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Abstract. The method of quasilinearization is a well-known technique for obtaining ap-
proximate solutions of nonlinear differential equations. In this paper we apply this technique
to functional differential problems. It is shown that linear iterations converge to the unique
solution and this convergence is superlinear.
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1. INTRODUCTION

Consider the functional differential problem

(1)

xTo = q)Oa

{x’(t) = f(t,z(t),z:), teJ=]0,T],

where f € C(J x R x C,R), & € C, C = C(Jp,R) with Jy = [-7,0] for 7 > 0,
and for any ¢t € J, z; € C is defined by z:(s) = z(t + s) for s € Jy. According to
the above notation z¢ € C' and z¢(s) = z(s), s € Jy. It means that in this case the
initial condition xy = ®¢ means that z(s) = ®(s) on .Jy, where the function ® is
given and continuous on Jj.

The differential equation from problem (1) is of a very general type. It includes
as special cases, for example, ordinary differential equations if 7 = 0, differential-
difference equations, and integro-differential equations, too.

The method of quasilinearization gives linear iterations which converge monoton-
ically to the unique solution of the initial value problem. Recently, this method has
been extended so as to be applicable to a much larger class of nonlinear problems
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(see for example [7]). In this paper we extend this method to functional differential
problems of type (1). If f does not depend on the second variable the method of

quasilinearization is considered in [7].

2. LEMMAS
A function v € C(J,R) N CY(J,R), J = [—7,T] is said to be a lower solution of
problem (1) if
o'(t) < fto(t),ve), te
vy < (I)O,

and an upper solution of (1) if the inequalities are reversed.

Lemma 1. Assume that f € C(J x R x C,R) and
10 £, exists and f.(t,u,v) < K, K > 0 for (t,u,v) € £y, where

Qo ={(t,u,v): teJ, ueR, veC andyo(t) <u<2(t), yor <v< 204},

29 the Fréchet derivative fp exists and is a linear operator satisfying
(a) fo(t,u,®)T < Lf_OT\I/(s)ds if ¥ >0for L>0,and L+e 5" > 14K,
(b) ifv1,v2 € C and v1 < v, then

fo(t,u,v)v; < fol(t, u,v)ve for (t,u,v) € Qp,
Y peC(J,R)NCYHJ,R), (t,u,v) € Qo, and

P'(t) < falt,u, 0)p(t) + fo(t, u,v)pe, t € J,
p(s) <0 on Jp.

Then p(t) <0 on J.

Proof. Fore > 0 put o(t) = ce**, t € J. Indeed, 5; > 0, t € J. Moreover,
basing on 1° and 2°(a) , we obtain

0

Faltyu,0)5(8) + ot u, 0)5 <K17(t)+L/ 3(t+ s) ds

0
= Keelt + LaeLt/ el ds = cel'[K + 1 —e 7).

—T
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Note that using the above relation and 2° (a), we get

=/

¥'(t) = eLe™ — fult,u,0)0(t) = fa(t,u,v)0r + falt, u,0)o(t) + fa(t,u,v)0s
> folt,u,0)0(t) + fa(t,u,v)v; +cLel —cel'[K +1 e L7]

= fu(t,u,v)0(t) + fo(t,u,v)o; + e[l — K — 14 e 7]

> fo(t,u,0)0(t) + fo(t,u,v)0,, teJ.

Note that p(0) < 0 < 5(0) and p(s) < 9(s), s € Jo. We show that p(t) < 5(t) on J.
Suppose that it is not true. Then there exists ¢; € (0, 7] such that p(¢;) = 9(¢1) and
p(t) < 6(t) on [—7,t1), so p; < ¥ on [0,t1). For each h > 0 sufficiently small, we see
that p(t1 — h) — p(t1) < 5(t1 — h) — 0(t1). Hence p'(t1) = ¥'(t1).

Moreover,

fa(tr, u,v)p(ty) + fa(ts, w,v)py, = p'(t) > ' (th)
> fo(t1,u,0)0(t1) + fo(t1,u,v)0,
= fo(t1,u,v)p(t1) + fo(t1,u,v)0y,
> fo(ty,u,v)p(ts) + fo(ti, u,v)ps, .

It is a contradiction. Hence p(t) < ©(t) on J. If now € — 0, then we obtain p(t) < 0
on J. The proof is complete. O

Lemma 2. Assume that
10 fl,fg S C(J, R), f S C(J X R x C, R),
20 the Fréchet derivative fo exists and is a linear operator satisfying the condition
0
ot u,0) 0] < L/ W(s)|ds, L >0 for (t,u,0) € D and U € C.

—T

Then for (t,u,v) € Qo, the problem

(2) {y/(t) :fl(t)y(t)+f<1>(tau’v)yt+f2(t)a te J,

— 3,
has a unique solution y € C(J,R) N C*(J, R).

Proof. Note that, for t € J, problem (2) is equivalent to

y(t) = 2(0) + / oL B0 (5, )y + fols)] ds = Ay(t).
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We will show that A is a contraction mapping. Let us define a norm by

.= t)e ™M with M > N+ L
[yl = max[|y(t)e™ "] wi + L,

where |f1(t)] < N. Put
Q={y: yc C(J,R) NCYJ,R), yo= B}

Then for 1,7 € Q we have

t
|Ay — A« = I?Eafe_Mt/ el 14| £ (5, u,v)[ys — Fa]| ds
0

¢ 0
< rilajce*Mt/ eN(t*S)L/ ly(s + 1) —g(s +r)|drds
€ 0

-7

t 0
< L‘y - Q‘* maxefMt / eN(tfs) / e]\/[(s+r) dr ds
teJ 0 .

t
<L7|yfy\*maxe*(M*N)t/ eM—N)s q¢
teJ 0

= L_T ly =gl [1—e”MT] < [1 —emM=MT]y — g

Problem (2) has a unique solution, because b = 1 — e~ (M=N)T 1 The proof is

complete. 0

Theorem 1. Assume that f € C(J x R x C,R) and
19 yo,20 € C(J,R) N CY(J,R) are lower and upper solutions of problem (1) and
yo(t) < 2zo(t) on J,
29 f, and f.. exist, are continuous and
(a) fo(t,u,v) < K for (t,u,v) € Qo,
(b) ifvi,ve € C, and Yot < v1 < v2 < 204, then fu(t,u,v1) < fo(t, u,ve) for
ted, ueR, yot) <u< 2(t),
(¢) fza(t,u,v) =0 for (t,u,v) € Qo,
39 the Fréchet derivative fg exists and is a linear operator satisfying
(a) |fo(t,u,®)v| < Lf_OT lv(s)|ds, L > 0 for (t,u,®) € Qo, v € C' with the
condition L + e 17 > 1+ K,
(b) f(t,u,v2) = f(t,u,v1) + fo(t,u,v1)(ve —v1) fort € J, u € R, vy,v9 € C
and such that yo(t) < u < 20(t), Yot < v1 < v2 < 2o,
(c) if vy < g, v1,v9 € C then fo(t,u,v)v1 < fo(t,u,v)ve for (t,u,v) € Qq,
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(d) ifu,s e R, v,5,V €C,V >0, then

fa(t,u,v)V = fo(t,a,0)V fort € J, yo(t) <@ < u < 2(t),

Yot SV KV K 204,
4% there exist constants L1, L2, L3 > 0 and «, 3 € [0, 1] such that the conditions

‘fx(t,u,’l)l) - fw(tauaUQ)‘ < Ll‘vl - ’U2|8,
| <

| fo(t,u1,v1) — fo(t, ug, va)| < Lolus — ua| + Lalvy — valf

hold fort € J, u,u1,u2 € R, v1,v9 € C with |v]|p = n[lax | lv(s)].
s€[—7,0

Then there exist monotone sequences {y,}, {zn} which converge uniformly to the
unique solution x of problem (1) on J and that convergence is superlinear.

Proof. Let yo(t) < @ < u < 2(t), yor < 0 < v < 2o Then, by the mean
value theorem and 3° (b), we have

flt,u,v) — f(t,a,0) = f(t,u,v) — f(t, a,v) + f(t,a,v) — f(t,a,o)
P fx(t,fﬂ))(u - a) + f‘I’(ta 12,’[_))(1} - ’D)
with 7 < £ < u. Hence, by 2° (b), (c), we have
(3) f(t,u,v) - f(t,’Z_L, ,l_)) 2 fx(t,’Z_L,’U)(u - ﬂ) + fq;(t,’l_t, ,D)((U - @)'
Let yni1,0 = Po, 2ny1,0 = $o and
y;H-l(t) = f(taynayn,t) + fz(tayn,yn,t)[yn+1(t) - yn(t)}
+ fo(ts Yns Yn.t) [Wn+1,t — Yn.tls

Z;H»l(t) = f(ta Zny Zn,t) + fw(ta Yns yn,t)[zn+1(t) - Zn(t)]
+ f@(ta Yn, yn,t)[zn—i-l,t - Zn,t}

fort € J, n = 0,1,.... Note that the elements y,+1, zn+1 are well defined by
Lemma 2.
Indeed, yo(t) < 20(t), t € J, by 1°. Now we are going to show that

(4) yo(t) < wa(t) < 21(t) < 20(t), te ]
Put p =1y —y1 on J, s0 p(s) = yo(s) — y1(s) < ®(s) — ®(s) =0, s € Jo. Then

P'(t) < f(t,v0,%0,6) — F(t 90, Y0,t) — f2(t, yo, yo,e) [y1 () — yo(t)]
— fa(t, 0, Y0,t)[Y1,t — Yo,t]
= fu(t,90,Y0,t)p(t) + fao(t,yo,Yo,t)pt-
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By Lemma 1 we have p(t) < 0 on J showing that yo(t) < y1(f) on J. By the same
argument we can show that z;(¢) < zo(t) on J. Next, we let p = y; — 21 on J, so
p(s) = 0 on Jy. By relation (3) we have

P'(t) = f(t,90,Y0.0) + f(tsy0, Yo.0)[y1(t) — yo(t)] + fa(t, Yo, yo.6)[y1,e — vo.t]
— f(t, 20, 20,¢) — fo(t, 90, y0,6)[21() — 20(t)] — fa(t,v0,v0,t)[21,t — 20,t]
< = fa(t,90,Y0,0)[20(1) — yo ()] — fa(t, Yo, yo,t) 20t — Yo,1]
+ fa(t, 50, yo.0)[y1 (1) — yo(t) — z1(t) + 20(t)]
+ fa(t, Yo, vo,e)[Y1,t — Yo.t — 21,6 + 20,4]
= fu(t, 50, Y0,6)p(t) + fa(t, Y0, Yo,t)Pt-

By Lemma 1, p(t) <0 on J, so y1(t) < z1(f) on J. It proves that (4) holds.
Now we prove that y1, z1 are lower and upper solutions, respectively, of prob-
lem (1). Relation (3) and conditions 2° (b), (c¢) and 3° (d) yield

Y1 (t) = f(t, y0, yo,e) + fo(tyo,y0,0) W1 (t) — yo()] + fa(t, Yo, yo.0) Y1t — Yo,
< ftynyie) — fa(t o, yo,0 W1 (8) — yo(8)] — fo (L yo, yo,0)[y1,e — Yo,
+ fa(t, 50, yo.) Y1 (1) — yo (V)] + fo(t, Yo, yo,e) [y1,e — Yo,e]
= f(t,y1,v1.0)

and

21(t) = f(t, 20, 20,t) + fu(t, 90, Y0,6)[21(t) — 20(t)] + fa(t, yo, Yo,6) (21,6 — 20,]
> f(t, 21, 21,) + fo(t, 21, 21,0) [20(t) — 21(8)] + fa(t, 21, 21.¢)[20,6 — 21,¢]
+ fa(t, yo,v0,6)[21(t) — 20(t)] + fa(t,y0,Y0,¢)[21,t — 20,t]
= f(t,21,214) + [fa(t, 21, 21,6) — fa(t, Y0, yo,e)][20(t) — 21(2)]
+ [fa(t, 21, 21,6) — fa(t, Y0, Yo.¢)][20,t — 21,4]
> f(t, 21, 21.1)-

The above proves that y1, 21 are lower and upper solutions of (1).
Let us assume that

Yo(t) S y1(t) <. <yp—1(t) < yr(t) < 21(t) < zp-1(t) < ... < 21(F) < 20(2),
teJ,

and let yk, zx be lower and upper solutions of problem (1) for some k > 1. We shall
prove that:

() yr(t) < g1 (t) < 2pa(t) < 2(f), te T
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Let p = yr — yx+1 on J. Then p(s) = 0 on Jy. Using the mean value theorem and
the fact that yy is a lower solution of problem (1), we obtain

P'(t) < fyrs Ykt) = F& Uk Yrit) — Fo (b Uk Yrt) [Wnt1 (8) — yi(8)]
— fo(t, Yk Ykt [Yk+1,t — Ykt
= fo(t, Yrs Yr,t)P(t) + fo(t, Yr, Yr,t) Pt

Lemma 1 yields p(t) < 0, so yx(t) < yg+1(t) on J. Similarly, we can show that
Zr+1(t) < zx(t) on J.
Now, if p = yr4+1 — zk41 on J, then p(s) =0, s € Jy, and using relation (3) we get

') = Fyrs Yne) + Fo(t Urs Une) [Yr1 () — yn (O] + o (t yrs Yt Wr+ 1,6 — Yrot]
— [t 2, 2et) — fo(t, iy Uk t) [2h41 (8) — 26(8)] — fo(t, Yk, Yit) [Zhr1,6 — 2,t)
< = fo(t Yns Yro) [26(t) — ye ()] — fo(t, ks Yr,t) (26t — Yr,t]

+ fo (Y, k) [Yk1 (1) — Y (t) — 2rs1(t) + 22 (t)]
+ fo(t, Ui Ukt ) [Uk+1,6 — Ykt — 2kt 1yt + Zhost]
= fo(t, yns Yr,t)0(t) + fo(t, Y, Yr,0)pe-

This yields yx+1(t) < 2zx4+1(t), t € J, so inequality (5) holds.
Hence, by induction, we have

yo(t) <y1(t) < ... <yn(t) < 2a(t) < ... < 21(t) < 20(t), ted

for all n. Employing the standard techniques, it can be shown that the sequences
{yn}, {zn} converge uniformly and monotonically to solutions y and z of problem (1).
Now, we are going to show that problem (1) has a unique solution. To prove it we
assume that it has two solutions v and v. Set p = w — v. Then p(0) = 0, and

(6) p(t) = f(t,u,ue) — f(t,v,ue) + f(t,0,ue) — f(t,0,0)

= fo(t,& us)p / fo(t,v,sus + (1 — s)ve)dspe, tEJ,
where ¢ is between u and v. By Lemma 2, equation (6) has a unique solution. Since
p(t) = 0,t € J is a solution of (6), hence v = v on J. This proves that the sequences
{yn}, {zn} converge to the unique solution x of problem (1).

We shall next show that the convergence of y,, 2z, to the unique solution = of
problem (1) is superlinear. For this purpose, we consider

Dnt1 =% — Ynt1 = 0, Gnt1 = 2n41 —2 20 ted.
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Note that pp11(s) = gni1(s) = 0 for s € Jy. Using the mean value theorem, 2° (c),
3% (a) and 4°, we get

p/rz+1(t) = f(t,x,xt) - f(t>ynaxt) + f(taynaxt) - f(tayna yn,t)
= fo(t, Yns Yn, ) [Ynt1(t) — yn(®)] = fo (b, Yn, Yn,t) [Ynt1,t — Yn.t

1
= fz(tagl,ft)pn(t) + A f@(tayn, STt + (1 - S)yn,t)pn,t ds

- fx(taynvyn,t)[ n(t) _pn—i-l(t)] - f@(tayna yn,t)[pn,t _pn—i-l,t}
g [fm(t,f,ft) - fm(t,yn,ft) + fm(tayn,ft) - fm(t,ynayn,t)}pn(t)

1
+ / [f@(ta Yn, STt + (1 - S)yn,t) - f‘I’(tv Yn, yn,t)]pn,t dS
0

+ fm(ta Yn, yn,t)anrl (t) + f<I> (t, Yn, yn,t)anrl,t

g [fmm(t, 52, xt)pn (t) + Ll ‘pn,t|8] pn(t) + f:I: (ta Yn, yn,t)anrl (t)
0

1
+L3/ Sﬁ‘pn7t|g+ld8+[// Pn+1,t(s) ds
0

—T

§1pn(t) + Aoppia(t) + Lalpndlo

0
+ L/ Drt1,¢(8) ds,

—T

< [A1pn(t) + La|pns

where
yn(t) < &1, e <z(t), teJ, and |fia| <A1, |[fz] < Az on Q.
Put
W' (t) = [A1pn(t) + L1 Pt §) pa(t) + Asppia(t) + Lalpndo

0
+ L/ pn+1,t(5) dS7 teJ,

-7

and w(0) = 0. Note that w'(t) > 0 on J. Since pp4+1(t) < w(t), t € J, and w is
nondecreasing in ¢, we obtain

§Dn(s) + Lalpnslg ] ds

t
w(t) = / (A2 (5) + L[
0
t t 0
+A2/ pn+1(3)dS+L// Pnt1,s(r)drds
0 0J —7
t t 0
<Dt+A2/ w(s)ds—l—L// Prt1(s+7)drds
0 0J—7

t t 0 t
< Dt + A / w(s)ds + L// w(s)drds = Dt + (As + L7) / w(s)ds
0 0/ -7 0
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where

D = max[ 4| ()] + Lulpasl§ pa(®)] + Lalpn.olg ']

Putting u(t) = fot w(s)ds we see that v'(t) = w(t), t € J, and u(0) = 0. By
Gronwall’s inequality for

u'(t) < Dt + (Ay + L7)u(t), u(0)=0,

we have .
u(t) < D/ selA2tLn)(t=s)qs ¢t e J.
0
Hence
Prt1(t) <w(t) < Dt 4 (Ag 4+ L7)u(t)
t
< Dt+ (A2 + LT)D/ se(A2HLT)(t=s) 4 ¢
0
t
= Dt + (Ay + L7)DelAz+L7)t / se~(A2+LT)s 45 < BD,
0
where
— 1 e(AQ—‘rLT)T-
Ag + LT

Because |p,(t)| < |pn,t|o, we finally obtain
max|p,11(t)] < BAy max [Pn,t|§ + BL1 max Pn,tl§T + BLs max ol
Similarly,
q;1+1(t) = f(ta Zna Zn,t) - f(t, xZ, Zn,t) + f(t, xZ, Zn,t) - f(ta .T, xt)

+ fo(t, Y, Yn,t) [2nt1 (8) — () + 2(t) — 20 ()]
+ fo(t, Yns Yn,t) [Znt1,t — Tt + T — 2n 4]

1
— Lot s om0+ [ oltsm s+ (1= S)e)gnsds
0
+ f;z(tv Yn,y yn,t)[qn-i-l(t) - Qn(t)] + f@(tv Yn,s yn,t)[qn—i-l,t - Qn,t]
< [fx(tv Zns Zn,t) - f;z(ta Yns Zn,t) + fx(ta Yn, Zn,t) - f;z(tv Yn, xt)
+ f;z(tv Yn,y xt) - fw(ta Yn, yn,t)]Qn(t)
1
+ / [fo(t,x,s2nt + (L — 8)21) — fo(t, yn, szt + (1 — s)zt)
0
+ f‘f‘(tvyna Szn,t + (1 - S).’I)t) - f@(tvynaxt) + f@(t’ ynvxt)
— fo(t, Yns Yn.t)|qn,t ds
+ fm(t, Yn, yn,t)qn+1(t) + f<I> (ta Yn, yn,t)qn+1,ta
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q;H-l(t) < [f:z::z:(t, g2, Zn,t)[Qn(t) +pn(t)] + L1|Qn,t
+ f:r:(ta Yn, yn,t)Qn+1 (t)

1
+ / [Lalpn(®)] + Las|an¢
0

< A2 (t) + %Al[qu(t) +P2(O] + L1lgne|g™ + Li|pn.t|§|gn.tlo + A2gni1 (t)
1 0
+ L2|pn,t‘0‘ Qn,t‘O + L3|qn,t|gJr + L3|pn,t|g |qn,t|0 + L/ QnJrl,t(s) ds

—T

0 + L1|pn.elglan (t)

0
g]qn,t ds + L/ Gn+1,(s) ds

—T

g + L3|pn7t

0
<P+ Asguia(t) + L / Gns1a(s) ds,

—T

where z(t) < 01 < 2p(t), yn(t) < 02 < 2,(t) and

P = max[ (341 + 1Lo) landl3 + $(As + Lo)lpnald + Ll nalg

)

€+1 + L3|pn,t €|Qn,t

0+ L3|gn.s

+ L1|pntl§|an,¢

Put
0

uﬂﬂ:P+AmMﬂo+L/ dnira(s)ds, w(0) = 0.

-7

Note that gn+1(t) < w(t) on J and w is nondecreasing in ¢. Hence we get

t t r0
w®:H+&/ﬁmwmm¢//qmmmmm
0 0

—T

t
< Pt+ (A2 + LT)/ w(s) ds.
0
By Gronwall’s inequality we have w(t) < BP, t € J, and hence

2 2
max |gn1(8)] < 3B(3A1 + L) max [gni[g + 5 B(A1 + La) max [pn.¢g
+1

+ BL, max |Pn,t]6 1an,tlo + BL1 max lqn.tlo

+1
+ BLgmax |gne|0 T + BL3 glea}c(\pn,tlgl In,tlo)-

The proof is complete. O

Remark 1. If « = 3 = 1, then the convergence of sequences {y,}, {zn} is
quadratic.
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