we say that G with a defining family W of valuations satisfies Positive

Weak Approximation Theorem (P.W.A.T.) if for any finite subset F ⊆ W and any
compatible system (αw)w ∈

∏
w∈F

G+w there exists g ∈ G+ such that w(g) = αw for all

w ∈ F . Further, we say that G with W satisfies the Weak Approximation Theorem
(W.A.T.) if for any finite subset F ⊆W and any compatible system (αw)w ∈

∏
w∈F

Gw

there exists g ∈ G such that w(g) = αw for all w ∈ F . Finally, we say that G with
W satisfies the Approximation Theorem (A.T.), if for any finite subset F ⊆ W and
any compatible and F -complete system (αw)w ∈

∏
w∈F

G+w there exists g ∈ G+ such

that w(g) = αw for all w ∈ F and w(g) � 1 for all w ∈ W \ F .
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2. Topologies defined by r-valuations

At the beginning of this section we introduce the notion of a topology defined by
a defining family of valuations in a po-group.

Definition 2.1. Let G be a po-group with an ideal system r and let W be a
defining family of r- valuations for G. By TW we denote a topology on G such that
{kerw : w ∈ W} is a subbase of neighbourhoods of 1G.

Clearly (G, TW ) is a topological group and if Gw is considered to be a discrete
space, then w is a continuous map. By X we denote the closure of a set X ⊆ G in
this topology TW . It is clear that for any X ⊆ G we have

X = {g ∈ G : (∀F ⊆W, F finite)(∃a ∈ X)(∀w ∈ F )w(a) = w(g)}.

First we summarize some simple relationships between this topology and the ideal
systems in G.

Lemma 2.2. Let G be a po-group with a defining family of r-valuations W ,

where r is an ideal system defined on G. Further, let s be the ideal system in G

defined by W . Let X be a lower bounded subset in G.

(1) For any w ∈ W we have w(Xr) ⊆ (w(X))t.
(2) For any w ∈ W we have X ⊆ Xs = (X)s = Xs.

�����. (1) Let g ∈ Xr. Then for F = {w} there exists a ∈ Xr such that
w(g) = w(a). Since w is a (r, t)-morphism, we have w(g) = w(a) ∈ w(Xr) ⊆ (w(X))t.
(2) Let g ∈ X and let w ∈ W . Then there exists a ∈ X such that w(g) = w(a)

and it follows that w(g) ∈ w(X) ⊆ w(Xs) ⊆ (w(X))t. Since s is defined by W , we
have g ∈ Xs. Further, let g ∈ Xs and let us suppose that g 
∈ Xs. Then there exists
w ∈W such that w(g) 
∈ (w(X))t. On the other hand, there exists a ∈ Xs such that
w(g) = w(a) and it follows that w(g) = w(a) ∈ w(Xs) ⊆ (w(X))t, a contradiction.
Hence, Xs = Xs. Finally, since X ⊆ Xs, it follows that X is lower bounded. Then
we have Xs ⊆ Xss = Xs ⊆ Xs. �

It is clear that any topology TW defined on G by a defining family of valuations
is a T1-topology.

Let G and G′ be po-groups, h : G→ G′ an o-homomorphism, and let W and W ′,
respectively, be defining families of valuations of G and G′. Then W ′ is said to be
coarser than W (with respect to h), in symbols W ′ �h W , if there exists an injective
map σ : W ′ → W such that for each w′ ∈ W ′ there exists an o-homomorphism hw′
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such that the following diagram commutes:

G
h−−−−→ G′

σ(w′)

�
�w′

Gσ(w′) −−−−→
hw′

Gw′

In the next proposition we investigate some relationship between topologies (defined
by families of valuations) on a po-group G and its factor po-group G/H , respectively.

Proposition 2.3. Let W be a defininig family for a po-group G, let H be a
convex subgroup in G, h : G→ G/H a canonical o-epimorphism and W1 a defining

family of G/H such that W1 �h W . Then (G/H, TW1) is a factor topological group
of the topological group (G, TW ).

�����. It is clear that TW1 is a factor topology if and only if for any A ⊆ G/H ,
h−1(A) is closed in TW1 . Hence, let g ∈ h−1(A) and let us assume that g 
∈ h−1(A).
Then there exists a finite subset F in W1 such that for any x ∈ A there exists
wx ∈ F such that wx(x) 
= wx(h(g)). Since W1 �h W , there exists an injective map
σ : W1 → W such that for any w ∈ W1 there exists an o-homomorphism hw such
that the following diagram commutes:

G
h−−−−→ G/H

σ(w)

�
�w

Gσ(w) −−−−→
hw

Gw.

Since g ∈ h−1(A), for a finite set σ(F ) ⊆ W there exists b ∈ h−1(A) such that
σ(w)(g) = σ(w)(b) for all w ∈ F . Further, since h(b) ∈ A, there exists c ∈ A such
that w(c) = w(h(b)) for all w ∈ F . Especially, for any wc ∈ F , c ∈ A, we have
wc(h(g)) 
= wc(c) = wc(h(b)). From the commutativity of the above diagram we
then obtain

wc(c) = wc(h(b)) = hwc(σ(wc)(b) = hwcσ(wc(g) = wc(h(g)),

a contradiction. Therefore, g ∈ h−1(A) and TW1 is a factor topology. �

Corollary. Let W be a defining family of valuations for G of a finite character

and let H be an o-ideal of G. Then there exists a defining family W1 of valuations
for G/H such that (G/H, TW1 ) is the factor topological group of (G, TW ).

600



�����. According to [18, 2.7], there exists a defining family W1 for G/H such
that W1 �h W , where h : G → G/H is the canonical o-epimorphism. The rest
follows from 2.3. �

The following proposition is also corollary of the above proposition.

Proposition 2.4. Let G be a po-group and let W be a defining family of
valuations of G of a finite character. Let H be an o-ideal in G. Then H is closed in

the topology TW .

�����. According to [17, Proposition 2.7], there exists a defining family WH

of G/H such that WH �h W , where h is a canonical o-epimorphism. Hence, ac-
cording to 2.3, the topological group (G/H, TWH ) is a factor topological group of the
topological group (G, TW ). Since any topology defined by a family of valuations is a
T1-topology, we obtain that H has to be closed in TW . �

Let w1, w2 be valuations of G. Then we set w1 � w2 if there exists an
o-epimorphism d such that w2 = d · w1.

Lemma 2.5. Let W be a defining family of a po-group G and let W1 be such

that for any w ∈W there exists w′ ∈ W1 with w′ � w. ThenW1 is a defininig family
of G and TW = TW1 .

�����. The lemma follows directly from the fact that for any w ∈ W there
exists an o-homomorphism hw : Gw′ → Gw such that w = hw · w′. �

Lemma 2.6. LetW be a system of valuations in a po-groupG and let (βw)w∈W ∈∏
w∈W

Gw be a compatible system. Let W1 = {w ∈ W : βw 
= 1}. Then (βw)w∈W ′ is

W ′-complete for any W ′ such that W1 ⊆W ′ ⊆W .

�����. Let w ∈ W ′. If βw = 1, then W (βw) = {w} ⊆ W ′. Let βw 
= 1, and
let v ∈ W (βw). Since 1 
= dwv(βw) = dvw(βv), we have βv 
= 1 and it follows that
v ∈ W1 ⊆W ′. Hence

⋃
w∈W ′

W (βw) =W ′ and (βw)w∈W ′ is W ′-complete. �

The next theorem is the first example of topological density properties of po-groups
with a strong theory of quasi-divisors. In some aspect it represents a topological
analogue of Skula’s algebraic density property.

Theorem 2.7. Let G be a po-group with a strong theory of quasi-divisors of
a finite character and let W be its infinite defining family of t-valuations of finite

character. Let X be a lower bounded subset in G. Then for any g1, . . . , gn ∈ Xt, the

set Xt \ {g1, . . . , gn} is dense in Xt in the topology TW , i.e.

Xt \ {g1, . . . , gn} = Xt.
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�����. We suppose first that X is a finite subset in G. According to 2.2,
Xt = Xt since the t-system is defined by any defining family of valuations. To prove
the theorem it suffices to show that g1 ∈ Xt \ {g1, . . . , gn}. Hence, let F ⊂ W be a
finite subset. Since g1 
= gj , j = 2, . . . , n, for any j � 2 there exists vj ∈ W such
that vj(g1) 
= vj(gj). Let X = {x1, . . . , xm} and let βX

w = w(x1) ∧ . . . ∧ w(xm) for
any w ∈ W . Since a t-system in G is defined by any defining family of valuations
in G, we obtain

(∀a ∈ G)a ∈ Xt ⇔ (∀w ∈W )w(a) ∈ (w(X))t = {γ ∈ Gw : γ � βX
w }.

Moreover, according to [18, Lemma 2.9 and Lemma 2.6], (βX
w )w is a compatible and

Wb-complete system, where Wb = {w ∈ W : βX
w 
= 1}. We put

W1 = F ∪ {v2, . . . , vn} ∪ {w ∈W : w(g1) 
= 1} ∪Wb.

Since W is of a finite character, W1 is a finite set.
Now, let w0 ∈ W \ W1 be an arbitrary valuation. Then for any w ∈ W1 and

the o-homomorphism dw0,w : Gw0 → Gw0∧w we have w0 ∧ w = dw0,w · w0 in the
∧-semilattice of valuations over G. Without any loss of generality we can require
that elements from W are pairwise incomparable. Hence, for any w ∈ W1 there
exists 1 < δw ∈ (ker dw0,w)+ ⊆ G+w0 . Let δ = min{δw : w ∈ W1} > 1. Since 1 < δ �
δw ∈ ker dw0,w, we have δ ∈ ⋂

w∈W1

ker dw0,w and it follows that (1, δ) ∈ G+w ×G+w0 is

a compatible system for all w ∈ W1. Since G has a strong theory of quasi-divisors
of a finite character, a defining family W of valuations satisfies the Positive Weak
Approximation Theorem (see [17, Theorem 3.3]). Then for a compatible system
c′ = (1, . . . , 1, δ) ∈ ∏

w∈W1

Gw ×Gw0 there exists an element e ∈ G+ such that

w(e) = cw; w ∈W1 ∪ {w0}.

Now we set Wc = {w ∈W : w(e) 
= 1} ∪W1. Further, let us denote

a = (w(g1))w∈Wc , b = ((βX
w )w∈Wc , c = (w(e))w∈Wc .

Then a, b and c are compatible systems and according to Lemma 2.6, these systems
are Wc-complete, since Wb ⊆W1 ⊆Wc. Hence according to [18, 2.9], it follows that
(a∨b) · c is a compatible and Wc-complete system as well, where the operations are
done pointwise. Then according to the Approximation Theorem which holds for any
po-group with a strong theory of quasi-divisors of a finite character (see [17, 3.5]),
there exists a ∈ G such that

w(a) = ((a ∨ b) · c)w ; w ∈ Wc,

w(a) � 1, w ∈ W \Wc.
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Hence a ∈ Xt. In fact, let w ∈ W . If βX
w = 1, then in the case w ∈ Wc we have

w(a) = ((a ∨ b) · c)w = (1 ∨ w(g1)) · w(e) � 1 = βX
w

and in the case w ∈ W \Wc we have w(a) � 1 = βX
w . If β

X
w > 1, then w ∈ W1 ⊆Wc

and we have w(a) = (aw ∨ bw) · cw = (w(g1) ∨ βX
w ) · w(e) � βX

w . Hence w(a) � βX
w

for any w ∈W and it follows that a ∈ Xt.
Further, for any w ∈ F ⊆W1 we have w(a) = (aw∨bw)·cw = w(g1)∨βX

w = w(g1),
since g1 ∈ Xt and w(e) = 1 for any w ∈ W1.
Finally, for any j � 2 we have vj(a) = ((a∨b)·c)vj = vj(g1)∨βX

vj
= vj(g1) 
= vj(gj),

since again g1 ∈ Xt and vj ∈ W1. Hence a 
= gj , j � 2. Moreover, we have
w0(a) = ((a ∨ b) · c)w0 = δ 
= 1 = w0(g1). Hence a 
= g1.
Therefore, we conclude that g1 ∈ Xt \ {g1, . . . , gn}.
Now, suppose that X is any lower bounded subset in G and let g1, . . . , gn ∈ Xt.

For any i, i = 1, . . . , n, there exists a finite subset Ki ⊆ X such that gi ∈ Ki
t . Let

K =
⋃
i

Ki. Then g1, . . . , gn ∈ Kt and according to the first part of this proof we have

gi ∈ Kt \ {g1, . . . , gn} ⊆ Xt \ {g1, . . . , gn}. Therefore, Xt \ {g1, . . . , gn} = Xt. �

Corollary. Let g1, . . . , gn ∈ G+. Then G+ \ {g1, . . . , gn} = G+.

The proof follows directly from 2.7, since {1}t = G+.
Let G be a po-group with an ideal system r of a finite character and let H be

an o- ideal of G, h : G → G/H a canonical o-homomorphism. Then for any lower
bounded subset A ⊆ G/H we can find a lower bounded subset A ⊂ G such that
A/H = A. Then we set ArH = Ar/H . In [17] it was proved that rH is an ideal
system in G/H .

Lemma 2.8. Let G be a po-group with a defining family W of valuations, let

r be an ideal system of a finite character defined by W and let H be an o-ideal in G,

h : G→ G/H a canonical o- homomorphism. LetWH be any defining family of G/H

such that WH �h W . Then any valuation in WH is an rH -valuation.

�����. Let σ : WH →W be an injective map such that h ·w = hw ·σ(w) for any
w ∈WH , where hw : Gσ(w) → Gw is an o-homomorphism. Let A ⊆ G/H be a lower
bounded set and let A be a lower bounded set in G such that ArH = Ar/H . Let
a ∈ Ar. Then we have w(h(a)) = hwσ(w)(a) ∈ hw((σ(w)A))t) ⊆ (hwσ(w)(A))t =
(wh(A))t = (w(A))t. Hence w(ArH ) ⊆ (w(A))t. �

Now, let h : G→ D be an o-embedding of a po-group G into another po-group D

and let W (Ŵ ) be a defining family of valuations for G (D, respectively). Then we
say that Ŵ is an extension of W , if there is a bijection σ : W → Ŵ such that
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(1) (∀w ∈W )Gw = Gσ(w),

(2) (∀w ∈W )σ(w) · h = w.

The next theorem is the principal result of the paper and it presents some topological
characterizations of po-groups with a strong theory of quasi-divisors.

Theorem 2.9. Let G be a po-group with an infinite defining family of valua-
tions W of a finite character and let h : G → Γ be an o-embedding of G into an

l-group. Let r be an ideal system in G defined by W . Finally, let Ŵ be a defining
family of valuations for Γ such that Ŵ is an extension of W . Then the following

statements are equivalent.

(1) h is a strong theory of quasi-divisors of a finite character.

(2) h(G) is a dense set in Γ in the topology T
Ŵ
.

(3) h(G+) is a dense set in Γ+ in the topology TŴ
.

(4) For any finite set X ⊂ G+, h(Xr) is a dense set in (h(X))t in the topology TŴ
.

(5) For any finite set X ⊂ G, h(Xr) is a dense set in (h(X))t in the topology TŴ
.

(6) For any lower bounded set X ⊆ G, h(Xr) is a dense set in (h(X))t in the
topology T

Ŵ
.

(7) For any finite set X ⊆ G and any elements g1, . . . , gn ∈ Xr, h(Xr \{g1, . . . , gn})
is a dense set in (h(X))t in the topology TŴ

.

(8) For any elements g1, . . . , gn ∈ G+, h(G+ \ {g1, . . . , gn}) is a dense set in Γ+ in
the topology T

Ŵ
.

(9) For any elements g1, . . . , gn ∈ G, h(G \ {g1, . . . , gn}) is a dense set in Γ in the
topology T

Ŵ
.

(10) For any lower bounded set X ⊆ G and any elements g1, . . . , gn ∈ Xr, h(Xr \
{g1, . . . , gn}) is a dense set in (h(X))t in the topology TŴ

.

�����. The proof will be done according to the following scheme.

(8) ←−−−−−−−−−−−−−−−−−−− (10)
�




(6) −−−−→ (5) −−−−→ (4) −−−−→ (3) −−−−→ (2) −−−−→ (1) −−−−→ (6)



�



(9) ←−−−− (10) −−−−→ (7)

(2) =⇒ (1): We prove that W satisfies the Weak Approximation Theorem
(W.A.T.). Let F ⊆ W be a finite set and let (αw)w ∈

∏
w∈F

Gw be a compatible sys-

tem. Since 1Γ : Γ→ Γ is a strong theory of quasi-divisors of a finite character (Γ is
defined by Ŵ ), according to the W.A.T. (see [17, Theorem 3.3 and Theorem 3.4])
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applied to this system there exists a ∈ Γ such that ŵ(a) = αw for all w ∈ F . Since
h(G) is dense in Γ, there exists g ∈ G such that w(g) = ŵ(a) for w ∈ F . Hence
W satisfies the W.A.T. and it follows that (1) holds (see [17, Theorem 3.5]).
(3) =⇒ (2): Let a ∈ Γ, a = a1 · a−12 , where ai � 1. Let F ⊆ W be a finite

set. Then there exist g1, g2 ∈ G+ such that w(gi) = ŵ(ai) for all w ∈ F . Hence
w(g1 · g−12 ) = ŵ(a) for all w ∈ F and (2) holds.
Implications (4) =⇒ (3), (5) =⇒ (4) and (6) =⇒ (5) are clearly trivial.
(1) =⇒ (6): Let X ⊆ G be a lower bounded set. Since h is an (r, t)-morphism, we

have h(Xr) ⊆ (h(X))t. Let a ∈ (h(X))t. Then there exists a finite subset K ⊆ X

such that a ∈ (h(K))t and it follows that a � ∧k∈Kh(k). For any w ∈ W we set
βw = ∧k∈Kw(k). Let F ⊆W be a finite set. Then we put

W1 = {w ∈ W : βw 
= 1} ∪ F ∪ {w ∈W : ŵ(a) 
= 1}.

Since W is of finite character, W1 is a finite set. Further, we put α = (ŵ(a))w∈W1 .
According to Lemma 2.6, α is a compatible and W1-complete system. Since G sat-
isfies the Approximation Theorem ([17, Theorem 3.5]), there exists g ∈ G such that

w(g) = ŵ(a), w ∈W1,

w(g) � 1, w ∈W \W1.

Then g ∈ Kr. In fact, let w ∈ W . If βw 
= 1, then w ∈ W1 and it follows that
w(g) = (̂a) � βw. If βw = 1 then in the case w ∈ W1 we have w(g) = ŵ(a) � βw

and in the case w 
∈ W1 we obtain w(g) � 1 = βw. Hence, for any w ∈ W we have
w(g) � βw and it follows that g ∈ Kr. Further, since F ⊆W1, we have

ŵ(h(g)) = w(g) = ŵ(a), w ∈ F,

and it follows that a ∈ h(Kr) ⊆ h(Xr).
(1) =⇒ (10): Let X ⊆ G be a lower bounded subset and let g1, . . . , gn ∈ Xr. Then

in the topology T
Ŵ
we have

h(Xr \ {g1, . . . , gn}) = (h(X))t \ {h(g1), . . . , h(gn)}.

In fact, since h is an (r, t)-morphism, we have h(Xr \ {g1, . . . , gn}) ⊆ (h(X))t \
{h(g1), . . . , h(gn)} and it follows that in the above statement the inclusion ⊆ holds.
Conversely, let x ∈ (h(X))t \ {h(g1), . . . , h(gn)} and let F̂ ⊆ Ŵ be a finite set.
Then there exists a ∈ (h(X))t \ {h(g1), . . . , h(gn)} such that ŵ(a) = ŵ(x) for all
ŵ ∈ F̂ . Since the implication (1) =⇒ (6) has been proved, we have a ∈ h(Xr).
Then for the same subset F̂ there exists b ∈ h(Xr) such that ŵ(b) = ŵ(a) for all
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ŵ ∈ F̂ . We set b = h(g) for some g ∈ Xr. Then according to Theorem 2.7, we have
g ∈ Xr = Xr \ {g1, . . . , gn} in the topology TW . Let F ⊆W be a finite set such that
F̂ = {ŵ : w ∈ F}. Then there exists c ∈ Xr \ {g1, . . . , gn} such that w(c) = w(g) for
all w ∈ F . Finally, we obtain

h(c) ∈ h(Xr) \ {h(g1), . . . , h(gn)},
ŵ(h(c)) = ŵ((h(g)) = ŵ(b) = ŵ(a) = ŵ(x), (∀ŵ ∈ F̂ ),

and the other inclusion holds in the above statement, as well. Now, since 1Γ : Γ→ Γ
is a strong theory of quasi-divisors of a finite character, as well, and Ŵ is a defining
family of Γ, according to Theorem 2.7 applied to this theory of quasi-divisors we
obtain

(h(X))t \ {h(g1), . . . , h(gn)} = (h(X))t

in the topology T
Ŵ
. Therefore, we obtain

h(Xr \ {g1, . . . , gn}) = (h(X))t \ {h(g1), . . . , h(gn)} = (h(X))t.

(10) =⇒ (7): It is trivial.
(10) =⇒ (8): It follows directly from (h({1G}))t = Γ+.
(8) =⇒ (3) and (10) =⇒ (8) are trivial.
(10) =⇒ (9): The following inclusion holds:

(h(X))t = h(Xr \ {g1, . . . , gn}) ⊆ h(G \ {g1, . . . , gn}) ⊆ Γ.

Again, since 1Γ : Γ→ Γ is a strong theory of quasi-divisors of a finite character and
Ŵ is a defining family of Γ, according to Theorem 2.7 applied to this l-group Γ we
obtain that (h(X))t is a dense set in Γ in the topology TŴ

. Therefore, we have

Γ = (h(X))t = h(Xr \ {g1, . . . , gn}) ⊆ h(G \ {g1, . . . , gn}) ⊆ Γ.

(9) =⇒ (2): It is trivial.
(7) =⇒ (6): Let X ⊆ G be a lower bounded set and let a ∈ (h(X))t. Then

there exists a finite set K ⊆ X such that a ∈ (h(K))t and according to (7), we have
a ∈ h(Kr) ⊆ h(Xr). Hence h(Xr) = (h(X))t. �
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