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FINITE SIMPLE ZEROPOTENT PARAMEDIAL GROUPOIDS
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Abstract. The study of paramedial groupoids (with emphasis on the structure of simple
paramedial groupoids) was initiated in [1] and continued in [2], [3] and [5]. The aim of the
present paper is to give a full description of finite simple zeropotent paramedial groupoids
(i.e., of finite simple paramedial groupoids of type (II)—see [2]).
A reader is referred to [1], [2], [3] and [7] for notation and various prerequisites.
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1. Introduction

Let G be a transitive permutation group on a non-empty finite set G∗ and let G
be generated by elements f and g, i.e. such that G = 〈f, g〉. Let o be a symbol not
in G∗ and G = G∗ ∪ {o}. Now, define a multiplication on G as follows:
(a) oo = o;
(b) ox = o = xo for every x ∈ G∗;
(c) xy = o for all x, y ∈ G∗, f(x) �= g(y);
(d) xy = f(x) = g(y) for all x, y ∈ G∗ such that f(x) = g(y).
Then we denote the groupoid G defined in this way by G = [G, G∗, f, g, o].

1.1. Proposition.
(i) G is a simple balanced groupoid.

While working on this paper, the first author was supported by the Academic Research
Fund, Ministry of Education, Korea, Project No. BSRI-97-1433, and the second author by
the Grant Agency of the Czech Republic, Grant #201/96/0312, and by the institutional
grant MSM113200007.
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(ii) G is zeropotent if and only if f(a) �= g(a) for every a ∈ G∗.
(iii) If f �= g and f2 = g2, then G is zeropotent.
(iv) G is paramedial if and only if f2 = g2.

�����. (i) and (ii) See [7, Prop. 3.1].
(iii) The set I = {a ∈ G∗ ; f(a) �= g(a)} is non-empty. If a ∈ I, then

f2(a) = g2(a) �= gf(a), so that f(a) ∈ I. Quite similarly, g(a) ∈ I and we
conclude that I = G∗.
(iv) Assume that G is paramedial and a ∈ G∗. Then there are b, c, d ∈ G∗ such

that f2(a) = g2(b), f(a) = g(c) and f(d) = g(b). Now, o �= f2(a) = g2(b) = ac · db =
bc · da, and so bc �= o, f(b) = g(c) and a = b. Thus f2(a) = g2(a).
For the converse, assume f2 = g2 and let a, b, c, d ∈ G. Suppose first that ac ·db �=

o. Then none of a, b, c, d, ac and db is o and f(a) = g(c) = ac, f(d) = g(b) = db and
f(ac) = g(db). Thus g2(a) = f2(a) = fg(c) = f(ac) = g(bd) = g2(b), and so a = b.
Then obviously ac · db = bc · da. This argument also shows that if ac · db = o, then
bc · da = o as well, which completes the proof. �

Let Azppm denote the class of all ordered quadruples (A, B, a, b), where A is a
finite group, B a corefree subgroup of A and A = 〈a, b〉, a �= b, a2 = b2. Now, define
an equivalence relation ≈ on Azppm by (A1, B1, a1, b1) ≈ (A2, B2, a2, b2) if and only
if there is a (group) isomorphism λ : A1 → A2 such that λ(a1) = a2, λ(b1) = b2 and
the subgroups λ(B1), B2 are conjugate in A2.
For (A, B, a, b) ∈ Azppm, let A/B denote the set {xB ; x ∈ A} of all left cosets

of B in A. For every x ∈ A, the equality �(x)(yB) = xy(B) defines a permutation
�(x) of A/B. Thus �(A) is a subgroup of the symmetric group on A/B and �(A) is
clearly transitive. Now, we put Φ

(
(A, B, a, b)

)
= [�(A), A/B, �(a), �(b), o], o /∈ A/B,

the groupoid defined above.
Let G be a finite simple zeropotent paramedial groupoid (i.e., a finite simple

paramedial groupoid of type (II)—see [2]) containing at least three elements. Now,
G is balanced by [3, Theorem 2.1] and for every a ∈ G∗ = G\{o} there exist uniquely
determined elements b, c ∈ G such that f(a) = ab �= o �= ca = g(a). Furthermore,
the mappings f , g are permutations of G∗, f2 = g2, f �= g, and G = 〈f, g〉 operates
transitively on G∗. If u ∈ G∗ and H = StabG(u), then Ψ(G) = (G,H, f, g) ∈ Azppm.

1.2. Theorem. There exists a one-to-one correspondence between isomorphism
classes of finite simple zeropotent paramedial groupoids containing at least three
elements and equivalence classes of quadruples from Azppm. This correspondence is
given by Φ and Ψ.

�����. Combine 1.1 and [7, Theorem 4.1]. �
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2. Auxiliary results on groups (a)

Throughout this section, let A be a finite non-commutative group generated by two
elements a, b such that a2 = b2; obviously, a �= b. We put A1 = 〈a〉, m = ord(a) =
card(A1), c = a−1b, C = 〈c〉, n = ord(c), D = 〈a2〉, E = A1 ∩ C, k = card(E) and
F = Z(A) ∩ C, where ord(a) is the order of a, card(A) is the cardinality of A and
Z(A) is the centre of A.

2.1. Lemma.
(i) A = 〈a, c〉, c = a−1b = ab−1.

(ii) For u ∈ C, we have a−1ua = b−1ub = aua−1 = bub−1 = u−1.

(iii) For u ∈ C we have u ∈ Z(A) if and only if u2 = 1.

�����. (i) and (ii) are trivial and (iii) follows by (ii). �

2.2. Lemma.
(i) A′ = 〈c2〉 ⊆ C, where A′ is the commutator subgroup of A.

(ii) A = A1C and every subgroup of C is normal in A.
(iii) D ⊆ Z(A) = DF .

(iv) If n is odd, then k = 1 and Z(A) = D ⊆ A1.

(v) If n is even, then k = 2 and F is a unique minimal 2-subgroup of C.

�����. (i) We have c2 = a−1bab−1 ∈ A′, and so K = 〈c2〉 ⊆ A′. On the other
hand, K � A and A/K is abelian. Thus K = A′.
(ii) Easy.
(iii), (iv) and (v). Obviously, D ⊆ Z(A). If u ∈ C, then u ∈ Z(A) iff a−1ua =

u = b−1ub, i.e., iff u2 = 1. Further, if u ∈ C, α ∈ � and aαu ∈ Z(A), then
aαu = a−1aαua = aαu−1, u2 = 1, u ∈ Z(A), aα ∈ Z(A). Since a2 ∈ Z(A) and
a /∈ Z(A), α is even and aα ∈ D. �

2.3. Lemma.
(i) m � 2 is even and m = ord(b).
(ii) n � 3.
(iii) E = C ∩ 〈b〉 and E ⊆ F .

(iv) k | m and k | n.
(v) If either n is odd or 4 � m, then E = 1 and k = 1.
(vi) card(A) = mn/k is even.

�����. (i) If m is odd, then a ∈ D ⊆ Z(A), which is not true. Hence m is even
and card(D) = m/2.
(ii) If n � 2, then C ⊆ Z(A), which is again not true.
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(iii), (iv) and (v) If aαE = A1∩C, then, by 2.1(ii), aα = a−1aαa = b−1aαb = a−α.
Thus aα ∈ Z(A) ∩ C = F and a2α = 1. Similarly, C ∩ 〈b〉 ⊆ F . In n is odd, then
F = 1 by 2.2(iv), and so E = 1 = C ∩〈b〉. Now, let n be even and 1 �= aα ∈ E. Since
E ⊆ Z(A), α is even and, since a2α = 1, n dividss 2α. Consequently, m = 2α and
4 | m. Moreover, bα = aα ∈ E and E = 〈am/2〉 = C ∩ 〈b〉.
(vi) We have A = A1C. If n is odd, then F = 1 by 2.2(iv). Since E ⊆ Z(A), α is

even and, since a2α = 1, m divides 2α. Consequently, m = 2α and 4 | m. �

For a prime p � 2, let Sp and Tp denote the Sylow p-subgroup of A1 and C,
respectively. Then Tp � A and we put Rp = TpSp.

2.4. Lemma. Let p � 3. Then Sp ⊆ Z(A), Sp ∩ Tp = 1, Rp ⊆ DC, Sp × Tp =
Rp � A and Rp is a unique Sylow p-subgroup of A.

�����. Clearly, Sp ⊆ D ⊆ Z(A) and Sp ∩ Tp = 1 by 2.2(iv),(v). The rest is
clear. �

2.5. Lemma. R2 is a Sylow 2-subgroup of A.

�����. We haveR2 ⊆ K for a Sylow 2-subgroupK ofA. Now, if u = aαcβ ∈ K,
then there is γ � 0 such that aα2γ ∈ A1 ∩C = E (since C � A), and hence aα ∈ S2,
cβ ∈ K ∩ C = T2 and u ∈ R2. �

For a prime p, let m = prp · mp, p � mp, n = psp · np, p � np. Then Sp = 〈amp〉
and Tp = 〈cnp〉. For a subgroup B of A, we denote by CenA(B) and NorA(B) the
centralizer of B in A and the normalizer of B in A, respectively.

2.6. Lemma.
(i) CenA(C) = DC = Z(A)C and [A : CenA(C)] = 2.

(ii) If L is a subgroup of DC and L � A, then NorA(L) = DC and L is conjugate
to only one subgroup of A other than L.

�����. (i) Clearly, DC ⊆ Z(A)C ⊆ CenA(C) and a /∈ CenA(C). Thus
2 � [A : CenA(C)] � [A : Z(A)C] � [A : DC] = 2.

(ii) Since L ⊆ CenA(C), we have C ⊆ CenA(L), and so DC = CenA(C) ⊆
CenA(L). But CenA(L) �= A, and therefore CenA(L) = NorA(L) = DC. �

2.7. Lemma. Let B be a corefree subgroup of A. Then

(i) B is cyclic, B ∩ C = 1 = B ∩D and B is isomorphic to a subgroup of A1/E.

(ii) card(B) � m/k and [A : B] � n.

(iii) If B � DC, then 4 � m, r2 = 1 and B ∼= �2.
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�����. (i) and (ii) First, B ∩ C = 1 = B ∩ Z(A), since all subgroups of C and
Z(A) are normal in A. Further, B is isomorphic to a subgroup of A/C ∼= A1/E and,
in particular, B is cyclic.
(iii) For every prime p � 3, the Sylow p-subgroupBp ofB is contained in Rp ⊆ DC,

and hence B2 � DC.
However, B2 = 〈u〉 for some u = aαcβ /∈ DC, where α is odd, 1 � α < m and

0 � β < n. Now, u2 = a2αa−αcβaαcβ = a2α ∈ D ⊆ Z(A). Since B2 is corefree, we
have u2 = 1, m = 2α, 4 � m and B ∼= �2. �

2.8. Lemma. Suppose that 4 � m, n is odd and put B1 = 〈am2〉 = 〈am/2〉. Then
(i) B1 = S2 = R2 is a corefree two-element subgroup of A and [A : B1] = m/2.
(ii) IfB is a corefree subgroup ofA such that B � DC, then B andB1 are conjugate.

�����. (i) We note that m2 = m/2 and the rest is clear by 2.3.
(ii) By 2.7(iii), B ∼= �2 and B = 〈u〉, u = am/2 · cβ, 0 � β < n. Further,

c−1uc = uc2, and hence v−1uv = am/2, where v = c(n−β)/2 for β odd and v = c−β/2

for β even. �

2.9. Lemma. Suppose that 4 � m, n is even and put B1 = 〈am2〉 = 〈am/2〉 and
B∗
1 = 〈am/2 · cn2〉. Then
(i) B1 = S2 ⊆ R2, B∗

1 ⊆ R2, B1 ∼= B∗
1
∼= �2, both B1 and B∗

1 are corefree and
[A : B1] = [A : B∗

1 ] = mn/2.
(ii) B1 and B∗

1 are not conjugate.
(iii) If B is a corefree subgroup of A such that B � DC, then B is conjugate either

to B1 or to B∗
1 .

�����. (i) Clear.
(ii) For 0 � α < n we have c−αam/2cα = am/2 · c2α and c2α �= cn2 , since n is even

and n2 odd.
(iii) By 2.7(iii), B ∼= �2 and we can assume without loss of generality that B ⊆ R2.

Then B = 〈u〉, u = am/2 · cαn2 , 0 � α < 2s2 . Again, c−1uc = uc2, and so u is
conjugate to am/2 for α even and to am/2 · cn2 for α odd. �

Put Q = DC. Then Q = Z(A)C = CenA(C) is an abelian group, [A : Q] = 2 and
Qp = Rp = Sp × Tp is the Sylow p-subgroup of Q for every prime p � 3. Further,
Q2 = S∗

2T2, where S∗
2 = 〈a2m2〉 ⊆ Z(A). If k = 1, then S∗

2∩T2 = 1 and Q2 = S∗
2×T2.

Now, suppose that k = 2. Then r2 � 2, s2 � 1, am/2 = cn/2, S∗
2 ∩ T2 = E ∼= �2

and card(Q2) = 2r2+s2−2. Further, let 1 �= u = a2αm2 · cβn2 ∈ Q2, 0 � α < 2r2−1,
0 � β < 2s2 . Then u2 = 1 iff either a4αm2 = 1 = c2βn2 or a4αm2 = am/2 and
c2βn2 = cn/2. In the former case, u = am/2 = cn/2. In the latter case, r2 � 3, s2 � 2
and either u = am/4 · cn/4 or u = a3m/4 · cn/4; these two elements are conjugate but
different. The following lemma is clear.
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2.10. Lemma. Suppose that k = 2. Then Q2 is cyclic if and only if either 8 � m
or 4 � n.

3. Auxiliary results on groups (b)

This section is an immediate continuation of the preceding one.
For l � 1, let w(l) denote the number of corefree subgroups B of A such that

card(B) = l. Further, let s(l) denote the number of conjugacy classes of such sub-
groups.

3.1. Lemma. Let l � 3 be odd. Then w(l) �= 0 if and only if l divides both m

and n. In that case, w(l) = ϕ(l) and s(l) = ϕ(l)/2 (ϕ denotes the Euler function).

�����. Let B be a subgroup of A, card(B) = l. Then B is corefree iff B is
cyclic, B ⊆ Q and no minimal subgroup of B is normal in A (see 2.7). In particular,
B is corefree iff all Sylow subgroups of B are so. Henceforth, there is no loss of
generality in assuming that l = pt, p � 3 prime and t � 1.
Now, let B ⊆ Rp, B a corefree subgroup of order pt. We have B = 〈u〉, u = aαcβ ,

0 � α < m, 0 � β < n, aα ∈ Sp, cβ ∈ Tp, pt = ord(u) = max(ord(aα), ord(cβ)).
Since B is corefree, we have B ∩ Sp = 1 = B ∩ Tp, and so ord(aα) = ord(cβ)
showing that pt divides both m and n. Note that Sp = 〈amp〉, Tp = 〈cnp〉 and
B ⊆ R∗

p = 〈aprp−tp ·mp〉 × 〈cpsp−tp ·np〉, tp = min(rp, sp). Now, R∗
p is the product of

two cyclic groups of order ptp .
Conversely, ifB is a cyclic subgroup ofR∗

p, card(B) = pt and if B∩Sp = 1 = B∩Tp,
then B is corefree and it is easy to see that the number of such subgroups is just
pt − pt−1 = ϕ(pt). Consequently, w(l) = ϕ(l) and s(l) = ϕ(l)/2 (by 2.6(iii)). �

3.2. Lemma.
(i) If 4 � m and n is odd, then s(2) = 1.
(ii) If 4 � m and n is even, then s(2) = 2.
(iii) If 4 | m and n is odd, then s(2) = 0.
(iv) If 4 | m, n is even and k = 1, then s(2) = 0.
(v) If 4 | m, 8 � m, n is even and k = 2, then s(2) = 0.
(vi) If 8 | m, 4 � n, n is even and k = 2, then s(2) = 0.
(vii) If 8 | m, 4 | n and k = 2, then s(2) = 1.

�����. See 2.9 and 2.10. �

3.3. Lemma. Suppose that either k = 1 or 8 � m or 4 � n. If B is a corefree
subgroup of A with at least three elements, then card(B) is odd.
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�����. By 2.7, B ⊆ DC, and so B2 ⊆ Q2 = S∗
2T2 (see 2.10). Now, suppose

that B2 �= 1 and let L be a (unique) minimal subgroup of B2. If k = 1, then
Q2 = S∗

2 × T2, the socle of Q2 is contained in Z(A), L is contained in the socle and
L � A, a contradiction.
If k = 2 and either 8 � m or 4 � n, then Q2 is cyclic by 2.10 and again L = E =

F � A, a contradiction. �

3.4. Lemma. Suppose that k = 2, 8 | m and 4 | n. If t � 1, then w(2t) �= 0
if and only if t � t2 = min(r2 − 1, s2 − 1). In that case, w(2t) = 2t = ϕ(2t+1) and
s(2t) = 2t−1 = ϕ(2t).

�����. Let u ∈ Q2 = S∗
2T2 be an element of order 2

t and such that 〈u〉 is
corefree. Then E = 〈am/2〉 = 〈cn/2〉 � 〈u〉, and hence u = aαcβ , where aα = aqα ,
qα = α2r2−t−1 ·m2, 1 � α odd, cβ = cwβ , wβ = β2s2−t−1 · n2, 1 � β odd. We have
t � t2 and we can assume that α, β < 2t+1. Now, aαcβ = aγcδ iff either α = γ and
β = δ or |α− γ| = 2t = |β − δ|. Consequently, w(2t) =

(
(2t · 2t)/2

)
/2t−1 = 2t. �

3.5. Lemma. Let l � 4 be even. Then w(l) �= 0 if and only if k = 2, 8 | m, 4 | n
and 2l divides both m and n. In that case, w(l) = ϕ(2l) and s(l) = ϕ(2l)/2 = ϕ(l).

�����. Using 3.3 and 3.4, we can proceed similarly as in the proof of 3.1. �

4. Auxiliary results on groups (c)

This section also continues the preceding two sections. We will assume that ã,
b̃ ∈ A are such that A = 〈ã, b̃〉 and ã2 = b̃2. We put Ã1 = 〈ã〉, c̃ = ã−1b̃, C̃ = 〈c̃〉,
D̃ = 〈ã2〉, Ẽ = C̃ ∩ Ã1, F̃ = C̃ ∩ Z(A), m̃ = ord(ã), ñ = ord(c̃), k̃ = ord(Ẽ), etc.

4.1. Lemma. Let 2 = k and k̃ = 1. Then 4 | m, m = m̃, n = 2ñ and ñ is odd.

�����. Suppose that 8 | m and 4 | n. Then 16 | card(A) and s(2) = 1 by
3.2(vii). Now, using 3.2 again, we get that either 4 � m̃ and 2 � ñ or 8 � m̃, 4 � ñ and
k̃ = 2. In the first case, 4 � card(A), a contradiction.
Now, assume that either 8 � m or 4 � n. By 2.3, 4 | m and 2 | n and we have

s(2) = 0 by 3.2. Further, D = Z(A) = D̃ × F̃ , card(D) = m/2, card(D̃) = m̃/2 and
card(F̃ ) = 2 for ñ even and card(F̃ ) = 1 for ñ odd.
Let ñ be even. Since D is cyclic, D̃ is a cyclic group of odd order, m̃/2 is odd and

4 � m̃, a contradiction with s(2) = 0 and 3.2(i), (ii). Thus ñ is odd, D = D̃, m = m̃,
mn/2 = card(A) = m̃ñ, ñ = n/2. �

4.2. Lemma. Either n = ñ or n = 2ñ or n = ñ/2.

�����. We have 〈c2〉 = A′ = 〈c̃2〉. �
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4.3. Lemma. If k = k̃, then m = m̃ and n = ñ.

�����. First, let k = 1 = k̃. Then mn = card(A) = m̃ñ and D × F =
Z(A) = D̃ × F̃ , card(D) = m/2 and card(D̃) = m̃/2. If both n and ñ are odd, then
F = 1 = F̃ , m = m̃ and n = ñ. If both n and ñ are even, then F ∼= �2 ∼= F̃ and
m = m̃, n = ñ again.
Now, suppose that n is odd and ñ even (the other case being similar); thenm = 2m̃

and n = ñ/2. Let ã = aαcβ, 0 � α < m, 0 � β < n. If α is odd, then ã2 = a2α and
m̃/2 = ord(ã2) = ord(a2α) = ord(a2) = m/2,m = m̃, a contradiction. Consequently,
α is even and, similarly, b̃ = aγcδ, where γ is even. However, then ãb̃ = b̃ã, a
contradiction.
Finally, let k = 2 = k̃. Then F ⊆ D, F̃ ⊆ D̃, m/2 = m̃/2 and the rest is clear. �

4.4. Lemma.
(i) m = m̃.
(ii) If k = k̃, then n = ñ.
(iii) If n = ñ, then k = k̃.
(iv) If k �= k̃, then 4 | m and either k = 2, n = 2ñ and ñ is odd or k = 1, n = ñ/2

and n is odd.

�����. Combine 4.1, 4.2 and 4.3. �

4.5. Remark. Let k = 2, 4 | m, 2 | n, n/2 odd. Put ã = a and b̃ = ac2. Then
b̃2 = ac2ac2 = a2 and c̃ = ã−1b̃ = c2. If K = 〈ã, b̃〉 = 〈a, c2〉, then cn/2 = am/2 ∈ K

implies c ∈ K and K = A. Clearly, k̃ = 1, m̃ = m and ñ = n/2.

4.6. Remark. The elements a, b are conjugate in A if and only if n is odd.
If n = 2α − 1, then a−1cαac = c−α+1 = cα and b = ac = c−αacα. Conversely, if
au = uac, u = aαcβ, then aα+1cβ = aαcβac = aα+1c1−β , c2β−1 = 1 and n is odd.

5. A few constructions

5.1. Letm � 2 be even and let n � 3 be arbitrary. Put A = A(m, n, 1) = �m×�n,
�i = {0, 1, . . . , i− 1} being the ring of integers modulo i and define a multiplication
on A by (α, β)(γ, δ) = (α+γ, (−1)γβ+ δ). Then A becomes a group, a2 = b2, where
a = (1, 0), b = (1, 1), c = (0, 1) and we have A = 〈a, b〉. Moreover, 〈a〉 ∩ 〈c〉 = 1A,
ab �= ba and card(A) = mn.
Suppose finally that 4 | m, 2 | n and put E = {(0, 0), (m | 2, n | 2)}. Then E is

a normal subgroup of A and we denote by A(m, n, 2) the factor-group A/E; clearly,
card(A/E) = mn/2.

5.2. Proposition. Let m � 2, n � 3, m even.
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(i) The groupA(m, n, 1) is given by two generators u, v and by the relations u2 = v2

and um = 1 = (u−1v)n.
(ii) If A is a group such that A = 〈a, b〉, a2 = b2, ord(a) = m, ord(a−1b) = n and

〈a〉∩〈a−1b〉 = 1, then there exists an isomorphism f : A(m, n, 1)→ A such that
f
(
(1, 0)

)
= a, f

(
(1, 1)

)
= b and f

(
(0, 1)

)
= a−1b.

�����. See 5.1 and the preceding sections. �

5.3. Proposition. Let m � 4 and n � 4 be such that 4 | m and 2 | n.
(i) The group A(m, n, 2) is given by two generators u, v and by the relations u2 =

v2, um = 1 = (u−1v)n and um/2 = (u−1v)n/2.
(ii) If A is a group such that A = 〈a, b〉, a2 = b2, ord(a) = m, ord(a−1b) = n and

am/2 = (a−1b)n/2, then there exists an isomorphism f : A(m, n, 2) → A such
that f

(
(1, 0)/E

)
= a, f

(
(1, 1)/E

)
= b and f

(
(0, 1)/E

)
= a−1b.

�����. See 5.1, 5.2 and the preceding sections. �

5.4. Proposition. Let m, m̃ � 2, n, ñ � 3, m and m̃ even. Then
(i) A(m, n, 1) ∼= A(m̃, ñ, 1) if and only if m = m̃ and n = ñ.
(ii) If 4 | m, 4 | m̃, 2 | n, 2 | ñ, then A(m, n, 2)=̃A(m̃, ñ, 2) if and only if m = m̃

and n = ñ.
(iii) If 4 | m and 2 | n, then A(m, n, 2) ∼= A(m̃, ñ, 1) if and only if m = m̃, n/2 = ñ

and ñ is odd.
(iv) If 4 | m̃ and 2 | ñ, then A(m, n, 1)=̃A(m̃, ñ, 2) if and only if m = m̃, 2n = ñ and

n is odd.

�����. Use 4.4 and 4.5. �

5.5. Proposition. Let m � 2, n � 3, m even, and let A be a group such that
A = 〈a, b〉, where a2 = b2, ord(a) = m and ord(a−1b) = n. Further, let A = 〈ã, b̃〉,
where ã2 = b̃2, m̃ = ord(ã) and ñ = ord(ã−1b̃).
(i) If either 〈a〉∩ 〈a−1b〉 = 1 = 〈ã〉∩ 〈ã−1b̃〉 or 〈a〉∩ 〈a−1b〉 �= 1 �= 〈ã〉∩ 〈ã−1b̃〉, then

m = m̃, n = ñ and there exists an automorphism f of A such that f(a) = ã

and f(b) = b̃.
(ii) If 〈a〉 ∩ 〈a−1b〉 �= 1 = 〈ã〉 ∩ 〈ã−1b̃〉, then m = m̃, 4 | m, n = 2ñ, ñ is odd and
there exists no automorphism f of A such that f(a) = ã, f(b) = b̃.

(iii) If 〈a〉 ∩ 〈a−1b〉 = 1 �= 〈ã〉 ∩ 〈ã−1b̃〉, then m = m̃, 4 | m, ñ = 2n, n is odd and
there exists no automorphism f of A such that f(a) = ã, f(b) = b̃.

�����. (i) By 4.4(i), (ii), we have m = m̃, and n = ñ. The result now follows
from 5.2(ii) and 5.3(ii).
(ii) and (iii). See 4.1. �
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5.6. (i) Let m � 2 be even and A(m, 3) = �m(+) × �2(+). Then A(m, 3) is a
non-cyclic abelian group of order 2m, A(m, 3) = 〈a, b〉 = 〈a, c〉, where a = (1, 0),
b = (1, 1), c = (0, 1), 2a = 2b, ord(a) = m = ord(b).

(ii) Let A be a non-cyclic abelian group (written multiplicatively) such that A =
〈a, b〉, a2 = b2, m = ord(a), c = a−1b. Then c2 = 1, c �= 1, A = 〈a, c〉, 〈a〉 ∩ 〈c〉 = 1,
so that A = 〈a〉 × 〈c〉 and, since A is not cyclic, m is even. Further, there exists an
isomorphism f : A(m, 3)→ A such that f

(
(1, 0)

)
= a, f

(
(1, 1)

)
= b and f

(
(0, 1)

)
=

c. Moreover, if A = 〈ã, b̃〉, ã2 = b̃2, then g(a) = ã and g(b) = b̃ for an automorphism
g of A.

5.7. (i) Let m � 3 be odd and A(m, 3) = �m(+) × �2(+). Then A(m, 3) is a
cyclic group of order 2m, A(m, 3) = 〈a, b〉 = 〈a, c〉 = 〈b〉, where a = (1, 0), b = (1, 1),
c = (0, 1), 2a = 2b, ord(a) = m and ord(b) = 2m.

(ii) Let A be a cyclic group (written multiplicatively) such that A = 〈a, b〉, a2 = b2,
A �= 〈a〉 and ord(a) = m � 2, c = a−1b. Then c2 = 1, c �= 1, 〈a〉 ∩ 〈c〉 = 1,
A = 〈a〉 × 〈c〉 and, since A is cyclic, m is odd. Further, bm+1 = a, ord(b) = 2m,
A = 〈b〉 and there exists an isomorphism f : A(m, 3) → A such that f

(
(1, 0)

)
= a,

f
(
(1, 1)

)
= b and f

(
(0, 1)

)
= c. Moreover, if A = 〈ã, b̃〉, then ã2 = b̃2 and if A �= 〈ã〉,

then g(a) = ã and g(b) = b̃ for an automorphism g of A. If A �= 〈b̃〉, then A = 〈ã〉
and there exists no automorphism g of A with g(a) = ã and g(b) = b̃.

Finally, suppose A = 〈ã〉 = 〈b̃〉. Then b̃ = ãi for some i � 0, ã2 = ã2i, m | i− 1,
i = αm+1, α � 0, and either α is even and ã = b̃ or α is odd, b̃ = ãm+1 and 〈b̃〉 �= A,
a contradiction. Thus ã = b̃ and there exists no automorphism g of A with g(a) = ã,
g(b) = b̃.

5.8. (i) Let m � 4 be such that 4 | m and A(m, 4) = �m(+). Then A(m, 4) =
〈1〉 = 〈(m+ 2)/2〉, 2 · 1 ≡ 2 ·

(
(m+ 2)/2

)
(mod m) and 1 ≡ (m+ 2)/2 (mod m).

(ii) Let A be a cyclic group (written multiplicatively) such that A = 〈a〉 = 〈b〉,
where a �= b and a2 = b2. Then ord(a) = ord(b) = card(A) = m, 4 | m, b = a(m+2)/2,
a = b(m+2)/2 and there exists an automorphism f : A(m, 4)→ A such that f(1) = a

and f
(
(m+ 2)/2

)
= b. Moreover, if A = 〈ã, b̃〉, where ã �= b̃, ã2 = b̃2, then g(a) = ã

and g(b) = b̃ for an automorphism g of A (use 5.7(ii) to show that A = 〈ã〉 = 〈b̃〉).
5.9. A(2, 5) = �2(+) = 〈0, 1〉 = 〈1, 0〉 and 2 · 0 ≡ 0 ≡ 2 · 1 (mod 2). There exists

no automorphism f of A(2, 5) with f(0) = 1 and f(1) = 0.

6. The numbers of isomorphism classes of finite simple
zeropotent paramedial groupoids

First, let us recall some results from elementary number theory. For a positive
integer n, let δ(n) = card({m ; 1 � m � n, m | n}) and ε(n) =

∑
1�m�n,m|n

m. Then
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ε(n) =
∑
m|n

δ(m)ϕ(n/m) and n =
∑
m|n

µ(n/m)ε(m), µ being the Möbius function. If

n1, n2 are relatively prime, then δ(n1 ·n2) = δ(n1)δ(n2) and ε(n1 ·n2) = ε(n1)ε(n2).
If n = pr is a power of a prime, then δ(n) = r+1 and ε(n) = 1+p+ . . .+pr = (pr+1−
1)/(p− 1). If n = pr1

1 . . . prt
t is a prime decomposition of n, then δ(n) =

t∏
i=1
(ri + 1)

and ε(n) =
t∏

i=1

ri∑
j=0

pj =
∑

0�ji�ri

pj1
1 . . . pjt

t =
t∏

i=1

(
(pri+1

i − 1)/(pi − 1)
)
.

For a non-negative integer n, let σ(n) =
n∑

m=0
2m(n−m) = 2n+1 − n− 2.

6.1. Remark. Let q = 2rw + 1 � 3 with r � 0, w odd. Then ε(w) =
∑

l|q−1
l

and 2rε(w) =
∑

l|q−1,(q−1)/l odd
l. Further,

∑
l|q−1

1 = δ(q − 1) = (r + 1)δ(w) and

δ(w) =
∑

l|q−1,l odd
1.

For q � 2, let SIMZP(pm, q) denote the number of isomorphism classes of simple
zeropotent paramedial groupoids of order q.

6.2. Theorem. Let q = 2rw + 1 � 2, r � 0, w odd. Then
(i) SIMZP(pm, 2) = 1 and SIMZP(pm, 3) = 2.

(ii) If q is even with q � 4 (i.e., r = 0, w � 3), then SIMZP(pm, q) = δ(w) − 1 =
δ(q − 1)− 1.

(iii) If q is odd with q � 3 and 4 � q−1 (i.e., r = 1 or, equivalently, q ≡ 3, 7 (mod 8)),
then SIMZP(pm, q) = (ε(w)+5δ(w)−2)/2 = (ε((q−1)/2)+5δ((q−1)/2)−2)/2.

(iv) If q is odd with q � 5, 4 | q − 1 and 8 � q − 1 (i.e., r = 2 or, equivalently, q ≡ 5
(mod 8)), then SIMZP(pm, q) = (3ε(w) + 7δ(w))/2 = (3ε((q − 1)/4) + 7δ((q −
1)/4))/2.

(v) If q is odd with q � 9 and 8 | q − 1 (i.e., r � 3 or, equivalently, q ≡ 1 (mod
8)), then SIMZP(pm, q) = ((2r+1 − 5)ε(w) + (4r − 1)δ(w)/2 = ((2r+1 − 5)ε((q −
1)/8)/(2r−2 − 2) + (4r − 1)δ((q − 1)/8)/(r − 2))/2.

(Notice that 2r+1 − 5 = 3 and 4r − 1 = 7 for r = 2 — cf. (iv).)

�����. (i) One checks easily that SIMZP(pm, 2) = 1 and SIMZP(pm, 3) = 2.

(ii) Suppose that q � 4 is even, and so r = 0 and w = q− 1 � 3. We shall use 1.2.
Let (A, B, a, b) ∈ Azppm be such that [A : B] = w. Then card(A) = lw, l =

card(B). If A is abelian, then l = 1 and this is a contradiction with a−1b �= 1 and
(a−1b)2 = 1. Hence A is non-abelian and (keeping the notation from the preceding
sections) we have either k = 1 and mn = lw or k = 2 and mn = 2lw.

First, assume k = 1. Then l is even (since 2 | m) and l = 2 by 3.5, i.e., mn = 2w,
w = (m/2) · n and both m/2 and n are odd. We must have n � 3, and so we have
just δ(w) − 1 possibilities for m/2 (use 3.2, 5.1, 5.2 and 5.5).
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Next, let k = 1. Then 4 | m, 2 | n, hence 4 | l and 2l | m, 2l | n by 3.5. From this,
2l | w, a contradiction.
(iii) Suppose that q � 5 is odd, so that r � 1. Again, let (A, B, a, b) ∈ Azppm be

such that [A : B] = q − 1 = 2rw. Put l = card(B), card(A) = l2rw.
(iii1) Let A be abelian. Then l = 1 and card(A) = 2rw. If A is not cyclic,

then r � 2, A ∼= A(2r−1w, 3) and, by 5.6, there is just 1 equivalence class for
(A, B, a, b). If A is cyclic and either A �= 〈a〉 or A �= 〈b〉, then r = 1 and the number
of the corresponding equivalence classes is 2 (see 5.7). Finally, if A is cyclic and
A = 〈a〉 = 〈b〉, then r � 2 and the number of the equivalence classes is 1 (see 5.8).
(iii2) Let l = 1 and let A be not abelian, card(A) = 2rw. If k = 1, then 2r−1w = n·

m/2, n � 3, and so the number of the corresponding equivalence classes is δ(2r−1w)−
1 = rδ(w) − 1 (use 5.1, 5.2, 5.5 and other results from the preceding sections).
(iii3) Let l � 3 be odd. Then card(A) = 2rlw, lw odd. If k = 1, then 2rlw = mn,

m = 2αl, n = βl, 2r−1w = αβl, l | w and 2r−1w | l = αβ (see 3.1). In this case,
the number of the equivalence classes is δ(2r−1w/l)ϕ(l)/2 = rδ(w/l)ϕ(l)/2 (see 3.1,
5.1, 5.2 and 5.5). Now, the sum over all l � 3 dividing w makes (r/2)

∑
l|w

δ(w/l)ϕ(l)−
(r/2)δ(w) = rε(w)/2 − rδ(w)/2.
If k = 2, then 2r+1lw = mn, m = 4αl, n = 2βl, r � 2, 2r−2w = αβl and

2r−2w/l = αβ (see 3.1 and 2.3). Now, we get δ(2r−2w/l)ϕ(l)/2 = (r−1)δ(w/l)ϕ(l)/2
equivalence classes and the sum is equal to ((r − 1)/2)∑

l|w
δϕ(l) = ((r − 1)/2)δ(w) =

(r − 1)ε(w)/2 − (r − 1)δ(w)/2 (5.1, 5.3 and 5.5).
(iii4) Let l = 2. Then card(A) = 2r+1w. If k = 1, then 2r+1w = mn, m = 2α, α

odd, n � 3, 2rw = αn, α | w, n = 2rw/α, n even (see 3.2). If r = 1, then we get
2δ(w)− 2 equivalence classes (3.2, 5.1, 5.2 and 5.5). If r � 2, we get 2δ(w) classes.
If k = 2, then 2r+2w = mn, m = 8α, n = 4β, r � 3, 2r−3w = αβ and we get

δ(2r−3w) = (r − 2)δ(w) classes (3.2, 5.1, 5.3 and 5.5).
(iii5) Let l � 4 be even. Then card(A) = 2rlw = 2r+s · uw, where l = 2su, s � 1,

u odd. By 3.5, k = 2, 8 | m, 4 | n, 2l = 2s+1u divides both m and n, m = 2s+1 · uα,
n = 2s+1·uβ, card(A) = mn/2. Consequently, 2r+s+1·uw = 22s+2·u2αβ, 2r−s−1·w =
uαβ, 1 � s � r−1, u | w, αβ = 2r−s−1 ·w/u. If s = 1, then α is even, α = 2α1, α1β =
2r−3 ·w/u, r � 3 and we get just δ(2r−3 ·w/u)ϕ(2u) = (r−2)δ(w/u)ϕ(u) equivalence
classes (see 3.5, 5.1, 5.3 and 5.5). If s � 2, then r � 3 and the number of the
equivalence classes is δ(2r−s−1·w/u)ϕ(2su) = (r−s)δ(w/u)2s−1ϕ(u). The sum is now
r−1∑
s=1
2s−1(r−s)ε(w)−ε(w) = (σ(r)ε(w)− (r+2)ε(w))/2 = (2r+1−2r−4)ε(w)/2. �

Combining 6.1 and 6.2, we get the following results:

6.3. Corollary. Let q � 3.
(i) If q ≡ 0, 2 (mod 4), then SIMZP(pm, q) = −1 + ∑

l|q−1
1.
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(ii) If q ≡ 3 (mod 4), then SIMZP(pm, q) = −1 + ∑
l|q−1

5/4 +
∑

l|q−1
l/6.

(iii) If q ≡ 1 (mod 4), then

SIMZP(pm, q) =
∑

l|q−1
2−

∑

l|q−1, l odd

5/2 +
∑

l|q−1, (q−1)/l odd

l−
∑

l|q−1, l odd

5l/2.

6.4. Remark.
(i) If q � 4 is such that q − 1 is a prime, then SIMZP(pm, q) = 1.
(ii) If q � 5 is such that q−1 is a power of 2, then SIMZP(pm, q) = q−4+2 log2(q−1).

6.5. Remark. For q, let SIMZP(md, q) denote the number of isomorphism classes
of simple zeropotent medial groupoids of order q. By [4, Prop. 7.5.10], SIMZP(md, 2) =
1 and SIMZP(md, q) = −1+ε(q−1) = −1+ ∑

l|q−1
l for q � 3. Now, we have the following

table:

q 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SIMZP(pm, q) 1 2 1 5 1 6 1 11 2 7 1 13 1 8 3

SIMZP(md, q) 1 2 3 6 5 11 7 14 12 17 11 25 13 23 23
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