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Abstract. We study ergodic properties of stochastic dissipative systems with additive
noise. We show that the system is uniformly exponentially ergodic provided the growth of
nonlinearity at infinity is faster than linear. The abstract result is applied to the stochastic
reaction diffusion equation in �d with d � 3.
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1. Introduction

In this paper we deal with a semilinear stochastic equation

(1.1)

{
dX =

(
AX + F (X)

)
dt+

√
Q dW,

X(0) = x ∈ E,

in a separable Banach space (E, ‖·‖) continuously embedded into a separable Hilbert
space H with the inner product 〈·, ·〉 and the norm |·|. We assume that F : E → E

is a nonlinear mapping, (Wt) is a standard cylindrical Wiener process in H defined
on a probability space (Ω,F , (Ft),�) and Q = Q∗ ∈ L(H) is nonnegative. Under

This work was partially supported by the Small ARC Grant Scheme and GAČR grant
No. 201/01/1197.
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the assumptions stated below equation (1.1) has a unique solution which defines a

Markov E-valued process with the transition semigroup

Ptϕ(x) = �xϕ
(
X(t)

)
,

and moreover, it has a unique invariant measure µ. In this paper we provide condi-
tions under which the convergence to an invariant measure is uniformly ergodic in

the following sense: There exist positive constants C and γ such that

(1.2) ‖P ∗t ν − µ‖var � Ce−γt‖ν − µ‖var � 2Ce−γt,

for any Borel probability measure ν on E, where ‖·‖var denotes the norm of total
variation of measures and P ∗t is the adjoint Markov semigroup (in some papers P ∗t ν

is also denoted by νPt). This result is known as the uniform exponential ergodicity

of the Markov process associated with the transition semigroup (Pt). Note that the
convergence in (1.2) is uniform with respect to all initial probability measures. This

property is rather unusual on a non-compact state space. For example, if F = 0
then (1.2) never holds. However, we assume below that the growth of F is faster

than linear at infinity (since ε > 0 in Hypothesis 1.3), and it turns out that (1.2) is
satisfied, that is ‖P ∗t ν − µ‖var is small for large values of t, even if ν = δa (say) with

the ‖a‖ arbitrarily large.
The strong (variational) convergence of P ∗t ν to the invariant measure for stochas-

tic evolution equations has been investigated in numerous papers (see [17]–[20], the
monograph [9] and the references therein or the survey paper [21]). The geometric

ergodicity (which corresponds to the convergence (1.2) where the constant C may de-
pend on the initial measure ν) was studied in [15] and [27]. If the diffusion process X

is reversible, then as a corollary of (1.2) we obtain

(1.3)
∫

E

|Ptϕ(x) − 〈ϕ, µ〉|2µ(dx) � e−γt

∫

E

|ϕ(x)|2µ(dx),

where 〈ϕ, µ〉 =
∫

ϕdµ. Existence of the spectral gap for dissipative system (1.1)

and for other infinite dimensional Markov processes has been recently an object of
intense study, see for example [1], [6], [7], [10], [29], [30], [25].

We will formulate now the main assumptions of the paper.

Hypothesis 1.1. There exists an operator A0 in H such that A0 is an infini-

tesimal generator of a C0-semigroup S =
(
S(t)

)
on H and A is a part of A0 in E,

that is

dom(A) = {x ∈ dom(A0) ∩ E : A0x ∈ E},
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and A = A0| dom(A). Moreover, we assume that A generates a compact C0-

semigroup in E (which we again denote by S) and

(1.4)
∫ T

0
t−α‖S(t)Q1/2‖2HS dt < ∞,

for certain α, T > 0, where ‖B‖HS stands for a Hilbert-Schmidt norm of an operator
B ∈ L(H).
It follows from Hypothesis 1.1 that the stochastic convolution integral

Z(t) =
∫ t

0
S(t− s)

√
QdW (s), t � 0,

is well defined and has an H-continuous version.
Our next assumption concerns regularity of the process Z.

Hypothesis 1.2. There exists E-valued, E-continuous version of the process Z,

such that

(1.5) sup
t�0

�‖Z(t)‖2 < ∞

Our next hypothesis is basically a condition on the nonlinear term F . By 〈·, ·〉E,E∗

we denote the duality between E and E∗ and by ∂‖·‖ the subdifferential of the
norm ‖·‖.

Hypothesis 1.3. The mapping F : E → E is Lipschitz continuous on bounded

sets and for each x ∈ dom(A) there exists x∗ ∈ ∂‖x‖ such that for some k1, k2, k3 > 0

〈Ax, x∗〉E,E∗ � 0,(1.6)

〈F (x + y), x∗〉E,E∗ � −k1‖x‖1+ε + k2‖y‖s + k3, y ∈ E.(1.7)

The solution to equation (1.1) is defined as an E-continuous adapted process X

satisfying the integral equation

(1.8) X(t) = S(t)x+
∫ t

0
S(t− s)F

(
X(s)

)
ds+ Z(t), t � 0.

Proposition 1.4. Assume that Hypotheses 1.1, 1.2 and 1.3 hold. Then for

each x ∈ E there exists a unique solution X to equation (1.1). Moreover, the
equation (1.1) defines an E-valued Markov process in the usual way.

�����. The existence and uniqueness of solutions to (1.1) follows immediately
from Theorem 7.10 in [8]. The Markov property may be shown as in [8]. �
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Let (Pt) be the Markov semigroup associated to equation (1.1), that is

(1.9) Ptϕ(x) = �xϕ
(
X(t)

)
, x ∈ E, t � 0, ϕ ∈ M(E),

where �x denotes the expectation corresponding to the initial condition X(0) = x

andM(E) denotes the space of bounded measurable functions on E. Set

P (t, x,Γ) = PtIΓ(x), x ∈ E, Γ ∈ B(E),

where B(E) stands for the Borel σ-algebra on E. Let P be the set of Borel probability
measures onE and let (P ∗t ) denote the adjoint Markov semigroup acting on measures,

i.e.,

P ∗t ν(Γ) =
∫

E

P (t, x,Γ)ν(dx), t � 0, Γ ∈ B(E), ν ∈ P .

Recall that an invariant measure µ ∈ P is defined as a stationary point of the
dynamical system (P ∗t ), that is P ∗t µ = µ for all t � 0. Further, recall that the
Markov semigroup (Pt) is called strongly Feller on E if Pt(M) ⊂ Cb(E) for each
t > 0 (or, alternatively, if the mapping x → P (t, x,Γ) is continuous on E for each

t > 0 and Γ ∈ B(E)), and (Pt) is called topologically irreducible if P (t, x, U) > 0 for
each t > 0, x ∈ E and every open set U ⊂ E. Our last assumption is

Hypothesis 1.5. The Markov semigroup (Pt) associated to the solution of
equation (1.1) is strongly Feller and topologically irreducible.

In Propositions 2.7–2.9 below, sufficient conditions for the strong Feller property
and topological irreducibility are expressed in terms of coefficients of equation (1.1).

Basically, they are reformulations of known results from [17], [18] and [20] (see also
the monographs [8] and [9]). It is well known that Hypothesis 1.5 and the existence

of an invariant measure µ ∈ P yield P ∗t ν → µ as t →∞ in the total variation norm
for every initial measure ν ∈ P (see e.g. [26]).

2. Uniform exponential ergodicity and some auxiliary results

Proposition 2.1. Assume Hypotheses 1.1, 1.2 and 1.3. Then there existsM > 0

such that

(2.1) sup
x∈E
sup
t�1

�x‖X(t)‖ � M.

�����. Let us note first that in virtue of the Fernique theorem Hypothesis 1.2

implies
sup
t�0

�‖Z(t)‖p < ∞,
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for all p > 0, since the process Z is Gaussian in E. For x ∈ E set Y x(t) = X(t)−Z(t),

where X is the solution to (1.1) starting from X(0) = x so that

(2.2) Y x(t) = S(t)x+
∫ t

0
F

(
Y x(s) + Z(s)

)
ds, t � 0.

We will prove first that for each x ∈ E and p � 1
2 ,

(2.3) sup
t�T

�‖Y x(t)‖2p < ∞

for arbitrary fixed T > 0. In the proof of (2.3) we follow similar proofs (see The-

orem 7.10 of [8] or Lemma 2.2 of [13]), so we we omit some details. For α > 0 we
define R(α) = α(αI −A)−1, and

(2.4) Y x
α (t) = R(α)S(t)x+

∫ t

0
R(α)S(t− s)F

(
Y x(s) + Z(s)

)
ds, t � T

(note that (1.6) implies contractivity of S, so R(α) is well defined for each α > 0).
It is well known that

(2.5) Y x
α → Y x,

dY x
α

dt
−AY x

α − F
(
Y x

α + Z(t)
)
= δx

α → 0,

uniformly in t � T as α →∞ (cf. p. 201 of [8]). Also,

d−

dt
‖Y x

α (t)‖2p = 2p‖Y x
α (t)‖2p−1

d−

dt
‖Y x

α (t)‖(2.6)

� 2p‖Y x
α (t)‖2p−1(k2‖Z(t)‖s + k3 + ‖δα(t)‖),

by Hypothesis 1.3. Therefore, for t � T ,

(2.7) ‖Y x
α (t)‖2p � ‖Y x

α (0)‖2p +
∫ t

0
2p‖Y x

α (u)‖2p−1(k2‖Z(u)‖s + k3 + ‖δx
α(u)‖) du.

Taking p = 1
2 and passing with α to infinity we obtain

(2.8) ‖Y x(t)‖ � ‖Y x(0)‖+
∫ t

0
(k2‖Z(u)‖s + k3) du,

and (2.3) follows for p = 1
2 . By (2.5) and (2.7) we can see also that for t � T the

norm ‖Y x
α (t)‖ is bounded uniformly in α. Hence, passing with α to infinity in (2.7)

we arrive at

(2.9) ‖Y x(t)‖2p � ‖Y x(0)‖2p +
∫ t

0
2p‖Y x(u)‖2p−1(k2‖Z(u)‖s + k3) du.
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Now it is easy to prove (2.3) for arbitrary p > 0 by induction (with the induc-

tion step 1
2 ) using 1.2 and the Hölder inequality on the right hand side of (2.9)

(cf. Lemma 2.2 of [13]). Using Hypothesis 1.3 we find that

(2.10)
d−

dt
‖Y x

α (t)‖ � −k1‖Y x
α (t)‖1+ε + k2‖Z(t)‖s + k3 + ‖δα(t)‖,

and proceeding as above we obtain

‖Y x(t)‖ � ‖Y x(τ)‖ − k1

∫ t

τ

‖Y x(u)‖1+ε du(2.11)

+ k2

∫ t

τ

‖Z(u)‖s du+ k3(t− τ),

for 0 � τ � t, which by the Jensen inequality yields

�‖Y x(t)‖ � �‖Y x(τ)‖ − k1

∫ t

τ

(�‖Y x(u)‖)1+ε du(2.12)

+ C(t− τ), t � τ � 0,

for a certain C > 0. Note that by (2.3) the random variables ‖Y x(t)‖, t � T , are

uniformly integrable, hence the function

ϕ(t) = �‖Y x(t)‖

is continuous. A standard comparison theorem yields

(2.13) ϕ(t) � y(t), t � 0,

where y solves the equation

(2.14)

{
ẏ = −k1y

1+ε + C, t � 0
y(0) = ‖x‖.

By (2.13) and (2.14) it follows that

(2.15) �‖Y x(t)‖ � max
((
2C
k1

)1+ε

,

(
2

k1ε
+ 2

)1/ε)
, t � 1, ∈ E,

which together with Hypothesis 1.2 completes the proof of (2.1). �
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Lemma 2.2. Assume Hypotheses 1.1, 1.2 and 1.3. Then there exist a compact
K ⊂ E and κ > 0 such that

(2.16) inf
x∈E

P (2, x, K) � κ.

�����. Step 1. We will show first that the set of probability laws

P(r) =
{
L

(
Y x(1) + Z(1)

)
: ‖x‖ � r

}
,

is relatively compact in E for each r > 0. Indeed, since the semigroup S is compact

in E, the set
K1 = {S(1)y : ‖y‖ � r}

is relatively compact in E. Moreover, the operator

L2(0, 1;E) 	 f → Tf =
∫ 1

0
S(1− u)f(u) du ∈ E,

where the integral is defined in the Bochner sense, is compact. Therefore, putting

B̃(r1) = {f ∈ L2(0, 1;E) : ‖f‖L2(0,1;E) � r1},

we find that T
(
B̃(r1)

)
is relatively compact in E. Let

Ω(r2) =

{
ω : sup

t�1
‖Z(t)‖ � r2

}
.

If ω ∈ Ω(r2) and ‖x‖ � r then invoking (2.8) we obtain

‖Y x(t)‖ � r +
∫ t

0
(k2rs

2 + k3) du = r + k2r
s
2 + k3, t � 1,

and since F is bounded on bounded sets of E,

sup
x∈B(r), ω∈Ω(r2)

sup
t�1

∥∥F
(
Y x(t) + Z(t)

)∥∥ � sup
y∈B(R)

‖F (y)‖ < ∞,

where R = r + r2 + k2r
s
2 + k3. Let

fx,ω(t) = F
(
Y x(t) + Z(t)

)
.

Then
U(r) = {fx,ω : x ∈ B(r), ω ∈ Ω(r2)} ⊂ B̃(R)
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and therefore the set K2 = TU(r) is relatively compact in E. For a given η ∈ (0, 1)
we choose r2 in such a way that

�
(
Ω(r2)

)
� 1− 1

2
η.

Let K3 ⊂ E be such a compact set that

�
(
Z(1) ∈ K3

)
� 1− 1

2
η,

and let Ω1 = {ω : Z(1) ∈ K3}. Finally, let K(r) = K1 + K2 + K3. Then, for

x ∈ B(r),

�
(
Y x(1) + Z(1) ∈ K1 +K2 +K3

)
� �

(
Ω(r2) ∩ Ω1

)
� 1− η.

Step 2. Conclusion. It follows from Step 1 that for each η ∈ (0, 1) and r > 0 there

exists a compact set K(r) ⊂ E such that

inf
‖y‖�r

P
(
1, y, K(r)

)
> 1− η.

Moreover, (2.1) yields the existence of R > 0 such that

P
(
1, x, B(R)

)
� 1− η, x ∈ E.

Then by the Chapman-Kolmogorov equality

P
(
2, x, K(r)

)
�

∫

B(R)
P

(
1, y, K(R)

)
P (1, x, dy) � (1− η)2,

which completes the proof of the lemma. �

Let us recall some basic concepts of Ergodic Theory of Markov chains. Let (Xi)
be an E-valued Markov chain with the transition kernel Pm(x,Γ), m ∈ �, x ∈ E,

Γ ∈ B(E), and let ϕ � 0 be a nontrivial measure on B(E). The chain (Xi) is called
ϕ-irreducible if for each Γ ∈ B(E) with ϕ(Γ) > 0 we have

(2.17)
∞∑

i=1

P i(x,Γ) > 0, x ∈ E.

Recall that a set Π ∈ B(E) is called a small set if there exist m ∈ � and a nontrivial

measure λ � 0 such that

(2.18) inf
x∈Π

Pm(x, ·) � λ(·).
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We will need the following result which is an immediate consequence of Lemma 2 in

[14], see also Theorem 5.2.2 in [22].

Lemma 2.3. Let (Xi)i∈� be ϕ-irreducible. Then there exists a small set Π ∈
B(E) such that ϕ(Π) > 0.

Theorem 2.4. Assume Hypotheses 1.1–1.3 and 1.5. Then there exists an in-
variant measure µ ∈ P such that for certain constants C > 0, and γ > 0 we have

(2.19) ‖P ∗t ν − µ‖var � Ce−γt‖ν − µ‖var � 2Ce−γt

for all t > 0 and ν ∈ P , where ‖·‖var stands for the norm of total variation of
measures.

�����. Consider the skeleton chain (Xn), where Xi = X(i) and for a fixed
x0 ∈ E set ϕ(·) = P (1, x0, ·). It is well known that by Hypothesis 1.5 the measures
{P (t, x, ·) : t > 0, x ∈ E} are equivalent hence the chain (Xn) is ϕ-irreducible and
by Lemma 2.3 there exists a set Π ∈ B(E) such that

P (1, x0,Π) > 0,(2.20)

and

inf
x∈Π

P (m, x,Γ) � λ(Γ), Γ ∈ B(E),(2.21)

for some m ∈ � and a nontrivial measure λ. By (2.16) we have

inf
x∈E

P (m+ 3, x,Γ) � inf
x∈E

∫

Π
P (3, x, dy)P (m, y,Γ)(2.22)

� λ(Γ) inf
x∈E

P (3, x,Π)

= λ(Γ) inf
x∈E

∫

E

P (1, y,Π)P (2, x, dy)

� λ(Γ) inf
x∈E

∫

K

P (1, y,Π)P (2, x, dy)

� κλ(Γ) inf
y∈K

P (1, y,Π).

By (2.20) and the equivalence of transition measures P (1, y,Π) > 0 for all y ∈ E.

Since the function y → P (1, y,Π) is continuous by the Strong Feller Property and K

is compact, we obtain

(2.23) inf
x∈E

P (m+ 3, x,Γ) � κδλ(Γ), Γ ∈ B(E),
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for a certain δ > 0. For T = m+ 3 it follows that

(2.24) P ∗t+T ν(Γ) =
∫

E

∫

E

P (T, y,Γ)P (t, x, dy)ν(dx) � µ̃(Γ), t � 0, ν ∈ P ,

where µ̃(·) = κδλ(·). Hence, µ̃ is a nontrivial lower bound measure and it follows
that there exists an invariant measure µ ∈ P (see e.g. [16]). To prove the exponential
convergence, take arbitrary δ1, δ2 ∈ P and set δ = δ1− δ2. We will denote by ζ+ and
ζ− the positive and negative part respectively of a signed measure ζ. Obviously, we

have

(2.25) η := δ+(E) = δ−(E) =
1
2
‖δ‖var,

and without loss of generality we can assume η > 0. Then

(2.26) ‖P ∗t δ‖var = η

∥∥∥∥
(

P ∗t

(
1
η
δ+

)
− µ̃

)
−

(
P ∗t

(
1
η
δ−

)
− µ̃

)∥∥∥∥
var

, t � 0.

Furthermore, by (2.24) the measures P ∗T

(
1
η δ+

)
− µ̃ and P ∗T

(
1
η δ−

)
− µ̃ are nonneg-

ative, thus

(2.27)

∥∥∥∥P ∗T

(
1
η
δ+

)
− µ̃

∥∥∥∥
var

= P ∗T

(
1
η
δ+

)
(E) − µ̃(E) = 1− µ̃(E),

and similarly

(2.28)

∥∥∥∥P ∗T

(
1
η
δ−

)
− µ̃

∥∥∥∥
var

= 1− µ̃(E),

which by (2.25) and (2.26) yields

(2.29) ‖P ∗T δ‖var � η
(
2− 2µ̃(E)

)
=

(
1− µ̃(E)

)
‖δ‖var.

For q = 1− µ̃(E) ∈ (0, 1) the semigroup property of P ∗t yields

(2.30) ‖P ∗nT δ‖var � qn‖δ‖var, n � 1,

which is the geometric ergodicity for the chain (XnT ). Set β = − log q > 0 and let [α]
stand for the integer part of the real number α. Then

‖P ∗t δ‖var �
∥∥P ∗t−[ t

T ]T
P ∗[ t

T ]T
δ
∥∥
var

�
∥∥P ∗[ t

T ]T
δ
∥∥
var

(2.31)

� e−β[ t
T ]‖δ‖var � e−

β
T te

β
T (t−[ t

T ]T )‖δ‖var � eβe−
β
T t‖δ‖var,

and (2.19) follows with γ = β
T and C = eβ . �
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As a corollary of Theorem 2.4 we obtain the following property.

Corollary 2.5. Assume Hypotheses 1.1–1.3 and 1.5 and let the Markov semi-
group (Pt) be symmetric in L2(E, µ). Then there exist constants C, γ > 0 such
that

‖Ptϕ− 〈ϕ, µ〉‖L2(E,µ) � e−γt‖ϕ− 〈ϕ, µ〉‖L2(E,µ)(2.32)

� e−γt‖ϕ‖L2(E,µ)

for all ϕ ∈ L2(E, µ) and t � 0.

�����. The proof follows easily from Theorem 2.4 and [3], Theorem 1.2 (see
also [24]). �

Remark 2.6. (i) In [10], Section 6.2, estimate (2.32) is obtained essentially for
a strongly dissipative symmetric system provided Q is boundedly invertible. Then,
in Section 6.3, an analogue of (2.32) is obtained for systems with the nonlinearity

F = F0 + F1 with F0 strongly dissipative and F1 bounded and Q still boundedly
invertible. However, in the latter case estimate (2.32) holds in L2(E, µ0), where µ0

is the unique invariant measure of equation (1.1) with F1 = 0. Hence, our result
and the result from [10] are not exactly comparable. Finally, let us note that in our

case (2.32) holds even if Q is not boundedly invertible, provided F = QDG, where
DG is the gradient of the mapping G : E → �.

(ii) Due to [3] the first inequality in (2.32) is equivalent (for symmetric (Pt))
to (2.19) which however must be satisfied only if ν 
 µ, dνdµ ∈ L2(E, µ), and with C

possibly dependent on ν. Thus the statement of Theorem 2.4 is essentially stronger
than the convergence (2.32).

For the reader’s convenience we will amend this section with three propositions
which are minor modifications of earlier results [20], [18] and [4], in which Hypothe-

sis 1.5 (strong Feller property and irreducibility) is verified.

Proposition 2.7. Assume Hypotheses 1.1, 1.2 and 1.3. Let

Qt =
∫ t

0
S(s)QS∗(s) ds,

and let

(2.33) S(t)(E) ⊂ Q
1/2
t (H), t > 0.

If there exists a mapping u ∈ C(E, H) which is bounded on bounded sets and
such that F = Q1/2u then the solution to (1.1) is strong Feller and irreducible
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i.e. Hypothesis 1.5 holds. In particular, if Q is boundedly invertible and Q1/2 ∈
L(E, H) then the above conditions hold with u = Q−1/2F .

�����. The Strong Feller Property follows from Theorem 3.1 of [20], where
applicability of the Girsanov Theorem to equation (1.1) is also proved. Since (2.33)

implies topological irreducibility for the linear equation (F = 0), the solution to (1.1)
is irreducible as well. �

Proposition 2.7 is applicable basically (though not exclusively, cf. [20]) to the

cases when Q is boundedly invertible. In the following two statements Q−1 may be
unbounded.

Proposition 2.8. Let Q > 0, assume Hypotheses 1.1, 1.2 and 1.3 and let one of

the following conditions be satisfied: either

(i) S(t)H ⊂ E for t > 0 and ‖S(t)‖H→E � q(t) with a certain q ∈ L2(0, T ), or

(ii) Q1/2 ∈ L(H, E) and Q1/2(H) = E.

Then the solution to equation (1.1) is topologically irreducible.

�����. See Propositions 2.7, 2.8 and 2.11 and Lemma 2.6 of [19]. �

Proposition 2.9. Assume Hypotheses 1.1, 1.2 and 1.3. Moreover, assume that
for each n ∈ � there exists a kn < ∞ such that

(2.34) |F (x) − F (y)| � kn|x− y|, ‖x‖+ ‖y‖ � n,

(that is F is Lipschitz continuous on bounded sets of E with respect to the norm

in H), S(t)(H) ⊂ Q
1/2
t (H) for t > 0, and

(2.35)
∫ T

0
‖Q−1/2t S(t)‖L(H) dt < ∞,

for a certain T > 0. Then the solution to (1.1) is strongly Feller.

�����. The proof is a simple combination of arguments from [18] and [4] so it

is only sketched. Let c > 0 be the norm of the embedding j : E → H . For m � 1,
and x ∈ E set

(2.36) Fm(x) =





F (x) if |x| � cm,

F
(cmx

|x|
)

if |x| > cm.

By (2.34) Fm is uniquely extendible to a bounded, globally Lipschitz function on H

for each m ∈ �. Therefore, the solution to the equation

(2.37)

{
dXm(t) =

(
AXm(t) + Fm(Xm(t))

)
dt+

√
QdW (t),

Xm(0) = x,
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is strongly Feller for each m ∈ � by [4]. Since the paths of solutions to (2.37) and

(1.1) coincide with high probability if m is large, it follows easily from the proof of
Proposition 2.1 (i) that

(2.38) lim
m→∞

sup
‖x‖�R

‖Pm(t, x, ·)− P (t, x, ·)‖var = 0,

for all t > 0, R > 0 where Pm denotes the transition kernel associated with (2.37).
Hence the solution to (1.1) is strongly Feller as well. �

Remark 2.11. (i) The existence of an invariant measure for (1.1) has been proved
independently in [11] (cf. also [12]) by a method based on a version of the Krylov-
Bogolyubov argument.

(ii) Note that in the proof of Theorem 2.4 we have proved that the whole space E

is a small set for the chain (Xn) (cf. (2.22), (2.23)). The exponential ergodicity of

the chain (Xn) follows also by this fact and Theorem 16.2.2 in [22]. However, in
the respective part of the proof of Theorem 2.4 we prove the exponential ergodicity

directly using a simple argument.
(iii) The method used in the paper can be also easily applied to some cases of sto-

chastic evolution equations with non-additive noise term; basically to the case when
the diffusion coefficient is bounded and has bounded inverse and the semigroup S

is exponentially stable. For example, if the nonlinear drift term F obeys Hypothe-
sis 1.3 and the conditions (C1)–(C5) from the paper [20] are satisfied the proof of

Theorem 2.4 can be repeated (with obvious modifications).

3. Example

Consider a stochastic parabolic equation

(3.1)





∂

∂t
u(t, ξ) = ∆u(t, ξ) + f(t, ξ) + η(t, ξ), (t, ξ) ∈ �+ ×D,

u(0, ξ) = x(ξ), ξ ∈ D,

u(t, ξ) = 0, (t, ξ) ∈ �+ × ∂D,

on a bounded domain D ⊂ �
d , d � 3, with a smooth boundary ∂D, where f : � → �

is locally Lipschitz and η symbolically denotes a noise white in time and, in general,

dependent on the space variable ξ. The system (3.1) is rewritten in a usual manner
as an equation of the form (1.1) where we put H = L2(D), E = C0(D), A0 = ∆

with dom(A0) = H10 (D) ∩ H2(D), and F : E → E is defined as the superposition
operator, F (y)(ξ) := f(y(ξ)), where y ∈ E, ξ ∈ D. The noise η is modelled in the
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equation (1.1) by the Wiener process Wt and the covariance operator Q ∈ L(H),
formally we have η = Q1/2dW/dt. It is well known that the operator A0 generates a
strongly continuous semigroup on H , its part A on the space E generates a strongly
continuous semigroup on E as required in Hypothesis 1.1. Assume that there exist

positive constants c1, c2, c3, s and ε such that

(3.2) f(α+ β) sgnα � −c1|α|1+ε + c2|β|s + c3, α, β ∈ �,

holds.

Note that F does not map E into E. To address this difficulty we proceed as

follows. Let f0(ξ) = f(ξ)− f(0) and let F0(x)(ξ) = f0
(
x(ξ)

)
. Then f0 satisfies (3.2)

and the mapping F0 : E → E is well defined. Equation (1.1) can be rewritten in the

form

X(t) = S(t)x+
∫ t

0
S(t− s)F0(X(s)) ds+

∫ t

0
S(t− s)m ds

+
∫ t

0
S(t− s)

√
Q dW (s),(3.3)

where x ∈ E and m(ξ) = f(0). Then

∫ t

0
S(t− s)m ds ∈ dom(A) ⊂ E,

and putting

Zm(t) =
∫ t

0
S(t− s)m ds+

∫ t

0
S(t− s)

√
Q dW (s),

and Y (t) = X(t)− Zm(t) we can rewrite (3.3) in the form

Y (t) = S(t)x+
∫ t

0
S(t− s)F0

(
Y (s) + Zm(s)

)
ds.

Now it is clear, that the proof of existence and uniqueness of solutions provided in
the proof of Theorem 7.10 in [8] applies in the present case. Moreover,

∫ ∞

0
‖S(t)m‖ dt < ∞,

and therefore the proof of Proposition 2.1 and, consequently, all remaining statements
in Section 2 remain valid as well.
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Note that (3.2) is satisfied when f is a polynomial of odd degree larger than one

with a negative leading coefficient. It is well known ([28], Theorem 2.2) that the
subdifferential of the norm ∂‖x‖ at a point x ∈ E contains the Dirac measures δξ1 or
−δξ2 , if ‖x‖ = x(ξ1) or ‖x‖ = −x(ξ2), respectively, hence it is easily seen that (3.2)

implies (1.7) and Hypothesis 1.3 is verified. The remaining assumptions depend on
the covariance operator Q. Assume at first that Q is boundedly invertible, that is,

Q is an injection and Q−1 ∈ L(H). Then we have to verify (1.4) with Q = I. By the
well known estimates on the Green functions [2] it follows that

‖S(t)‖HS � Ct−d/4, t ∈ (0, 1],

hence (1.4) is satisfied if the dimension d is one. In fact, for d > 1 and Q boundedly
invertible even the Ornstein-Uhlenbeck process Z does not take values in H , so

these cases cannot be considered in the present framework. If d = 1, however, it is
easy to see that all remaining conditions are satisfied. Proceeding as in Theorem 4.1

in [23] we easily see that Z has an E-valued modification. By the Sobolev embedding
theorem, for each δ > 1

4 there exists a constant cδ < ∞ such that

‖x‖ � cδ|(−A)δx|, x ∈ dom((−A0)δ).

Take δ ∈
(
1
4 ,
1
2 )

)
and p > 2; since S is exponentially stable we obtain for some

constants c1, c2, c3 and ω > 0

sup
t�0

�

∥∥∥∥
∫ t

0
S(t− r)Q1/2 dWr

∥∥∥∥
p

� c1 sup
t�0

�

∣∣∣∣(−A0)δ
∫ t

0
S(t− r)Q1/2 dW (r)

∣∣∣∣
p

� c2 sup
t�0

(∫ t

0
‖(−A0)δS(r)‖2HS dr

)p/2

� c3

(∫ ∞

0
r−2δe−2ωr dr

)p/2

< ∞.

The same estimates hold for the process Zm and Hypothesis 1.2 is verified. Hy-

pothesis 1.5 (strong Feller property and topological irreducibility) is satisfied in the
present case (see e.g. [20]) and we can conclude that in the one-dimensional case if

Q is boundedly invertible (in particular, if Q = I which corresponds to the case of
space-time white noise) and the growth condition (3.2) is satisfied Theorem 2.4 is

applicable.

Now we will examine some cases when the covariance Q may be degenerate. In

order to obtain easily verifiable conditions we only consider the so-called diagonal
case. We assume that there exists an orthonormal basis (en) in H = L2(D) such
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that en ∈ E and for a certain C < ∞

sup
ξ∈D

|en(ξ)| < C, sup
ξ∈D

|∇en(ξ)| < C
√

αn, n � 1,

and such that (en), (αn) are the respective eigenvectors and eigenvalues of the op-
erator −A0, αn > ω > 0. We assume that the covariance operator Q has the same

eigenvectors en with the respective eigenvalues 0 < λn � λ0 < ∞, that is,

Qen = λnen, n � 1.

We again impose condition (3.2) on f . As in the previous case, we just have to
check (1.4) and Hypotheses 1.2 and 1.5. For γ ∈ (0, 1) we have

‖S(t)Q1/2‖2HS =
∞∑

n=1

λne−2αnt � sup
n�1

α1−γ
n e−2αnt

∞∑

n=1

λn

α1−γ
n

� const
t1−γ

∞∑

n=1

λn

α1−γ
n

thus (1.4) is satisfied with 0 < δ < γ provided

(3.4)
∞∑

n=1

λn

α1−γ
n

< ∞

holds for some γ > 0. Hypothesis 1.2 has been verified under condition (3.4) in
Theorems 5.2.9 and 11.3.1 of [9].

The strong Feller property can be verified by Proposition 2.9. The assump-
tion (2.34) is obviously satisfied by the local Lipschitz continuity of f . The con-

dition (2.35) is equivalent to

(3.5) sup
n∈N

(
αn

λn
(1 − e−2αnt)−1

)1/2
∈ L1(0, T ).

It remains to verify that the solution to (3.1) is topologically irreducible. To this

end, we will use Proposition 2.11 of [18] according to which, in the present case, it
suffices to verify that im(K) is dense in C0 := {y ∈ C([0, T ], E), y(0) = 0} where

K : L2(0, T, H)→ C0, Ku(t) :=
∫ t

0
S(t− r)Q1/2u(r) dr, t ∈ [0, T ].

The well known estimates on the Green kernel for a parabolic problem [2] yield

(3.6) ‖S(t)‖L(H,E) � const
td/4

, t ∈ [0, T ],
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hence ‖S(·)‖L(H,E) is integrable for d � 3 and the density follows from [18], Propo-
sition 2.8 and Remark 2.9.
We can summarise that Theorem 1.6 is applicable to the system (3.1) under con-

ditions (3.2), (3.4), (3.5) provided d � 3. In particular, if there exist a � b � 0 and
constants k1, k2 such that

k1α
−a
n � λn � k2α

−b
n , n � 1,

or, equivalently, if

K1n
−2a/d � λn � K2n

−2b/d, n � 1,

then it is easy to check that the condition (3.4) is satisfied if b > d
2 − 1 while (3.5)

holds true if a < 1. So in this case our results are applicable if

(3.7)
d

2
− 1 < b � a < 1.
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