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HOMOMORPHISMS OF ALGEBRAS

Miroslav Novotný, Brno

(Received April 22, 1999)

Dedicated to the memory of Otakar Bor̊uvka on the occasion of his centenary.

Abstract. A construction of all homomorphisms of an algebra with a finite number of
operations into an algebra of the same type is presented that consists in replacing alge-
bras by suitable mono-unary algebras (possibly with some nullary operations) and their
homomorphisms by suitable homomorphisms of the corresponding mono-unary algebras.
Since a construction of all homomorphisms between two mono-unary algebras is known
(see, e.g., [6], [7], [8]), a construction of all homomorphisms of an arbitrary algebra with a
finite number of operations into an algebra of the same type can be described.

Keywords: algebra, mono-unary algebra, homomorphism of algebras, m-decomposable
mapping, mono-unary algebra with one acceptable and several nullary operations, mono-
unary algebra with one binding and several nullary operations
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1. Introduction

About 1950, Otakar Bor̊uvka presented a problem whose generalization may be
formulated as follows. Let (A, o), (A′, o′) be mono-unary algebras. Construct all
homomorphisms of the algebra (A, o) into (A′, o′). By a mono-unary algebra (A, o),
we understand a set A with a mapping o of the set A into itself.
The solution of this problem appeared in [6]; see also [7], [8]. We shall need some

results of these papers in our examples; these results will be mentioned in due course.
Using this construction, we presented a construction of all homomorphisms of a

groupoid into a groupoid and of an algebra with one n-ary operation into an algebra
of the same type; see [12], [13]. In the present paper we prove that also a construction
of all homomorphisms of an arbitrary algebra with a finite number of operations into
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an algebra of the same type may be reduced to a construction of some suitable
homomorphisms between suitable mono-unary algebras. A previous version of these
results was published in [15] without proofs.

2. Preliminaries

Fundamental information on algebras can be found, e.g., in [1], [5]. It is
advantageous to separate nullary operations from operations with positive ari-
ties. Therefore, an algebra with a finite number of operations will be denoted
by

(
A, (ai)1�i�p, (oi)1�i�m

)
where A is a nonempty set, p � 0, m � 0 are integers,

ai are constants (i.e. nullary operations) for 1 � i � p, and oi are operations of
positive arities for any i with 1 � i � m. We will suppose that p+m > 0. Operations
of positive arities will be said to be nonnullary. If p = 1 we write

(
A, a1, (oi)1�i�m

)

for
(
A, (ai)1�i�p, (oi)1�i�m

)
; similarly, a simpler symbol

(
A, (ai)1�i�p, o1

)
replaces(

A, (ai)1�i�p, (oi)1�i�m

)
if m = 1.

Let
(
A, (ai)1�i�p, (oi)1�i�m

)
,

(
A′, (a′i)1�i�p, (o′i)1�i�m

)
be algebras. They are

said to be similar or to be of the same type, if the arity of oi equals the arity of o′i
for any i with 1 � i � m. The arity of the operation oi will be denoted by r(i).
A mapping h of A into A′ is called a homomorphism of the first algebra into the
latter if h(ai) = a′i for any i with 1 � i � p and if for any i with 1 � i � m the
mapping h satisfies the condition h

(
oi(x1, . . . , xr(i))

)
= o′i

(
h(x1), . . . , h(xr(i))

)
for

any x1, . . . , xr(i) in A. If r(i) = 1, then we interprete the symbol oi(x1, . . . , xr(i)) as
oi(x1).

Example 1. (a) Suppose p > 0, m = 0, i.e.,
(
A, (ai)1�i�p

)
is an algebra with p

nullary operations. If
(
A′, (a′i)1�i�p

)
is a similar algebra, then any homomorphism h

of the first algebra into the latter may be obtained in the following way: We take an
arbitrary mapping g of the set A − {ai ; 1 � i � p} into A′ and define h(x) = g(x)
for any x ∈ A− {ai ; 1 � i � p}, h(ai) = a′i for any i with 1 � i � p.

(b) Suppose p > 0, m = 1 where arity of o1 = o equals 1. Thus,
(
A, (ai)1�i�p, o

)
is

an algebra with p nullary and one unary operation. If
(
A′, (a′i)1�i�p, o

′) is a similar
algebra, then any homomorphism of the first algebra into the latter may be obtained
as follows. We construct all homomorphisms of the mono-unary algebra (A, o) into
(A′, o′) according to [6]; any such homomorphism h must be tested whether the
condition h(ai) = a′i is satisfied for any i with 1 � i � p. If some of these equations
is violated, h must be rejected.
These conditions can be respected during the construction of a homomorphism h

of (A, o) into (A′, o′). If h(ai) is to be constructed for some i with 1 � i � p, then
a′i must be chosen for h(ai). If the construction described in [6] does not allow it,
we stop the construction of h and start the construction of the next homomorphism.
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In this way, all homomorphisms of the mono-unary algebra (A, o) into (A′, o′) are
started by [6]; only those are finished which satisfy the above mentioned conditions.
In what follows, we will investigate the case where m > 0; we admit both the cases

p = 0 and p > 0. As we have said we denote by r(i) the arity of the operation oi.
Without loss of generality, we may suppose that r(1) � . . . � r(m). Furthermore,
put n = r(m) and for any i with 1 � i � n denote by k(i) the number of operations oj

having the arity i. It is easy to see that for any j with 1 � j � k(1) the operation oj

has arity 1, i.e., r(j) = 1, and for any j with k(1)+. . .+k(i−1) < j � k(1)+. . .+k(i)
the operation oj has arity i, i.e., r(j) = i. Furthermore, we have k(1)+. . .+k(n) = m,
k(n) > 0.
Two cases may occur. Either n � m or 0 < m < n. The first case means that

no arity exceeds the number of nonnullary operations, the latter admits at least one
arity exceeding the number of nonnullary operations. These cases require different
methods.
In the constructions that will be described, some operations with sets and map-

pings will appear. We mention them now.
Let A, A′ be sets, m � 2 an integer. We denote by Am the set of all ordered

m-tuples (x1, . . . , xm) where xi ∈ A for any i with 1 � i � m. A mapping f of the
set Am into (A′)m is said to be m-decomposable if there exists a mapping h of the
set A into A′ such that f(x1, . . . , xm) =

(
h(x1), . . . , h(xm)

)
for any (x1, . . . , xm) ∈

Am. Then we put f = hm. The m-decomposable mappings have the following
properties.

Lemma 1. Let A, A′ be sets, m � 2 an integer, f an m-decomposable mapping
of the set Am into (A′)m. If hm = f = gm, then h = g.

Lemma 2. Let A, A′, A′′ be sets, m � 2 an integer, h a mapping of A into A′,
h′ a mapping of A′ into A′′. Then (h′)m ◦ hm = (h′ ◦ h)m.

The proofs may be obtained by a slight generalization of the proofs of Lemma 1
and Lemma 3 in [12].

3. Category MAAk(0) . . . k(n)

We now investigate the first case where no arity exceeds the number of nonnullary
operations, i.e., n � m.
Our algebra has the form

(
A, (ai)1�i�p, (oi)1�i�m

)
. The case m = 1 implies

1 � n � m = 1 and, therefore, n = 1, i.e., the algebra has one unary and p nullary
operations. Since such algebras have been investigated in Example 1(b), we may
suppose m � 2. We define an algebra with p nullary and one unary operation as
follows.
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The carrier of the algebra is the set Am. For any i, 1 � i � p, we take the constant
(ai, . . . , ai) ∈ Am. The unary operation o will be defined by

o(x1, . . . , xm) =
(
o1(x1, . . . , xr(1)), . . . , om(x1, . . . , xr(m))

)

for any (x1, . . . , xm) ∈ Am.

We put o = um[o1, . . . , om]. Then
(
Am, ((ai, . . . , ai))1�i�p,um[o1, . . . , om]

)
is the

resulting algebra.

Lemma 3. Suppose that n � 1, k(0), . . . , k(n) are nonnegative integers,
k(n) > 0, put m = k(1) + . . . + k(n) and suppose m � 2, n � m. Let(
A, (ai)1�i�k(0), (oi)1�i�m

)
,

(
A′, (a′i)1�i�k(0), (o′i)1�i�m

)
be similar algebras with

k(1) unary, . . . , k(n) n-ary operations. Then the following assertions hold:
(i) If h is a homomorphism of

(
A, (ai)1�i�k(0), (oi)1�i�m

)
into

(
A′, (a′i)1�i�k(0),

(o′i)1�i�m

)
, then hm is an m-decomposable homomorphism of

(
Am, ((ai, . . . ,

ai))1�i�k(0),um[o1, . . . , om]
)
into

(
(A′)m, ((a′i, . . . , a

′
i))1�i�k(0),um[o′1, . . . ,

o′m]
)
.

(ii) If f is an m-decomposable homomorphism of
(
Am, ((ai, . . . , ai))1�i�k(0),

um[o1, . . . , om]
)
into

(
(A′)m, ((a′i, . . . , a

′
i))1�i�k(0),um[o′1, . . . , o

′
m]

)
, then there

exists a homomorphism h of
(
A, (ai)1�i�k(0), (oi)1�i�m

)
into

(
A′, (a′i)1�i�k(0),

(o′i)1�i�m

)
such that hm = f .

�����. (1) If h is a homomorphism of
(
A, (ai)1�i�p, (oi)1�i�m

)
into

(
A′,

(a′i)1�i�p, (o′i)1�i�m

)
and (x1, . . . , xm) ∈ Am is arbitrary, then um[o1, . . . , om]

(x1, . . . , xm) =
(
o1(x1, . . . , xr(1)), . . . , om(x1, . . . , xr(m))

)
, which implies that

hm
(
um[o1, . . . , om](x1, . . . , xm)

)

=
(
h(o1(x1, . . . , xr(1))), . . . , h(om(x1, . . . , xr(m)))

)

=
(
o′1(h(x1), . . . , h(xr(1))), . . . , o

′
m(h(x1), . . . , h(xr(m)))

)

= um[o′1, . . . , o
′
m](h(x1), . . . , h(xm)

= um[o′1, . . . , o
′
m](h

m(x1, . . . , xm)).

Consequently, hm is a homomorphism of
(
Am,um[o1, . . . , om]

)
into

(
(A′)m,

um[o′1, . . . , o
′
m]

)
. Since h(ai) = a′i, we have hm(ai, . . . , ai) = (a′i, . . . , a

′
i) ∈ (A′)m for

any i with 1 � i � k(0). Thus (i) holds.
(2) If f is an m-decomposable homomorphism of the algebra

(
Am,

((ai, . . . , ai))1�i�k(0),um[o1, . . . , om]
)
into

(
(A′)m, ((a′i, . . . , a

′
i))1�i�k(0),um[o′1, . . . ,

o′m]
)
, then there exists a mapping h of A into A′ such that f = hm. Since

hm(ai, . . . , ai) = (a′i, . . . , a
′
i), we obtain h(ai) = a′i for any i with 1 � i � k(0).

For any (x1, . . . , xm) ∈ Am we have

um[o1, . . . , om](x1, . . . , xm) =
(
o1(x1, . . . , xr(1)), . . . , om(x1, . . . , xr(m))

)
,
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which implies

(
h(o1(x1, . . . , xr(1))), . . . , h(om(x1, . . . , xr(m)))

)

= hm
(
o1(x1, . . . , xr(1)), . . . , om(x1, . . . , xr(m))

)

= f
(
um[o1, . . . , om](x1, . . . , xm)

)

= um[o′1, . . . , o
′
m](f(x1, . . . , xm))

= um[o′1, . . . , o
′
m]

(
h(x1), . . . , h(xm)

)

=
(
o′1(h(x1), . . . h(xr(1))), . . . , o

′
m(h(x1), . . . , h(xr(m)))

)

and, therefore, h
(
oi(x1, . . . , xr(i))

)
= o′i

(
h(x1), . . . , h(xr(i))

)
for any i with 1 � i � m.

Thus h is a homomorphism of
(
A, (ai)1�i�k(0), (oi)1�i�m

)
into

(
A′, (a′i)1�i�k(0),

(o′i)1�i�m

)
and (ii) holds. �

Let n � 1 be an integer, k(0), . . . , k(n) nonnegative integers such that k(n) � 1.
Put k(1) + . . . + k(n) = m and suppose that m � 2, n � m. Let A �= ∅ be
a set. A unary operation o on the set Am is said to be acceptable with respect
to the sequence (k(1), . . . , k(n)) if it has the following property: If (x1, . . . , xm) ∈
Am, (y1, . . . , ym) ∈ Am, o(x1, . . . , xm) = (x′1, . . . , x

′
m), o(y1, . . . , ym) = (y′1, . . . , y

′
m),

1 � i � n and xj = yj for any j with 1 � j � i, then x′j = y′j for any j with
1 � j � k(1) + . . .+ k(i).

Lemma 4. Let n � 1 be an integer, k(1), . . . , k(n) nonnegative integers such that
k(n) � 1. Put k(1) + . . .+ k(n) = m and suppose that m � 2, n � m. Let A �= ∅ be
a set. Then the following assertions hold:
(i) Let o1, . . . , om be nonnullary operations on A such that for any j with 1 � j � m

the arity r(j) of the operation oj is the least integer i satisfying the condition
1 � j � k(1) + . . . + k(i). Then um[o1, . . . , om] is a unary operation on the
set Am acceptable with respect to the sequence (k(1), . . . , k(n)).

(ii) If o is a unary operation on the set Am acceptable with respect to the sequence
(k(1), . . . , k(n)), then there exist nonnullary operations o1, . . . , om on A such
that for any j with 1 � j � m the arity r(j) of the operation oj equals the least
integer i satisfying 1 � j � k(1) + . . .+ k(i). Furthermore, um[o1, . . . , om] = o

holds.

�����. (1) If o1, . . . , om are nonnullary operations on A with the prop-
erties presented in (i), then um[o1, . . . , om](x1, . . . , xm) =

(
o1(x1, . . . , xr(1)), . . . ,

om(x1, . . . , xr(m))
)
for any (x1, . . . , xm) ∈ Am.

Suppose (x1, . . . , xm) ∈ Am, (y1, . . . , ym) ∈ Am, let i be an integer such that
1 � i � n and xj = yj holds for any integer j with 1 � j � i. Then r(j) � i for any j

with j � k(1) + . . . + k(i). It follows that (x1, . . . , xr(j)) = (y1, . . . , yr(j)) for any j

with j � k(1)+ . . .+ k(i), which entails oj(x1, . . . , xr(j)) = oj(y1, . . . , yr(j)). Thus, if
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we put um[o1, . . . , om](x1, . . . , xm) = (x′1, . . . , x
′
m), um[o1, . . . , om](y1, . . . , ym) =

(y′1, . . . , y
′
m), then for any j with 1 � j � k(1) + . . . + k(i) we have x′j =

oj(x1, . . . , xr(j)) = oj(y1, . . . , yr(j)) = y′j. Therefore the operation um[o1, . . . , om] is
acceptable with respect to the sequence (k(1), . . . , k(n)). Thus (i) holds.

(2) Let o be a unary operation on the set Am acceptable with respect to the
sequence (k(1), . . . , k(n)), j an arbitrary integer with 1 � j � m.

There exists the least integer i such that j � k(1) + . . . + k(i). Let x1, . . . , xi

be arbitrary elements in A. We choose xi+1, . . . , xm in A arbitrarily and define
(x′1, . . . , x

′
m) = o(x1, . . . , xm). Finally, we put oj(x1, . . . , xi) = x′j . The accept-

ability of the operation o with respect to the sequence (k(1), . . . , k(n)) implies that
oj(x1, . . . , xi) is defined correctly.

Indeed, let yi+1, . . . , ym in A be arbitrary elements and (y′1, . . . , y
′
m) = o(y1, . . . , yi,

yi+1, . . . , ym) where y1 = x1, . . . , yi = xi, i.e., xt = yt for any integer t with 1 � t � i.
The acceptability of o implies that x′t = y′t for any t with 1 � t � k(1) + . . .+ k(i).
In particular, x′j = y′j , hence x′j does not depend on the elements xi+1, . . . , xm.

If i is the least integer with j � k(1) + . . . + k(i) then r(j) = i by our def-
inition. Let (x1, . . . , xm) ∈ Am be arbitrary and o(x1, . . . , xm) = (x′1, . . . , x

′
m).

Then um[o1, . . . , om](x1, . . . , xm) =
(
o1(x1, . . . , xr(1)), . . . , om(x1, . . . , xr(m))

)
=

(x′1, . . . , x
′
m) = o(x1, . . . , xm) by our definition of the operations o1, . . . , om. Hence

(ii) holds. �

We now introduce some categories of algebras. More details concerning categories
can be found, e.g., in [1], [4], [16].

We denote byMAAk(0) . . . k(n) the category which is defined as follows (category
of Mono-unary Algebras with one Acceptable and several nullary operations).

An object of the category is an algebra whose carrier is the set Am which has k(0)
nullary operations of the form (ai, . . . , ai) ∈ Am for any i with 1 � i � k(0) and
a unary operation that is acceptable with respect to the sequence (k(1), . . . , k(n)).
Thus an object of this category is of the form

(
Am, ((ai, . . . , ai))1�i�k(0), o

)
.

Morphisms of this category arem-decomposable homomorphisms of these algebras.

It is easy to see thatMAAk(0) . . . k(n) is a category.

Furthermore, we denote by ALGk(0) . . . k(n) the category whose objects are alge-
bras with k(0) nullary, . . . , k(n) n-ary operations; its morphisms are homomorphisms
of these algebras. We mention that the conditions n � m = k(1)+ . . .+ k(n), m � 2
are satisfied.

We now define a functor F from ALGk(0) . . . k(n) to MAAk(0) . . . k(n) by pre-
senting the object mapping Fo and the morphism mapping Fr.

For any object
(
A, (ai)1�i�k(0), (oi)1�i�m

)
in ALGk(0) . . . k(n) we define

Fo
(
A, (ai)1�i�k(0), (oi)1�i�m

)
=

(
Am, ((ai, . . . , ai))1�i�k(0),um[o1, . . . , om]

)
.
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If
(
A, (ai)1�i�k(0), (oi)1�i�m

)
,
(
A′, (a′i)1�i�k(0), (o′i)1�i�m

)
are objects in the cat-

egory ALGk(0) . . . k(n) and h is a homomorphism of
(
A, (ai)1�i�k(0), (oi)1�i�m

)

into
(
A′, (a′i)1�i�k(0), (o′i)1�i�m

)
, we put

Fr(h) = hm.

Theorem 1. Let n � 1, let k(0), . . . , k(n) be nonnegative integers such that
k(n) � 1, k(1) + . . . + k(n) � 2, k(1) + . . . + k(n) � n. Then F is an isomorphism
of the category ALGk(0) . . . k(n) onto MAAk(0) . . . k(n).

�����. Put m = k(1) + . . .+ k(n).
If

(
A, (ai)1�i�k(0), (oi)1�i�m

)
is an arbitrary object of ALGk(0) . . . k(n), then

Fo
(
A, (ai)1�i�k(0), (oi)1�i�m

)
has nullary operations (ai, . . . , ai) ∈ Am for any i with

1 � i � k(0) and the unary operation um[o1, . . . , om] that is acceptable with respect
to the sequence (k(1), . . . , k(n)) by Lemma 4. It follows that Fo maps the class of
all objects in ALGk(0) . . . k(n) into the class of all objects inMAAk(0) . . . k(n). It
is easy to see that Fo is an injective mapping.
If

(
Am, ((ai, . . . , ai))1�i�k(0), o

)
is an object of the category MAAk(0) . . . k(n),

then ai is a nullary operation on A for any i with 1 � i � k(0). By Lemma 4, there
exist nonnullary operations o1, . . . , om on A such that um[o1, . . . , om] = o and that
for any j with 1 � j � m the arity r(j) of the operation oj equals the least integer i

satisfying 1 � j � k(1) + . . .+ k(i). Hence

Fo
(
A, (ai)1�i�k(0), (oi)1�i�m

)
=

(
Am, ((ai, . . . , ai))1�i�k(0), o

)
.

It follows that Fo is a bijection.
By Lemma 1 and Lemma 3, Fr is a bijection of the class of all morphisms of

ALGk(0) . . . k(n) onto the class of all morphisms of the categoryMAAk(0) . . . k(n).
Consider an arbitrary object

(
A, (ai)1�i�k(0), (oi)1�i�m

)
in ALGk(0) . . . k(n).

Then Fr(idA) = (idA)m = idAm and, hence, Fr(1(A,(ai)1�i�k(0),(oi)1�i�m)) =
1Fo(A,(ai)1�i�k(0),(oi)1�i�m). Furthermore, if

(
A′, (a′i)1�i�k(0), (o′i)1�i�m

)
,

(
A′′,

(a′′i )1�i�k(0), (o′′i )1�i�m

)
are objects in ALGk(0) . . . k(n) and h is a homomorphism

of the algebra
(
A, (ai)1�i�k(0), (oi)1�i�m

)
into

(
A′, (a′i)1�i�k(0), (o′i)1�i�m

)
and k is

a homomorphism of
(
A′, (a′i)1�i�k(0), (o′i)1�i�m

)
into

(
A′′, (a′′i )1�i�k(0), (o′′i )1�i�m

)
,

then k ◦ h is a homomorphism of the first algebra into the third and Fr(k ◦ h) =
(k ◦ h)m = km ◦ hm = Fr(k) ◦ Fr(h) by Lemma 2. Thus, Fr satisfies the conditions
characterizing the morphism mappings of a functor.
Hence F is a functor and, regarding the bijectivity of Fo and Fr, it is an isomor-

phism of the category ALGk(0) . . . k(n) onto MAAk(0) . . . k(n). �

Construction 1. Suppose that n � 1, k(0), . . . , k(n) are nonnegative inte-
gers, k(n) > 0, put m = k(1) + . . . + k(n) and suppose m � 2, n � m.
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Let
(
A, (ai)1�i�k(0), (oi)1�i�m

)
,

(
A′, (a′i)1�i�k(0), (o′i)1�i�m

)
be similar algebras

with k(1) unary, . . . , k(n) n-ary operations.

Construct the algebras
(
Am, ((ai, . . . , ai))1�i�k(0),um[o1, . . . , om]

)
,

(
(A′)m,

((a′i, . . . , a
′
i)),um[o

′
1, . . . , o

′
m]

)
.

Construct all homomorphisms of
(
Am, ((ai, . . . , ai))1�i�k(0),um[o1, . . . , om]

)
into(

(A′)m, ((a′i, . . . , a
′
i))1�i�k(0),um[o′1, . . . , o

′
m]

)
using Example 1(b).

Test these homomorphisms and reject all of them that are not m-decomposable.

For any m-decomposable homomorphism f construct the mapping h such that
f = hm.

Any constructed mapping is a homomorphism of the algebra
(
A, (ai)1�i�k(0),

(oi)1�i�m

)
into

(
A′, (a′i)1�i�k(0), (o′i)1�i�m

)
and any homomorphism of the first

algebra into the latter can be constructed in this way.

Example 2. Let A = {a, b, c}, suppose that one nullary, one unary and two
binary operations are defined on A. The value of the nullary operation is a, the
unary operation o1 and the two binary operations o2, o3 have the following tables:

o1 a b c
b c a

o2 a b c
a a b c
b b b a
c c a c

o3 a b c
a a b c
b c a b
c b c a

Thus k(0) = 1, k(1) = 1, k(2) = 2, m = k(1) + k(2) = 3 > 2 = n. Hence we con-
struct the mono-unary algebra (A3,um[o1, o2, o3]) where the table of the operation
um[o1, o2, o3] is as follows (we write xyz for (x, y, z) for the sake of brevity):

xyz aaa aab aac aba abb abc aca acb acc
um[o1, o2, o3](xyz) baa baa baa bbb bbb bbb bcc bcc bcc

xyz baa bab bac bba bbb bbc bca bcb bcc
um[o1, o2, o3](xyz) cbc cbc cbc cba cba cba cab cab cab

xyz caa cab cac cba cbb cbc cca ccb ccc
um[o1, o2, o3](xyz) acb acb acb aac aac aac aca aca aca

Thus Fo
(
A, a, (oi)1�i�3

)
= (A3, aaa,um[o1, o2, o3]). The algebra (A3,um[o1, o2, o3])

has the graph from Fig. 1.

We construct all endomorphisms of (A, a, (oi)1�i�3). Hence, we need all 3-de-
composable endomorphisms of (A3, aaa,um[o1, o2, o3]). Regarding the fact that
aaa is a nullary operation, we obtain f(aaa) = aaa for any endomorphism f of
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(
A3, aaa,um[o1, o2, o3]

)
. It follows that

f(baa) = f(um[o1, o2, o3](aaa)) = um[o1, o2, o3](f(aaa))

= um[o1, o2, o3](aaa) = baa,

f(cbc) = f(um[o1, o2, o3](baa)) = um[o1, o2, o3](f(baa))

= um[o1, o2, o3](baa) = cbc.

Thus, if f = h3, then h(a) = a, h(b) = b, h(c) = c. It follows that h = idA is the
only endomorphism of (A, a, (oi)1�i�3).
We have used here only the fundamental property of a homomorphism of the

algebra (A3,um[o1, o2, o3]); the details of the construction of homomorphisms were
not necessary in this simple example.
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aba
abb

abc

bba bbb bbc

cba cbb

aac

cbc baa

bab bac aaa aab

cca
ccb

ccc

aca acc

bcc

acb cab

caa cac bca bcb

Fig. 1.

4. Category MABk(0) . . . k(n)

We now investigate the remaining case where at least one arity exceeds the number
of nonnullary operations, i.e. 0 < m < n.
Our algebra is of the form

(
A, (ai)1�i�p, (oi)1�i�m

)
. We define an algebra with p

nullary and one unary operation as follows. The carrier of the algebra is An. For
any i, 1 � i � p, we take the constant (ai, . . . , ai) ∈ An. The unary operation o will
be defined by o(x1, . . . , xn)=

(
xm+1, . . . , xn, o1(x1, . . . , xr(1)), . . . , om(x1, . . . , xr(m))

)

for any (x1, . . . , xn) ∈ An. We put o = un[o1, . . . , on].

Lemma 5. Suppose that n � 1, k(0), . . . , k(n) are nonnegative integers such
that k(n) > 0. Put m = k(1) + . . . + k(n) and suppose 0 < m < n. Let
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(
A, (ai)1�i�k(0), (oi)1�i�m

)
,

(
A′, (a′i)1�i�k(0), (o′i)1�i�m

)
be similar algebras with

k(1) unary, . . . , k(n) n-ary operations. Then the following assertions hold.
(i) If h is a homomorphism of

(
A, (ai)1�i�k(0), (oi)1�i�m

)
into

(
A′, (a′i)1�i�k(0),

(o′i)1�i�m

)
, then hn is an n-decomposable homomorphism of

(
An, (ai, . . . ,

ai)1�i�k(0),un[o1, . . . , om]
)
into

(
(A′)n, (a′i, . . . , a

′
i)1�i�k(0),un[o′1, . . . , o

′
m]

)
.

(ii) If f is an n-decomposable homomorphism of
(
An, ((ai, . . . , ai))1�i�k(0),

un[o1, . . . , om]
)
into

(
(A′)n, ((a′i, . . . , a

′
i))1�i�k(0),un[o′1, . . . , o

′
m]

)
then there

exists a homomorphism h of
(
A, (ai)1�i�k(0), (oi)1�i�m

)
into

(
A′, (a′i)1�i�k(0),

(o′i)1�i�m

)
such that hn = f .

�����. (1) If h is a homomorphism of
(
A, (ai)1�i�k(0), (oi)1�i�m

)
into(

A′, (a′i)1�i�k(0), (o′i)1�i�m

)
and (x1, . . . , xn) ∈ An is arbitrary, then un[o1, . . . , om]

(x1, . . . , xn) =
(
xm+1, . . . , xn, o1(x1, . . . , xr(1)), . . . , om(x1, . . . , xr(m))

)
, which im-

plies that

hn(un[o1, . . . , om](x1, . . . , xn))

=
(
h(xm+1), . . . , h(xn), h(o1(x1, . . . , xr(1))), . . . , h(om(x1, . . . , xr(m)))

)

=
(
h(xm+1), . . . , h(xn), o′1(h(x1), . . . , h(xr(1))), . . . , o

′
m(h(x1), . . . , h(xr(m)))

)

= un[o′1, . . . , o
′
m](h(x1), . . . , h(xn))

= un[o′1, . . . , o
′
m](h

n(x1, . . . , xn)).

Thus, hn is a homomorphism of (An,un[o1, . . . , om]) into ((A′)n,un[o′1, . . . , o
′
m]).

Since h(ai) = a′i we obtain hn(ai, . . . , ai) = (a′i, . . . , a
′
i) ∈ (A′)n for any i with

1 � i � k(0). Thus (i) holds.
(2) If f is an n-decomposable homomorphism of the algebra

(
An, ((ai, . . . ,

ai))1�i�k(0),un[o1, . . . , om]
)
into

(
(A′)n, ((a′i, . . . , a

′
i))1�i�k(0),un[o′1, . . . , o

′
m]

)
, then

there exists a mapping h of A into A′ such that f = hn. Since hn(ai, . . . , ai) =
(a′i, . . . , a

′
i), we obtain h(ai) = a′i for any i with 1 � i � k(0).

For any (x1, . . . , xn) ∈ An we have

un[o1, . . . , om](x1, . . . , xn)

=
(
xm+1, . . . , xn, o1(x1, . . . , xr(1)), . . . , om(x1, . . . , xr(m))

)
,

which implies
(
h(xm+1), . . . , h(xn), h(o1(x1, . . . , xr(1))), . . . , h(om(x1, . . . , xr(m)))

)

= hn
(
xm+1, . . . , xn, o1(x1, . . . , xr(1)), . . . , om(x1, . . . , xr(m))

)

= f(un[o1, . . . , om](x1, . . . , xn))

= un[o′1, . . . , o
′
m](f(x1, . . . , xn))

= un[o′1, . . . , o
′
m](h(x1), . . . , h(xn))

=
(
h(xm+1), . . . , h(xn), o′1(h(x1), . . . , h(xr(1))), . . . , o

′
m(h(x1), . . . , h(xr(m)))

)
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and, therefore, h(oi(x1, . . . , xr(i))) = o′i(h(x1), . . . , h(xr(i))) for any i with 1 � i � m.
Thus, h is a homomorphism of

(
A, (ai)1�i�k(0), (oi)1�i�m

)
into

(
A′, (a′i)1�i�k(0),

(o′i)1�i�m

)
and (ii) holds. �

Let n � 1 be an integer, k(0), . . . , k(n) nonnegative integers such that k(n) � 1.
Put k(1) + . . .+ k(n) = m and suppose m < n. Let A �= ∅ be a set. A unary opera-
tion o on the set An is said to be binding with respect to the sequence (k(1), . . . , k(n))
if it has the following properties.
(i) If (x1, . . . , xn) ∈ An and o(x1, . . . , xn) = (x′1, . . . , x

′
n), then x′1 = xm+1, . . . ,

x′n−m = xn.
(ii) Let (x1, . . . , xn), (y1, . . . , yn) be in An and o(x1, . . . , xn) = (x′1, . . . , x

′
n),

o(y1, . . . , yn) = (y′1, . . . , y
′
n), 1 � i � n and xj = yj for any integer j with

1 � j � i, then x′n−m+j = y′n−m+j for any j with 1 � j � k(1) + . . .+ k(i).

Lemma 6. Let n � 1 be an integer, k(1), . . . , k(n) nonnegative integers such that
k(n) � 1. Put k(1) + . . .+ k(n) = m and suppose m < n. Let A �= ∅ be a set. Then
the following assertions hold.
(i) Let o1, . . . , om be nonnullary operations on A such that for any integer j with
1 � j � n the arity of oj is the least integer i satisfying 1 � j � k(1)+ . . .+k(i).
Then un[o1, . . . , om] is a unary operation on the set An binding with respect to
the sequence (k(1), . . . , k(n)).

(ii) If o is a unary operation on the set An that is binding with respect to the
sequence (k(1), . . . , k(n)), then there exist nonnullary operations o1, . . . , om on
the set A such that for any j with 1 � j � m the arity r(j) of the opera-
tion oj equals the least i satisfying 1 � j � k(1) + . . . + k(i). Furthermore,
un[o1, . . . , om] = o.

�����. (1) If o1, . . . , om are nonnullary operations on A with the properties pre-
sented in (i), then un[o1, . . . , om](x1, . . . , xn) =

(
xm+1, . . . , xn, o1(x1, . . . , xr(1)), . . . ,

om(x1, . . . , xr(m))
)
for any (x1, . . . , xn) ∈ An. Hence, if un[o1, . . . , om](x1, . . . , xn) =

(x′1, . . . , x
′
n), then x′1 = xm+1, . . . , x

′
n−m = xn.

Suppose (x1, . . . , xn) ∈ An, (y1, . . . , yn) ∈ An, un[o1, . . . , om](x1, . . . xn) =
(x′1, . . . , x

′
n), un[o1, . . . , om](y1, . . . , yn) = (y′1, . . . , y

′
n). If 1 � i � n and xt = yt for

any t with 1 � t � i, then x′n−m+j = oj(x1, . . . , xr(j)) = oj(y1, . . . , yr(j)) = y′n−m+j

for any j with j � k(1) + . . .+ k(i) because r(j) � i.
We have proved that un[o1, . . . , om] is a binding operation with respect to the

sequence (k(1), . . . , k(n)). Thus (i) holds.
(2) Let o be a unary operation on the set An that is binding with respect to the

sequence (k(1), . . . , k(n)), j an arbitrary integer with 1 � j � m.
There exists the least integer i such that j � k(1) + . . . + k(i). Let x1, . . . xi

be arbitrary elements in A. We choose xi+1, . . . , xn in A arbitrarily and define
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(x′1, . . . , x
′
n) = o(x1, . . . , xn). Finally, we put oj(x1, . . . , xi) = x′n−m+j . Since o is

binding with respect to the sequence (k(1), . . . , k(n)), the operation oj is defined
correctly.
Indeed, let yi+1, . . . , yn in A be arbitrary elements and (y′1, . . . , y

′
n) = o(y1, . . . , yi,

yi+1, . . . yn) where y1 = x1, . . . , yi = xi, i.e., yt = xt for any t with 1 � t � i. Since
o is binding with respect to (k(1), . . . , k(n)) we obtain ot(x1, . . . , xr(t)) = x′n−m+t =
y′n−m+t = ot(y1, . . . , yr(t)) for any t with 1 � t � k(1) + . . . + k(i). In particular,
x′n−m+j = y′n−m+j, hence x′n−m+j does not depend on elements xi+1, . . . , xn.
If i is the least integer with j � k(1) + . . .+ k(i), then r(j) = i by our definition

of oj .
Let (x1, . . . , xn) ∈ An be arbitrary. Put o(x1, . . . , xn) = (x′1, . . . , x

′
n). We ob-

tain un[o1, . . . , om](x1, . . . , xn) =
(
xm+1, . . . , xn, o1(x1, . . . , xr(1)), . . . , om(x1, . . . ,

xr(m))
)
= (x′1, . . . , x

′
n) = o(x1, . . . , xn) by our definition of the operations o1, . . . , om.

Hence (ii) holds. �

We denote byMABk(0) . . . k(n) the category which is defined as follows (category
of Mono-unary Algebras with one Binding and several nullary operations).
Objects of this category are algebras whose carrier has the form An where A is

a set. Any algebra has k(0) constants of the form (ai, . . . , ai) ∈ An for any i with
1 � i � k(0). Furthermore, it has a unary operation o that is binding with respect
to the sequence (k(1), . . . , k(n)). Thus, an object of MABk(0) . . . k(n) is of the
form

(
An, ((ai, . . . , ai))1�i�k(0), o

)
. Morphisms of this category are n-decomposable

homomorphisms of these algebras. It is easy to see that MABk(0) . . . k(n) is a
category.
We now define a functor G from ALGk(0) . . . k(n) to MABk(0) . . . k(n) by pre-

senting the object mapping Go and the morphism mapping Gr.
For any object

(
A, (ai)1�i�k(0), (oi)1�i�m

)
in ALGk(0) . . . k(n) we define

Go
(
A, (ai)1�i�k(0), (oi)1�i�m

)
=

(
An, ((ai, . . . , ai))1�i�k(0),un[o1, . . . , om]

)
.

If
(
A, (ai)1�i�k(0), (oi)1�i�m

)
,
(
A′, ((a′i)1�i�k(0), (o′i)1�i�m

)
are objects in the cat-

egory ALGk(0) . . . k(n) and h is a homomorphism of
(
A, (ai)1�i�k(0), (oi)1�i�m

)

into
(
A′, (a′i)1�i�k(0), (o′i)1�i�m

)
, then we put

Gr(h) = hn.

Theorem 2. Let n � 1, k(0), . . . , k(n) be nonnegative integers such that k(n) � 1,
k(1) + . . .+ k(n) < n. Then G is an isomorphism of the category ALGk(0) . . . k(n)
onto MABk(0) . . . k(n).

�����. Put m = k(1) + . . .+ k(n).
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If
(
A, (ai)1�i�k(0), (oi)1�i�m

)
is an object of the category ALGk(0) . . . k(n), then

Go
(
A, (ai)1�i�k(0), (oi)1�i�m

)
has nullary operations (ai, . . . , ai) ∈ An for any i with

1 � i � k(0) and the unary operation un[o1, . . . , om] that is binding with respect to
the sequence (k(1), . . . , k(n)) by Lemma 6. It follows that Go maps the class of all
objects of the category ALGk(0) . . . k(n) into the class of all objects of the category
MABk(0) . . . k(n). It is easy to see that Go is an injective mapping.
If

(
An, ((ai, . . . , ai))1�i�k(0), o

)
is an object of the category MABk(0) . . . k(n),

then ai is a nullary operation on A for any i with 1 � i � k(0). By Lemma 6
there exist nonnullary operations o1, . . . , om on A such that un[o1, . . . , om] = o and
for any j with 1 � j � m the arity r(j) of the operation oj equals the least inte-
ger i satisfying 1 � j � k(1) + . . . + k(i). Hence Go

(
A, (ai)1�i�k(0), (oi)1�i�m

)
=(

An, ((ai, . . . , ai))1�i�k(0), o
)
. It follows that Go is a bijection.

If h is a homomorphism of
(
A, (ai)1�i�k(0), (oi)1�i�m

)
into

(
A′, (a′i)1�i�k(0),

(o′i)1�i�m

)
where these algebras are objects in ALGk(0) . . . k(n), then Gr(h) is

an n-decomposable homomorphism of Go
(
A, (ai)1�i�k(0), (oi)1�i�m

)
into

(
Go(A′,

(a′i)1�i�k(0), (o′i)1�i�m

)
and Gr is a bijection of the class of all morphisms in

ALGk(0) . . . k(n) onto the class of all morphisms inMABk(0) . . . k(n) by Lemma 1
and Lemma 5. Similarly as in Theorem 1 we prove that the condition

Gr(1(A,(ai)1�i�k(0),(oi)1�i�m)) = 1Go(A,(ai)1�i�k(0),(oi)1�i�m)

is satisfied for any object
(
A, (ai)1�i�k(0), (oi)1�i�m

)
in ALGk(0) . . . k(n). Fi-

nally, if
(
A, (ai)1�i�k(0), (oi)1�i�m

)
,
(
A′, (a′i)1�i�k(0), (o′i)1�i�m

)
,
(
A′′, (a′′i )1�i�k(0),

(o′′i )1�i�m

)
are objects in ALGk(0) . . . k(n), if h is a homomorphism of the first

algebra into the second and k a homomorphism of the second algebra into the
third, then k ◦ h is a homomorphism of the first algebra into the third and
Gr(k ◦ h) = Gr(k) ◦Gr(h) holds.
It follows that G is a functor and, therefore, an isomorphism. �

Remark 1. It is possible to present a construction similar to Construction 1
where the category MABk(0) . . . k(n) substitutes MAAk(0) . . . k(n). The details
are left to the reader.

Example 3. Let
(
A, a1, (oi)1�i�2

)
be an algebra where A = {a, b, c}, a1 = a, o1

is a binary and o2 a ternary operation given by the following tables:

o1 a b c
a a c b
b b b a
c c c c

xyz aaa aab aac aba abb abc aca acb acc
o2(xyz) a b c a b c a b c
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xyz baa bab bac bba bbb bbc bca bcb bcc
o2(xyz) c b a c b a c b a

xyz caa cab cac cba cbb cbc cca ccb ccc
o2(xyz) c c c c c c c c c

Thus k(0) = 1, k(1) = 0, k(2) = 1, k(3) = 1, m = k(1) + k(2) + k(3) = 2 < 3 = n.
We construct the mono-unary algebra (A3,un[o1, o2]). The operation un[o1, o2] has
the following table:

xyz aaa aab aac aba abb abc aca acb acc
un[o1, o2](xyz) aaa bab cac aca bcb ccc aba bbb cbc

xyz baa bab bac bba bbb bbc bca bcb bcc
un[o1, o2](xyz) abc bbb cba abc bbb cba aac bab caa

xyz caa cab cac cba cbb cbc cca ccb ccc
un[o1, o2](xyz) acc bcc ccc acc bcc ccc acc bcc ccc

This algebra can be represented by the graph in Fig. 2.

We construct all endomorphisms of the algebra (A, a1, (oi)1�i�2). If h is an arbi-
trary endomorphism of this algebra then h(a) = a.

Let f = h3 be a 3-decomposable endomorphism of the algebra (A3, aaa,un[o1, o2]).
Since f(aaa) = aaa, we have the following possibilities for bbb:

(a) f(bbb) = aaa; (b) f(bbb) = bbb; (c) f(bbb) = ccc.

If (a) occurs, then h(b) = a. Furthermore, un[o1, o2](acb) = bbb implies that aaa =
f(bbb) = f(un[o1, o2](acb)) = un[o1, o2](f(acb)), which implies that f(acb) = aaa

and, hence, h(c) = a. Clearly, the mapping h defined by h(x) = a for any x ∈ A is
an endomorphism of (A, a1, (oi)1�i�2).
If (b) occurs, we have h(a) = a, h(b) = b. If h(c) = a, then f(acb) =

h(a)h(c)h(b) = aab and, therefore, bab = un[o1, o2](aab) = un[o1, o2](f(acb)) =
f(un[o1, o2](acb)) = f(bbb) = bbb, which is a contradiction. Suppose h(c) = b.
Then f(acb) = abb and, consequently, bcb = un[o1, o2](abb) = un[o1, o2](f(acb)) =
f(un[o1, o2](acb)) = f(bbb) = bbb, which is a contradiction. Thus the only possible
case is h(c) = c and h = idA which is, clearly, an endomorphism of the given algebra.

If (c) occurs, we have h(a) = a, h(b) = c. It follows that f(bba) = cca and
hence acc = un[o1, o2](cca) = un[o1, o2](f(bba)) = f(un[o1, o2](bba)) = f(abc) =
ach(c), which implies that c = h(c). Therefore ccc = f(bcb) and, hence, ccc =
un[o1, o2](ccc) = un[o1, o2](f(bcb)) = f(un[o1, o2](bcb)) = f(bab) = h(b)h(a)h(b) =
cac, which is a contradiction.

Hence, our algebra (A, a1, (oi)1�i�2) has only two endomorphisms: h1(x) = a for
any x ∈ A and h2 = idA.
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Fig. 2.

In order to demonstrate the use of the construction described in Example 1(b) we
proceed as follows. From this construction it follows that a cycle must be assigned
to the cycle formed of elements aca, aba by a homomorphism f .

If the assigned cycle is formed of the only element aaa, then, clearly, f = h3

entails h(a)h(c)h(a) = f(aca) = aaa and, therefore, h(a) = a, h(c) = a. Similarly,
h(a)h(b)h(a) = f(aba) = aaa implies h(b) = a. It is easy to see that f(xyz) = aaa for
any xyz ∈ A3 is a 3-decomposable endomorphism of the algebra (A3, aaa,un[o1, o2]).
Clearly, the mapping h(x) = a for any x ∈ A is an endomorphism of the algebra
(A, a1, (oi)1�i�2).
Let the assigned cycle be formed by the element bbb. Then, similarly as above,

we obtain h(x) = b for any x ∈ A and, therefore, f(xyz) = bbb for any xyz ∈ A3.
Clearly, f is not an endomorphism of the algebra (A3, aaa,un[o1, o2]) because the
condition f(aaa) = aaa is violated. Similarly, we obtain no endomorphism of the
algebra (A3, aaa,un[o1, o2]) if the cycle containing the only element ccc is assigned
to the cycle {aba, aca}.
The last possibility is to assign the cycle {aba, aca} to {aba, aca}. Putting

f(aba) = aca, f(aca) = aba, we have h(a) = a, h(b) = c, h(c) = b. Clearly, the
elements bba, cac are in the same component of the algebra (A3,un[o1, o2]) while
f(bba) = cca, f(cac) = bab are in different components. It follows that f is no
endomorphism of the algebra (A3,un[o1, o2]) and—a fortiori—no endomorphism of
(A3, aaa,un[o1, o2]). Thus, we must define f(aba) = aba, f(aca) = aca, which leads
us to h = idA.

Remark 2. Constructions presented in [12] and [13] may be regarded as particular
cases of the construction described in this section. Taking k(0) = k(1) = 0, k(2) = 1
we obtain m = 1, n = 2 and the category ALG001 is the category of all groupoids.
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It is easy to see that the functor G described here is not the only isomorphism of
ALG001 onto a category of mono-unary algebras. Thus, our constructions present
only one case of several possibilities.

5. Applications

Homomorphisms of algebras play an important role in various problems. We
present such a problem in computer science.

Let S, V be sets such that S ∩ V = ∅ where V is finite. Suppose that oa is a
unary operation on the set S for any a ∈ V . For any s ∈ S and any a ∈ V define
f(s, a) = oa(s). Furthermore, let s0 ∈ S be a fixed element and F ⊆ S a set. Then
the ordered quintuple (S, V, f, s0, F ) is said to be an acceptor ; elements in S are
called states, s0 is the initial state, F is the set of final states. The set V is said to
be an alphabet, its elements are referred to as symbols, f appears under the name
of transition function. Clearly, (S, s0, (oa)a∈V ) is an algebra where s0 is a nullary
operation and the numbering of nonnullary operations is replaced by indexing using
symbols as indices. It is easy to see that the quadruple (S, V, f, s0) makes it possible
to construct the algebra (S, s0, (oa)a∈V ) and vice versa.

Finite sequences of elements in V are called strings. Thus, if x is a nonempty
string over V , there exist an integer n � 1 and elements a1, . . . , an in V such that
x = (a1, . . . , an); it is usual to write strings without parantheses and commas, hence
x = a1 . . . an. This string can be identified with a mapping of the set {i ∈ � ; 1 �
i � n} into V where � denotes the set of all nonnegative integers. Putting n = 0 we
obtain a mapping of the empty set {i ∈ � ; 1 � i � 0} into V which is the empty set.
The string identified with ∅ is denoted by Λ and is referred to as the empty string.
The set of all strings over V is denoted by V ∗.

An acceptor (S, V, f, s0, F ) is a device that either accepts or rejects any string
over V , i.e., for any x ∈ V ∗, the acceptor decides whether x is accepted or not. The
work of this acceptor is as follows. Suppose that x ∈ V ∗ is given. Then x is accepted
by (S, V, f, s0, F ) if one of the following cases occurs:

(1) x = Λ, s0 ∈ F .

(2) x = a1 . . . an where n � 1, a1, . . . , an ∈ V . Defining si = oai(si−1) by induction
for any i with 1 � i � n we obtain sn ∈ F .

The set of all strings accepted by an acceptor A is referred to as the language
accepted by A; it will be denoted by L(A). More about acceptors and their languages
may be found, e.g., in [17], [3], [2].

As was said above, homomorphisms of algebras play an important role in a problem
concerning languages accepted by acceptors. More exactly, let A = (S, V, f, s0, F ),
A′ = (S′, V, f ′, s′0, F

′) be acceptors. A mapping h of S into S′ is said to be

360



a homomorphism of the acceptor A into A′ if it is a homomorphism of the al-
gebra (S, s0, (oa)a∈V ) into (S′, s′0, (o

′
a)a∈V ) and h−1(F ′) = F . Clearly, h(F ) =

h(h−1(F ′)) ⊆ F ′.

Theorem 3. Let A = (S, V, f, s0, F ), A′ = (S′, V, f ′, s′0, F
′) be acceptors, h a

homomorphism of A into A′. Then both the acceptors accept the same language.

�����. (1) Let a string x ∈ V ∗ be accepted by the first acceptor A.
If x = Λ then s0 ∈ F , which implies s′0 = h(s0) ∈ h(F ) ⊆ F ′ and, therefore, Λ is

accepted by A′.
Suppose that x = a1 . . . an where n � 1 and a1, . . . , an ∈ V . Then we have defined

sj = oaj (sj−1) for any j with 1 � j � n and we have obtained sn ∈ F . Similarly,
s′j = o′aj

(s′j−1) holds for any j satisfying 1 � j � n. Since h is a homomorphism,
we obtain s′0 = h(s0). If we suppose j > 0, s′j−1 = h(sj−1), then s′j = o′aj

(s′j−1) =
o′aj
(h(sj−1)) = h(oaj (sj−1)) = h(sj). Hence s′j = h(sj) for any j with 0 � j � n

follows by induction. In particular, we obtain s′n = h(sn) ∈ h(F ) ⊆ F ′. Thus, A′

accepts x.
(2) Suppose that x ∈ V ∗ is accepted by A′.
If x = Λ, then s′0 ∈ F ′ and, therefore, h(s0) = s′0 ∈ F ′, which means s0 ∈

h−1(F ′) = F . Consequently, A accepts Λ.
Suppose that x = a1 . . . an is accepted by A′ where n � 1 and a1, . . . , an ∈ V . We

have sj = oaj (sj−1), s′j = o′aj
(s′j−1) for any j with 1 � j � n. Similarly as in (1),

we prove that h(sj) = s′j holds for any j with 1 � j � n. This yields, in particular,
h(sn) = s′n ∈ F ′ and, hence, sn ∈ h−1(F ′) = F . Thus, A accepts x. �

Example 4. Let A = (S, V, f, s0, F ), A′ = (S′, V, f ′, s′0, F
′) be acceptors where

S = {1, 2, 3}, S′ = {1′, 2′, 3′, 4′, 5′}, V = {a, b}, s0 = 1, s′0 = 1′, F = {1}, F ′ = {1′}
and the functions f , f ′ are defined by the following tables:

f a b
1 2 3
2 3 1
3 3 3

f ′ a b
1′ 2′ 3′

2′ 3′ 1′

3′ 3′ 3′

4′ 3′ 5′

5′ 4′ 3′

Our problem may be formulated as follows: Do the acceptors A, A′ accept
the same language? In order to answer this question we try to construct a ho-
momorphism g of A into A′. Using Construction 1, we construct the algebras(
S2, (s0, s0),um[oa, ob]

)
and

(
(S′)2, (s′0, s

′
0),um[o

′
a, o′b]

)
. The operations of these

algebras are described by the following tables (we write again xy for (x, y)):

xy 11 12 13 21 22 23 31 32 33
um[oa, ob](xy) 23 23 23 31 31 31 33 33 33
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xy 1′1′ 1′2′ 1′3′ 1′4′ 1′5′ 2′1′ 2′2′ 2′3′ 2′4′ 2′5′

um[o′a, o′b](xy) 2′3′ 2′3′ 2′3′ 2′3′ 2′3′ 3′1′ 3′1′ 3′1′ 3′1′ 3′1′

xy 3′1′ 3′2′ 3′3′ 3′4′ 3′5′ 4′1′ 4′2′ 4′3′ 4′4′ 4′5′

um[o′a, o′b](xy) 3′3′ 3′3′ 3′3′ 3′3′ 3′3′ 3′5′ 3′5′ 3′5′ 3′5′ 3′5′

xy 5′1′ 5′2′ 5′3′ 5′4′ 5′5′

um[o′a, o′b](xy) 4′3′ 4′3′ 4′3′ 4′3′ 4′3′

The mono-unary algebras (S2,um[oa, ob]) and ((S′)2,um[o′a, o′b]) are represented
by Fig. 3 and Fig. 4.
Let h be a 2-decomposable homomorphism of the algebra (S2,um[oa, ob]) into

((S′)2,um[o′a, o′b]). Then there exists a mapping g of S into S′ such that h = g2.
Using the construction described in Example 1(b) we obtain that the cycle having
the element 3′3′ is assigned to the cycle having the element 33 by any homomor-
phism h of the algebra (S2,um[oa, ob]) into ((S′)2,um[o′a, o′b]). Thus, we have
h(um[oa, ob])(3, 3) = (3′, 3′) and hence, g(3) = 3′. Since g(1) = g(s0) = s′0 = 1

′,
the only problem is to define g(2). We have h(3, 1) = (g(3), g(1)) = (3′, 1′),
um[oa, ob](2, 2) = (3, 1). It follows that um[o′a, o′b](h(2, 2)) = h(um[oa, ob])(2, 2) =
h(3, 1) = (3′, 1′). Consequently, h(2, 2) = (x, x) ∈ (S′)2, um[o′a, o′b](x, x) = (3′, 1′).
The only element x ∈ S′ with this property is x = 2′. Hence h(2, 2) = (2′, 2′) and,
therefore, g(2) = 2′.
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Fig. 3.

It follows that g is a homomorphism of the algebra (S, s0, (ox)x∈V ) into the al-
gebra (S′, s′0, (o

′
x)x∈V ). Furthermore, g−1(F ′) = g−1({1′}) = {1} and thus, g is a

homomorphism of A into A′. By Theorem 3, the acceptors A and A′ accept the same
language. Clearly, L(A′) = L(A) = {(ab)n; n ∈ �}.

Remark 3. We present some other applications.

(a) If
(
A, (ai)1�i�p, (oi)1�i�m

)
, (A′, (a′i)1�i�p, (o′i)1�i�m) are algebras, the above

explained methods enable us to state whether there exists an isomorphism of the
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Fig. 4.

first algebra into the latter, i.e., whether the first algebra may be embedded into the
other. As an example we may choose the algebras (S, s0, (oa)a∈V ), (S′, s′0, (o

′
a)a∈V )

and the isomorphism g constructed in Example 4.
(b) In [11] a construction of all strong homomorphisms of a relational structure

with one relation into a relational structure of the same type is described. The
fundamental step of this construction consists in lifting the relations to the power
sets which creates operations on power sets. The strong homomorphisms can be
obtained from homomorphisms between algebras defined on power sets.
Repeating this procedure for a relational structure with more than one relation,

we obtain an algebra with more than one operation. Hence, we need homomorphisms
between such algebras, which is ensured by methods explained in the present paper.

6. Concluding remarks

The problem formulated by O. Borůvka about 1950 stimulated investigation of
mono-unary algebras (cf. a survey of results in [8]). Constructions of homomor-
phisms between mono-unary algebras made it possible to construct homomorphisms
of relational structures, see [9], [10], [11], [14]. Since relational structures are in a
close connection to hyperstructures, applications of mono-unary algebras also in this
region can be expected. All these papers together with [12], [13], and the present
one prove that mono-unary algebras are very useful.
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