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Abstract. A model of vortex filaments based on stochastic processes is presented. In
contrast to previous models based on semimartingales, here processes with fractal properties
between 1/2 and 1 are used, which include fractional Brownian motion and similar non-
Gaussian examples. Stochastic integration for these processes is employed to give a meaning
to the kinetic energy.
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1. Introduction

Fluid dynamics is an active area of research, still presenting outstanding open
problems. A main problem is the lack of a mathematical description of the three-

dimensional structures that are observed in real fluids or numerical computations.
This problem is of interest both in mathematics, physics, engineering and numerics of

fluids. For instance, the possible blow-up of solutions (a basic open problem) seems
to be associated with the evolution of vortical structures, their fast stretching and

folding. As another example in a different direction, there is some hope to understand
the statistical properties of turbulent flows by means of statistical mechanics of vortex

structures. See [7], [11].
In many simulations and experiments on turbulent flows the vorticity field appears

strongly concentrated along thin structures, like filaments; see for instance [22], [20]
and the reviews in [7], [11]. These structures appear to be very irregular (see also
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[3]), and thus it is natural to attempt a description based on irregular curves, which

typically could be trajectories of stochastic processes. A model based on stochastic
processes is also natural in view of statistical mechanics of these structures.
Following the ideas, originated by Onsager [19], of the two-dimensional theory of

point vortices, A. Chorin introduced vortex filaments described by paths of the self
avoiding walk, see [7]. Similarly to the 2-D theory of Onsager, Chorin introduces

Gibbs measures of the form

(1) µβ(dω) =
1

Zβ
e−βH(ω)P (dω)

on a measurable space (Ω,F) of vortex filaments to describe the long-time statistics
of turbulent flows. HereH is an approximate expression for the energy of a configura-

tion ω, (Ω,F , P ) corresponds to the self-avoiding walk, and Zβ =
∫
Ω e

−βH(ω)P (dω).
The parameter β has usually the meaning of inverse temperature, but in the statisti-

cal theories of [19] and [7] it is not the temperature of the fluid, and it may take also
negative values. From these phenomenological ensambles it was possible to deduce

a number of interesting statistical properties, and even a heuristic confirmation of
Kolmogorov (K41) theory [13].

It is natural to try to extend some ideas of Chorin to models based on continuous-
time stochastic processes, like Brownian motion, instead of discrete structures on a

lattice. Attempts in this direction can be found in the book of Gallavotti [12], Ch. I,
Sect. 11, in the paper of P. L. Lions and A. Majda [15], and in the works [9] and [10].
The approach of [15] is limited by a strong idealization (nearly parallel filaments,

which partially reduce the problem to an elaborate version of the 2-D case), but the
final results of the mean field and the many characterizations in terms of variational

problems are outstanding. The approach of Gallavotti, in principle, corresponds to
the full problem without idealizations, but it is mainly a heuristic suggestion of a

direction of research. The papers [9] and [10] treat 3-D Brownian and more general
semimartingale vortex filaments in a rigorous way, with two different approaches.

Some numerical investigations on 3-D flows indicate that vortex filaments have a
sort of fractal structure (not yet well understood), with fractal dimensions that are

not necessarily those of Brownian curves. For these reasons we try to introduce in
the present work a generalization of the vortex structures of [9], [10], based now on

processes which are not semimartingales and with paths having fractal characteristics
between 1/2 and 1. The case between 0 and 1/2 is interesting as well, but the

approach we are going to present is not able to cover it.
The standard example that fulfils the assumptions of this work is the fractional

Brownian motion (BH
t ) with Hurst parameter H ∈ (12 , 1). However, we only as-

sume a condition on the p-variation of the process, so non-Gaussian examples are
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admitted. A relevant non-Gaussian example is for instance a process similar to the

3-D fractional Brownian motion but constrained to live in a half space, modelling
filaments in a fluid near a solid boundary (vortex structures are often produced near
solid boundaries).

The main results of this paper are simply a rigorous definition of such vortex
filaments and the proof that the corresponding kinetic energy H is finite. The corre-

sponding Gibbs measures µβ are then well defined for positive inverse temperatures β,
since H is non-negative and finite, with probability one. In contrast to [10], we are

still not able to analyse the case of negative β, requiring an exponential integrability
that we do not know how to handle without semimartingale properties.

The definition and analysis of the energy H requires stochastic integration with

respect to the processes introduced here. We work in the framework of processes
with a certain condition on the p-variation and adapt an approach introduced by

Bertoin [4], a stochastic analog of a theory of Young [24]. It seems that similar
results on the energy H can be obtained by means of the approach of [25]. In a

Gaussian framework, in particular in the case of the fractional Brownian motion
(BH

t ), stochastic integration can be performed also by means of Malliavin calculus,

see [1], [2], and it has been recently applied with success to vortex filaments [18].
We emphasize that here we treat very general processes, in particular non-Gaussian

ones, see Section 5.

Remark 1. A good statistical description of vorticity filaments and their Gibbs
measures should be the starting point of a statistical approach to 3-D fluids along
the lines of [7], [15]. A mean field theory as in [15] has been developed in [5]. It

would be interesting to study the relations with the theory of processes in a random
environment, representing vortex filaments in a surrounding mean vorticity field of

lower intensity. Open interesting problems for the models introduced here or in [9]
and [10] are the computation of important moments as the structure function or

the energy spectrum, the existence of a Hamiltonian dynamic and its relations with
Euler equation (see for instance [16] in two dimensions), the existence of Glauber

type dynamics and their use for simulations, some form of the invariance principle
in connection with the theory of [7], questions about the super or sub diffusive

behaviour of the processes defined by these Gibbs measures, and last but not least
the attempt to go back to a single filament without cross-section by renormalization.
It is also very important to look for more realistic models, not based on a fixed fractal

cross-section. All these problems contain nontrivial points and are open at present.
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2. Vortex filaments and their energy

In this section we present only non-rigorous arguments, with the aim to explain
at a physical level the meaning of the model of vortex filaments introduced here and
the associated formula for the energy. Rigorous definitions and results are postponed

to the subsequent sections. For a more extensive discussion of the initial part of this
section see [7].

An incompressible homogeneous (constant density) fluid is described by a velocity
field u : �3 −→ �3 and a pressure field p : �3 −→ �. The vorticity field ξ(x) =

curlu(x) captures basic features not easily visible at the level of (u, p), and can be
used as an alternative variable. If we introduce the vector potential A(x) satisfying

∆A(x) = −ξ(x) and use the property curl curlA = −∆A that holds true when
A is divergence free, then under suitable assumptions that imply uniqueness we have

that u(x) = curlA(x) is a velocity field, since its curl is ξ(x). Therefore u(x) can be
recovered from ξ(x) by means of the Biot-Savard law u = curl∆−1ξ.

The kinetic energy H of the fluid is 12
∫
�3
|u(x)|2 dx. It can be rewritten as

H =
1
8�

∫

�3

∫

�3

ξ(x) · ξ(y)
|x− y| dxdy,

using the formula A(x) = 1/(4�)
∫
�3

ξ(y)/|x− y|dy. When the vorticity is ideally
concentrated on a curve γ(σ), σ ∈ [0, 1], we formally use for the vorticity the model

ξ(x) = Γ
∫ 1

0
δ(x− γ(t))γ̇(t) dt

for some constant Γ with the meaning of circulation. Then for the energy we formally
obtain the expression

(2) H =
Γ2

8�

∫ 1

0

∫ 1

0

dγ(σ) · dγ(σ′)
|γ(σ)− γ(σ′)|

where we have written dγ(t) in place of γ̇(t) dt to anticipate the expression for the

case of irregular curves. (Notice that the symbol t here and below is not the time
of evolution of the fluid but the parameter of the curve.) As a side remark, we

notice that there is a second plausible expression for the energy of a curve, just
slightly different, that takes care of the correction due to the fact that a vorticity

field concentrated on a open curve γ(σ), σ ∈ [0, 1], cannot be divergence free, so the
incompressibility condition required in the previous rewritings does not hold true.

For this second expression see [10]. Since this difference does not play a significant
role, we mantain the expression (2) which looks easier.
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This expression for the kinetic energy diverges, since the singularity in the de-

nominator is not integrable along the diagonal of [0, 1] × [0, 1], and the numerator
is not helpful in the case of smooth curves. Non regular curves can be better, in
principle. The term |γ(t) − γ(s)| may be infinitesimal of order less than one, so
1/|γ(t)− γ(s)| is less divergent than in the smooth case, and very fast changes in
direction may produce further cancellation in the term γ̇(t) · γ̇(s). Unfortunately
this näıve hope has not been confirmed by rigorous computations until now. The
problem partially comes from the very frequent self-intersections and for the major

part it seems to come from the integrability requirements on 1/|γ(t)− γ(s)| imposed
by the stochastic or generalized integrals appearing in H . So, at present, we have to

leave the simple idea of a vortex filament supported by a curve, both if we have in
mind smooth or irregular curves.

Following a personal suggestion offered by A. Chorin, a way to introduce a rigorous

non-divergent model which reflects properties observed in fluids, is to re-introduce a
finite cross-section of the filaments. Physical vortex structures have a cross-section.

Since it is small compared to the length of the filament, one is tempted to eliminate
the cross-section, but we have seen that this produces divergences. In the next

subsection we will see how one can introduce a cross-section in the model.

Remark 2. A related problem is to give a rigorous meaning to the velocity field
uγ(x) induced by the vorticity concentrated on the curve γ:

uγ(x) :=
Γ
4�

∫ 1

0

(γ(σ)− x) × dγ(σ)
|γ(σ)− x|3 .

This is the expression used in [12]. It has a meaning when x is outside the curve,
but the behaviour as x approaches the curve is not understood and is responible for

the motion of the curve itself (the filament moves under the action of the velocity
field induced by itself).

Remark 3. It is clear that renormalization could be a way to avoid a cross
section and give a meaning to some objects, like the Gibbs measure. In spite of a

lot of effort, renormalization seems to be very difficult. In the literature one can find
the renormalization of 3-D polymers, see for instance [6], [23], that looks similar to

some extent, but here there are new essential difficulties.

2.1. Cross-section.

In order to construct vorticity fields with finite energy but still with an appealing
fractal structure and suitable for a probabilistic treatment, we consider a distribu-
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tional vorticity field formally expressed

(3) ξ(x) = Γ
∫

�3

(∫ 1

0
δ(x − y −Xt) ◦ dXt

)
�(dy)

where � is a probability measure and (Xt)t∈[0,1] is a stochastic process in �3 .
The nature of the process will be described in the next rigorous sections. We use

Stratonovich type of integrals since they are a more natural generalization of the
case of smooth curves, and for a reason related to incompressibility that is described

in [9].

We shall try to impose the minimum of regularity on the mollifying measure �.

Indeed, consider the case when it is supported by a set A ⊂ �3 , so that geometrically
the vorticity field is concentrated over the set

CA = {x+Xt; x ∈ A, t ∈ [0, 1]}.

In this case the set A has, roughly speaking, the meaning of a cross-section. Complex
numerical simulations (see for instance [3]) show that the cross section should be

fractal, and not just like a disc. Therefore, to have a model close to the best available
numerical understanding of vortex structures, the measure � should be supported by

a fractal set. In the case when (Xt) is the Brownian motion, this can be done, see
[9], [10]. Here, since we have to use a less powerful stochastic integration theory, we

have a less satisfactory result, but still we can consider fractal cross-sections.

The kinetic energy takes now the form

(4) H =
Γ2

8�

∫

�3

∫

�3

(∫ 1

0

∫ 1

0

1
|x+Xt − (y +Xs)|

◦ dXs ◦ dXt

)
�(dx)�(dy).

If we introduce the interaction energy between the curves (x + Xt)t∈[0,1] and
(y +Xt)t∈[0,1], with x �= y, formally defined by

(5) Hxy =
Γ2

8�

∫ 1

0

∫ 1

0

1
|x+Xt − (y +Xs)|

◦ dXs ◦ dXt

then we have

(6) H =
∫

�3

∫

�3

Hxy�(dx)�(dy).

It is proved in [9] that, in the case when (Xt) is the Brownian motion, in order to
obtain a well defined theory it is necessary and sufficient to assume for the measure �
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the condition (called the finite energy condition in potential theory, see [14])

(7)
∫

�3

∫

�3

1
|x− y|�(dx)�(dy) < ∞.

There exists a probability measure � supported by A with finite energy if and only
if the capacity of A is strictly positive. In particular, by Theorem 3.13 of [14], every
compact set with Hausdorff dimension d > 1 has positive capacity, and therefore
supports a probability measure � satisfying (7). In the present paper we have to

impose the stronger condition (11), which however still admits the case of a fractal
support.

2.2. Spectral representation.

By spectral analysis we can rewrite (4) in a different form that will be easier to
handle. Let us set

�̂(k) =
∫

�3

eik·x�(dx).

Then the Fourier transform of the vorticity field ξ(x) given by (3) is

ξ̂(k) = Γ�̂(k)
∫ 1

0
eik·Xt ◦ dXt

and the energy can be written as

(8) H =
Γ2

8�

∫

�3

dk
|�̂(k)|2
|k|2

∥∥∥∥
∫ 1

0
eik·Xt ◦ dXt

∥∥∥∥
2

�3

.

In the next subsections we will use this expression.

Let us remark that the spectral analysis offers a formula for future investigations

of the energy spectrum E(k) (for the definition see [13], [7], [11], for instance)

E(k) =
Γ2

8�

∫

|k|=k

dk
|�̂(k)|2
|k|2 Eβ

∥∥∥∥
∫ 1

0
eik·Xt ◦ dXt

∥∥∥∥
2

�3

where we have denoted by k the 3-D vector previously written as k, and where Eβ

denotes the expectation with respect to the Gibbs measure µβ .
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3. Some results on integration

In this section we present a variant of a theory developed by J. Bertoin on stochas-

tic integration with respect to processes of bounded α-variation. We will define a
stochastic integral with respect to a particular class of processes. For our aims, this

variant has the advantage of being quite simple and immediately applicable to the
case of a fractional Brownian motion or other processes (see the examples below). In

a work in preparation [17], the theory described here is developed in major details.
We consider a closed interval of the real line �, I = [0, T ], and a filtered probability

space (Ω,F , (Ft)t∈I , P ), where (Ft)t∈I is a standard filtration. Let X = (Xt)t∈I be
an adapted stochastic process defined on such space, with values in (�,B(�)) (or,
more generally, in (� ,B(� )).
For a positive real number α and a subdivision τ of the interval I,

τ = {t0, . . . , tn : 0 = t0 < . . . < tn = T },

we put

Qα
τ (X) = |X0|α +

n−1∑

i=0

|Xti+1 −Xti |α.

Definition 4. An adapted process X is weakly of bounded α-variation on I if

sup
τ

� [Qα
τ (X)]

1/α < +∞.

Remark 5. We recall that, according to Bertoin’s definition, an adapted
processX , is of bounded α-variation on I if it is continuous, and supτ̃ � [Q

α
τ̃ (X)]

1/α <

+∞, where τ̃ denotes a stopping subdivision of I, that is a collection T0, . . . , Tn of

(Ft)-stopping times such that, for every ω, {T0(ω), . . . , Tn(ω)} is a subdivision of I.

We denote by �α,d the set of processes which are weakly of bounded α-variation

on I. �α,d is a vector space and supτ � [Q
α
τ (X)]

1/α defines a norm on this space
which we denote by ‖ ‖�α,d . It can be proved that (�α,d , ‖ ‖�α,d) is a Banach space

for every α � 1, see [17].

Example 6. If X is a square-integrable (Ft)-martingale with X0 ≡ 0, then
X ∈ �2,d . Indeed, if τ = {t0, . . . , tn} is a subdivision of I, we have � [Xti+1Xti ] =
� [� [Xti+1Xti |Fti ] = � [Xti ]

2 for i = 0, . . . , n and so

�

[n−1∑

i=0

(Xti+1 −Xti)
2

]
= �

[n−1∑

i=0

(X2ti+1
−X2ti

)

]
= � [X2T ].
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We fix 1 < α < 2 and show that, with respect to some processes of �α,d , there

exists a simple way of defining a stochastic integral as a limit of Riemann sums.
Suppose that Y is a continuous adapted process satisfying the following condition:

For every p � 1 there exists a constant cp such that(H)

� [|Yt − Ys|p] � cp|t− s|p/α ∀s, t ∈ I.

A simple computation shows that Y ∈ �γ,d for every γ � α.

Remark 7. Actually, we need the above condition only for some values of p,

depending on the result we want to obtain. This values are possibly high, therefore
we take the hypothesis (H) in order to simplify the exposition. It will be immedi-

ate for the reader, if necessary for some application, to set the weakest hypothesis
on p.

Remark 8. The hypothesis (H) on the integrator process is not so far from the
one made by Bertoin: indeed, it can be proved [17] that for every process of bounded
α-variation there exists a “change of time scale” yielding property (H).

Example 9. Let Y = (Yt)t∈�+ be a self-similar process with parameter H (that
is, for every real positive number a, the processes (1/aH Yat)t∈�+ and Y have the

same law). Suppose that Y has stationary increments and YT ∈ Lp(P ) for every
p � 1. Then for every s, t ∈ I and p � 1 we have � [|Yt − Ys|p] = � [|Yt−s − Y0|p] =
� [|YT |p](1/T )|t− s|Hp, and so Y satisfies the condition (H) with α = 1/H .

For the sake of simplicity we will suppose that I = [0, 1]. For two processes
X = (Xt)t∈I and Y = (Yt)t∈I we consider, for n ∈ �, the random variable

Jn =
2n−1∑

k=0

Xk/2n

(
Y(k+1)/2n − Yk/2n

)
.

Theorem 10. If X ∈ �β,d and Y satisfies the condition (H) with β � 2 and
1/α+ 1/β > 1, then the sequence (Jn)n∈� converges in L1(P ) to a random variable

J10 which we denote by ∫ 1

0
Xt dYt.

Moreover, we have the inequality

�

[∣∣∣∣
∫ 1

0
Xs dYs

∣∣∣∣
]

� ‖X‖�β,d c
1/β′

β′ (1 + C)

where β′ denotes the conjugate exponent of β, cβ′ is the constant of the hypothesis

(H) and C is a constant depending only on α and β.
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�����. For every n we have

Jn − Jn−1

=
2n−1∑

k=0

Xk/2n

(
Y(k+1)/2n − Yk/2n

)
−
2n−1−1∑

h=0

Xh/2n−1
(
Y(h+1)/2n−1 − Yh/2n−1

)

=
2n−1−1∑

h=0

X2h/2n

(
Y(2h+1)/2n − Y2h/2n

)
+
2n−1−1∑

h=0

X(2h+1)/2n

(
Y(2h+2)/2n − Y(2h+1)/2n

)

−
2n−1−1∑

h=0

X2h/2n

(
Y(2h+2)/2n − Y2h/2n

)

=
2n−1−1∑

h=0

X2h/2nY(2h+1)/2n +
2n−1−1∑

h=0

X(2h+1)/2n

(
Y(2h+2)/2n − Y(2h+1)/2n

)

−
2n−1−1∑

h=0

X2h/2nY(2h+2)/2n

=
2n−1−1∑

h=0

(
X(2h+1)/2n −X2h/2n

)(
Y(2h+2)/2n − Y(2h+1)/2n

)
.

Let us use the following notation: ∆2hX = X(2h+1)/2n − X2h/2n and ∆2h+1Y =

Y(2h+2)/2n − Y(2h+1)/2n . So we can write

�
[
|Jn − Jn−1|

]
= �

[∣∣∣∣
2n−1−1∑

h=0

∆2hX∆2h+1Y

∣∣∣∣
]

�
2n−1−1∑

h=0

�
[
|∆2hX ||∆2h+1Y |

]

and from Hölder’s inequality

�
2n−1−1∑

h=0

�
[
|∆2hX |β

]1/β
�
[
|∆2h+1Y |β

′]1/β′

�
2n−1−1∑

h=0

�
[
|∆2hX |β

]1/β
c
1/β′

β′ 2
−n/α.

Then, from Young’s inequality we obtain

�
[
|Jn − Jn−1|

]
�

(2n−1−1∑

h=0

� [|∆2hX |β]
)1/β

c
1/β′

β′ 2
−n(1/α−1/β)

� ‖X‖�β,d c
1/β′

β′ 2
−n(1/α−1/β).
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From the assumptions on α and β it follows that 1/α − 1/β′ > 0, so the sum
+∞∑
1
(Jn − Jn−1) is absolutely convergent in L1(P ). Hence there exists J10 ∈ L1(P )

such that ∥∥∥∥J0 +
n∑

k=1

(Jk − Jk−1)− J10

∥∥∥∥
L1
= ‖Jn − J10‖L1 −−−−→

n→+∞
0.

Finally, if we put C =
+∞∑
n=1
2−n(1/α−1/β′), since �

[
|J10 |

]
= �

[
|J0 +

+∞∑
k=1
(Jk − Jk−1)|

]
,

we obtain

�
[
|J10 |

]
� �

[
|J0|

]
+
+∞∑

k=1

�
[
|Jk − Jk−1|

]
� ‖X‖�β,d c

1/β′

β′ (1 + C).

�

Remark 11. The same arguments can be applied to any interval I = [0, T ]. In
particular, from the above theorem it follows that, for every t ∈ [0, T ],

�
[
|J t
0|

]
� ‖X‖�β,d c

1/β′

β′ (t+ Ct1/β′).

Indeed, for t ∈ [0, T ], the Riemann sums (Jn)n are of the type

Jn =
�2nt�−1∑

k=0

Xk/2n

(
Y(k+1)/2n − Yk/2n

)
+X�2nt�(Yt − Y�2nt�)

and the random variable J0 satisfies the inequality

�
[
|J0|

]
�

�t�−1∑

k=0

�
[
|Xk| |Yk+1 − Yk|

]
+ �

[
|X�t�|, |Yt − Y�t�|

]

�
�t�−1∑

k=0

(
�
[
|Xk|β

]1/β
�
[
|Yk+1 − Yk|β

′]1/β′)

+ �
[
|X�t�|β

]1/β
�
[
|Yt − Y�t�|β

′]1/β′

� t‖X‖�β,d c
1/β′

β′ .

We can find similar results for the moments of order greater than one of the integral:

Proposition 12. Suppose that β > 2 and X ∈ �β,d , and let Y be a process which

verifies the hypothesis (H). If we put γ = 2β/(β − 2), then the sequence (Jn)n∈�
converges in L2(P ) to J10 and we have

∥∥∥∥
∫ 1

0
Xt dYt

∥∥∥∥
L2

� ‖X‖�β,d c1/γ
γ (1 + C).
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�����. The proof is similar to the previous one. For every n we have

‖Jn − Jn−1
∥∥

L2
=

∥∥∥∥
2n−1−1∑

k=0

∆2kX∆2k+1Y

∥∥∥∥
L2

�
2n−1−1∑

k=0

‖∆2kX∆2k+1Y ‖L2

=
2n−1−1∑

k=0

�
[
|∆2kX |2|∆2k+1Y |2

]1/2
.

The condition β > 2 implies |∆2kX |2 ∈ Lβ/2(P ) and thus, since β/(β − 2) is the
conjugate exponent of β/2, for the above expression we have

�
2n−1−1∑

k=0

�
[
|∆2kX |β

]1/β
�

[
|∆2k+1Y |2β/(β−2)

](β−2)/2β

×
2n−1−1∑

k=0

�
[
|∆2kX |β

]1/β
c1/γ
γ

1
2n/α

�
(2n−1−1∑

k=0

�
[
|∆2kX |β

])1/β

c1/γ
γ

1
2n/α

2n/β′

� ‖X‖�β,dc1/γ
γ 2−n(1/α−1/β′).

Thus the sum
+∞∑
n=0
(Jn − Jn−1) is absolutely convergent in L2(P ), therefore (Jn)n∈�

converges in L2(P ) to a random variable which clearly is equal to
∫ 1
0 Xt dYt P -a.s.

Moreover,

�

[∣∣∣∣
∫ 1

0
Xt dYt

∣∣∣∣
2]1/2

= ‖J10‖L2 =

∥∥∥∥J0 +
+∞∑

n=0

Jn − Jn−1

∥∥∥∥
L2

� ‖J0‖L2 +
+∞∑

n=0

‖Jn − Jn−1‖L2

� ‖X‖�β,d c1/γ
γ (1 + C).

�

Remark 13. We can easily see that Stratonovich integration is equivalent to the
one considered here. Indeed, if we denote by J̃n the centered finite sums that should
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converge to the Stratonovich integral,

J̃n =
1
2

2n−1∑

k=0

(
X(k+1)/2n +Xk/2n

)(
Y(k+1)/2n − Yk/2n

)
,

we have

J̃n = Jn +
1
2

2n−1∑

k=0

(
X(k+1)/2n −Xk/2n

)(
Y(k+1)/2n − Yk/2n

)

and the sum on the right-hand side converges to 0 in L1(P ).

One can prove that the integral just defined, as a function of the upper integration

point, is a process in �α,d . See [17].

4. Rigorous definition of the energy

Given a real number 1 < α < 2, we take a stochastic process Y = (Yt)t∈I with

values in (�3 ,B(�3)) which satisfies a condition of the type (H), that is, for every
p � 1 there exists a constant cp such that

(9) �
[
‖Yt − Ys‖p

]
� cp|t− s|p/α ∀s, t ∈ I.

Remark 14. Here ‖.‖ is the Euclidean norm in �3 . It is equivalent to assume
that each component of the process Y satisfies condition (H) of the previous section.

It is clear that the results of the previous section can be extended to the case of

processes with values in �3 or in � . In particular, if we have a process X in �β,d

with values in � and with β � 2 and 1/α + 1/β > 1, we can define the integral∫ T

0 Xt dYt as a limit of Riemann sums in � 3 .

Let us consider the formal definition of the kinetic energy of a vortex filament
having as its core a trajectory of the process Y :

H = 1
2

∫

�3

∥∥∥∥
∫ T

0
eik·Yt dYt

∥∥∥∥
2

�3

|�̂(k)|2
‖k‖2 dk.

We want to establish if the integral

(10)
∫ T

0
eik·Yt dYt
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is well defined and, in such a case, we want to find a condition on the measure � so

that we have

� [H] = 1
2

∫

�3

�

[∥∥∥∥
∫ T

0
eik·Yt dYt

∥∥∥∥
2

�3

] |�̂(k)|2
‖k‖2 dk < +∞.

Theorem 15. If the process Y satisfies condition (9) and for the measure � we

have, in addition to (7),

(11)
∫

�3

‖k‖2α−4|�̂(k)|2 dk < +∞,

then the random variable H is well defined and � [H] < +∞.

Remark 16. The condition

(12)
∫

�3

|�̂(k)|2 dk < +∞

is equivalent to assuming that � is absolutely continuous with respect to the Lebesgue
measure, with a square integrable density. Therefore condition (11) is intermediate

between the finite energy condition (7) and the absolutely continuous case (12).
Condition (11) still allows us to consider measures � supported by fractal sets, as we

would like to have due to numerical investigations [3].

The proof of the theorem is an immediate consequence of the following

Lemma 17. Under condition (9), the integral (10) is well defined and we have
the inequality

�

[∥∥∥∥
∫ T

0
eik·Yt dYt

∥∥∥∥
2

�3

]
� 3(c2 + C‖k‖2α−2)T 2

where c2 is the constant from (9) and C is a constant depending only on α and c4.

�����. From the mean-value theorem it follows that, for every p � 1 and
s, t ∈ I,

�
[
|eik·Yt − eik·Ys |p

]
� � [‖k‖p‖Yt − Ys‖p] � ‖k‖pcp|t− s|p/α,

that is, if we put Zt = eik·Yt for t ∈ I, the process Z = (Zt)t∈I satisfies the condi-
tion (H) introduced in the previous section and so it is a process in �β,d for every
β � α. Then the integral (10) is well defined. We can suppose I = [0, 1]. If we take,

for n ∈ �, the Riemann sum in � 3

Jn =
2n−1∑

k=0

Zk/2n

(
Y(k+1)/2n − Yk/2n

)
,
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from Proposition 12 we know that the sequence (Jn)n∈� converges in L2(P ) to the

random variable J10 =
∫ 1
0 Zt dYt and we have the inequality

�
[
‖J10‖2�3

]1/2 � �
[
‖J0‖2�3

]1/2
+
+∞∑

n=1

�
[
‖Jn − Jn−1‖2�3

]1/2
.

Using the same notation of Proposition 12, for n � 1 we have

�
[
‖Jn − Jn−1‖2�3

]1/2 �
2n−1−1∑

h=0

�
[
|∆2hZ|2‖∆2h+1Y ‖2�3

]1/2

�
2n−1−1∑

h=0

�
[
|∆2hZ|4

]1/4
�
[
‖∆2h+1Y ‖4�3

]1/4

�
2n−1−1∑

h=0

�
[
|∆2hZ|4

]1/4
c
1/4
4

1
2n/α

.

Now let N be an integer such that 2N−1 < ‖k‖ � 2N ; we know that

�
[
|∆2hZ|4

]1/4 � 2Nc
1/4
4

1
2n/α

,

but for small values of n, more precisely for n such that 2N−n/α > 2 (that is, for

n < Nα), it would be more convenient to use the bound

�
[
|∆2hZ|4

]1/4 � 2.

Then we can write

+∞∑

n=1

�
[
‖Jn − Jn−1‖2�3

]1/2
(13)

=
�Nα�∑

n=1

�
[
‖Jn − Jn−1‖2�3

]1/2
+

+∞∑

n=�Nα�+1
�
[
‖Jn − Jn−1‖2�3

]1/2

�
�Nα�∑

n=1

2n−12c1/44
1
2n/α

+
+∞∑

n=�Nα�+1
2n−12Nc

1/2
4

1
22n/α

= c
1/4
4

�Nα�∑

n=1

2n(1−1/α) +
1
2
c
1/2
4 2

N
+∞∑

n=�Nα�+1
2n(1−2/α).
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The hypothesis 1 < α < 2 implies 21−1/α > 1 and 21−2/α < 1, so for the first term

of the sum (13) we have

c
1/4
4

�Nα�∑

n=1

2n(1−1/α) = c
1/4
4
(21−1/α)�Nα�+1 − 21−1/α

21−1/α − 1 � C12N(α−1)

and for the second

1
2
c
1/2
4 2

N
+∞∑

n=�Nα�+1
2n(1−2/α) =

1
2
c
1/2
4 2

N (2
1−2/α)�Nα�+1

1− 21−2/α
� C22N(α−1)

where C1 and C2 are two constants depending only on α and c4. Moreover, we notice
that

�
[
‖J0‖2�3

]1/2
= �

[
‖eik·Y0(Y1 − Y0)‖2�3

]1/2 � c
1/2
2 .

Since 2N < 2‖k‖, we obtain the inequality

�
[
‖J10‖2�3

]1/2 � c
1/2
2 + (C1 + C2)2α−1‖k‖α−1.

Then, if we denote by C the constant (C1 + C2)222α−2, we conclude

�

[∥∥∥∥
∫ T

0
eik·Yt dYt

∥∥∥∥
2

�3

]
� 3(c2 + C‖k‖2α−2)T 2.

�

5. Some examples

5.1. Fractional Brownian motion.
The canonical example that fits the framework of this paper is the fractional

Brownian motion with Hurst parameter in (12 , 1). A normalized fractional Brownian
motion BH = (BH

t )t∈� with Hurst parameter H ∈ (0, 1) is a stochastic process
defined on a probability space (Ω,F , P ) with values in (�,B(�)) and such that
1. BH is Gaussian,

2. BH has stationary increments, that is, for every s, t ∈ �, s � t, the random

variables BH
t −BH

s and BH
t−s −BH

0 have the same law,

3. � [BH
t ] = 0 for every t ∈ �,

4. � [(BH
t )
2] = |t|2H for every t ∈ �.
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We notice that, in the case H = 1/2, BH is a Brownian motion. From these

properties we obtain the following expression for the covariance:

Cov(BH
t , BH

s ) =
1
2

(
|t|2H + |s|2H − |t− s|2H

)

for every s, t ∈ �. As a consequence, we have that BH is a self-similar process
with parameter H and so, having stationary increments and being Gaussian, when

H ∈ (12 , 1), it satisfies the condition (H) introduced in the previous sections with
α = 1/H (see Example 9). So, for a 3-dimensional process whose components are

fractional Brownian motions with Hurst parameter H ∈ (12 , 1), the energy is well
defined, with this value of α in assumption (11). We do not need any independence

of the components, and also the Hurst parameters could be different (in (12 , 1)), with
the proper choice of α. In the case of a 3-dimensional fractional Brownian motion, a

weaker condition on � has been announced in [18].

5.2. Vortices at a solid boundary.
Since

∣∣|x| − |y|
∣∣ � |x − y|, if a process Y satisfies condition (H) then the same is

true for the positive process |Y |. So, take a 3-dimensional process Y 0 = (Y 1, Y 2, Y 3)
whose components are fractional Brownian motions with Hurst parameterH ∈ (12 , 1).
Then take the process

Y = (Y 1, Y 2, |Y 3|).

It satisfies (9), hence the results on the energy hold true with α = 1/H. The process

Y may model a vortex constrained to live in a half space due to the presence of a solid
boundary. Such vortices are commonly observed in experiments and simulations.

A variant of this example consists in the process

Y ′ = (Y 1, Y 2, |B|)

where (Y 1, Y 2) is as above and B is a 3-dimensional fractional Brownian motion
with Hurst parameter H ∈ (12 , 1). This process is more convenient if we think that
the vortex should not touch the boundary many times. Variants with fractional
Brownian bridges can be also defined, to model hairpin vortices at solid boundaries
with end-point on the boundary.

These examples are non-Gaussian. Others can be obtained by means of stochastic

equations of the form
dXt = b(Xt) dt+ dYt

where b is smooth with bounded derivatives and Y is one of the previous processes.

We do not discuss the details.
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