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STATE-HOMOMORPHISMS ON MV -ALGEBRAS

Ján Jakubík, Košice

(Received October 29, 1998)

Abstract. Riečan [12] and Chovanec [1] investigated states in MV -algebras. Earlier,
Riečan [11] had dealt with analogous ideas in D-posets. In the monograph of Riečan and
Neubrunn [13] (Chapter 9) the notion of state is applied in the theory of probability on
MV -algebras.

We remark that a different definition of a state in an MV -algebra has been applied by
Mundici [9], [10] (namely, the condition (iii) from Definition 1.1 above was not included in
his definition of a state; in other words, only finite additivity was assumed).

Below we work with the definition from [13]; but, in order to avoid terminological prob-
lems we use the term “state-homomorphism” (instead of “state”). The author is indebted
to the referee for his suggestion concerning terminology.

Let A be an MV -algebra which is defined on a set A with card A > 1. In the present
paper we show that there exists a one-to-one correspondence between the system of all
state-homomorphisms on A and the system of all σ-closed maximal ideals of A .

For MV -algebras we apply the notation and the definitions as in Gluschankof [3].
The relations between MV -algebras and abelian lattice ordered groups (cf. Mundici [8])

are substantially used in the present paper.
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1. Preliminaries

We recall that an MV -algebra is an algebraic system

A = (A;⊕, ∗,¬, 0, 1),

where A is a nonempty set, ⊕ and ∗ are binary operations, ¬ is a unary operation,
and 0, 1 are nulary operations on A such that the conditions (m1)–(m9) from [3] are
satisfied.
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Let us remark that in [1], [11] and [13] another system of axioms for an MV -

algebra was applied. Both these systems are equivalent in a natural sense (for a
formal description of this equivalence we can apply Marczewski’s theory of weak
automorphisms of algebraic systems; cf., e.g., Goetz [4]).

In what follows we assume that cardA > 1.

Let x, y ∈ A. We put

x ∨ y = (x ∗ ¬y)⊕ y, x ∧ y = ¬(¬x ∨ ¬y).

Then (cf. Mundici [8]) we obtain that (A;∨,∧) is a distributive lattice with the least
element 0 and the greatest element 1. This lattice will be denoted by �(A ).

Let X be a partially ordered set, x ∈ X and let (xn)n∈� be a sequence in X such
that xn � xn+1 for each n ∈ �, and sup{xn}n∈� = x. Then we write xn ↗ x.

We denote by � the additive group of all reals with the natural linear order. For

x, y ∈ � with x � y let [x, y] be the corresponding interval in �.

1.1. Definition. Let A be as above. A state-homomorphism on A is a

mapping m→ [0, 1] which satisfies the following conditions:
(i) m(1) = 1.

(ii) If a, b ∈ A and a � ¬b, then m(a⊕ b) = m(a) +m(b).

(iii) If a ∈ A, an ∈ A for n ∈ � and an ↗ a, then m(an)↗ m(a).

According to 9.1.6 and 9.1.7 in [13], the above definition of a state-homomorphism

is equivalent to the definition of a state considered in [13]. (We remark that for x ∈ A
the symbol ¬x has the same meaning as the symbol x∗ in [13].)
The notion of a congruence relation onA has the usual meaning (i.e., it is a binary

relation on the set A which is compatible with each of the operations ⊕, ∗,¬).
The system of all congruence relations onA will be denoted by ConA ; this system

is partially ordered in the usual way.

Let � ∈ ConA and x ∈ A. Put x(�) = {y ∈ A : y�x}. The set 0(�) is called an
ideal of A .

An ideal 0(�) of A is called maximal if it satisfies the following conditions:

(i) Whenever �1 ∈ ConA and 0(�) ⊆ 0(�1) 	= A, then 0(�) = 0(�1).
(ii) A 	= 0(�).
A subset X of A is said to be σ-closed if, whenever (xn)n∈� is a sequence in X

and a is an element of A such that either sup{xn}n∈� = a or inf{xn}n∈� = a, then

a ∈ X .
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2. Factor MV -algebras

Let A be as above and let � ∈ ConA . Then we can construct in the usual way the
factorMV -algebra A /� (cf., e.g., [7]). The algebraic system A /� is anMV -algebra;

let us denote its underlying set by A1. The mapping x → x(�) of A onto A1 is a
homomorphism of A onto A /�.

Let B be an MV -algebra and let ϕ be a homomorphism of A onto B. For
x, y ∈ A we put x�ϕy if ϕ(x) = ϕ(y). Then �ϕ is a congruence relation on A and

the mapping f defined by

f(x(�ϕ)) = ϕ(x)

is an isomorphism of the MV -algebra A /�ϕ onto B.

For lattice ordered groups we apply the notation and definitions as in [2].

Let G be an abelian lattice ordered group with a strong unit u. Then A0(G, u)
has the same meaning as in [5].

Without loss of generality we can suppose that A = A0(G, u) (cf. Mundici [8]).

For � ∈ ConA we denote by 0(�)0 the convex �-subgroup of G which is generated
by the set 0(�). Further, let �0 be the congruence relation on G which is generated
by the �-ideal 0(�)0.

2.1. Lemma. Let � ∈ ConA . Then the following conditions are equivalent:

(i) 0(�) is a maximal ideal in A .

(ii) 0(�)0 is a maximal �-ideal in G.

�����. This is a consequence of 1.10 in [7]. �

2.2. Lemma. �(A ) is a chain if and only if G is linearly ordered.

�����. If G is linearly ordered, then it is clear that �(A ) is linearly ordered as
well. If G is not linearly ordered, then there exist g1 and g2 in G such that g1 > 0,

g2 > 0 and g1 ∧ g2 = 0. Put a1 = g1 ∧ u (i = 1, 2). Then ai ∈ A, ai > 0 (i = 1, 2)
and a1 ∧ a2 = 0, hence �(A ) is not linearly ordered. �

In what follows we often speak of A being linearly ordered meaning that �(A ) is
linearly ordered.

2.3. Lemma. Let � ∈ ConA . Assume that 0(�) is a maximal ideal in A . Then

the MV -algebra A /� is linearly ordered.

�����. According to 2.1, 0(�)0 is a maximal �-ideal in G. Thus G/�0 is linearly
ordered. Now 2.2 and [7], Proposition 2.4 yield that A /� is linearly ordered. �
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For the notion of an archimedean MV -algebra cf., e.g., [6].

2.4. Lemma. Let � be as in 2.3. Then the MV -algebra A /� is archimedean.

�����. By way of contradiction, suppose that A /� is not archimedean. Then

in view of 2.4 in [7] the lattice ordered group G/�0 is not archimedean. Moreover,
according to 2.2 and 2.3, G/�0 is linearly ordered. Then there exists an �-ideal X in

G/�0 such that 0(�0) 	= X 	= G/�0. Thus the set

X1 = {x ∈ G : x(�0) ∈ X}

is an �-ideal in G with 0(�)0 ⊂ X1 	= G. Hence 0(�)0 is not a maximal �-ideal in G,

which contradicts 2.1. �

2.5. Lemma. Let � be as in 2.3. Then the lattice ordered group G/�0 is
isomorphic to an �-subgroup of the linearly ordered group �.

�����. It is well-known that each archimedean linearly ordered group is iso-

morphic to an �-subgroup of �. In the proof of 2.3 we have observed that G/�0 is
linearly ordered. Moreover, the argument performed in the proof of 2.4 shows that

G/�0 is archimedean. �

If � is as in 2.3, then in view of 2.5 and [7], Proposition 2.4 there exists

an �-subgroup �1 of � and an element 0 < v ∈ �1 such that A /� is isomorphic to
A0(�1 , v).

It is clear thatA0(�1 , v) is a subalgebra ofA0(�, v). Further, for each element v1 ∈
� with v1 > 0, the MV -algebra A0(�, v) is isomorphic to A0(�, v1 ). In particular,

we can put v1 = 1. Thus we obtain

2.6. Lemma. Let � be as in 2.3. Then there exists an isomorphism ψ of A /�

into the MV -algebra A0(�, 1).

2.7. Lemma. Let � be as in 2.3 and let ψ be as in 2.6. Then the following
conditions are fulfilled:

(i1) ψ(u) = 1.

(ii1) If a, b ∈ A and a � ¬b, then ψ(a⊕ b) = ψ(a)⊕ ψ(b).

�����. The relation (i1) is an immediate consequence of the fact that ψ is an

isomorphism. Let a, b ∈ A and a � ¬b. The isomorphism ψ yields that ψ(a) � ¬ψ(b).
Since ¬ψ(b) = 1− ψ(b), we obtain that ψ(a) + ψ(b) � 1, whence

ψ(a)⊕ ψ(b) = ψ(a) + ψ(b).

Further, in view of 2.6 we have ψ(a⊕ b) = ψ(a) + ψ(b), thus (ii1) holds. �
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2.8. Lemma. Let � be as in 2.3. Assume that the �-ideal 0(�) is σ-closed. Then
the following condition is valid:

(iii1) If an ∈ A for each n ∈ �, a ∈ A and an ↗ a, then an(�)↗ a(�).

�����. It is easy to verify that for each x ∈ A, the set x(�) is σ-closed. Let

an ↗ a. Then an(�) � an+1(�) � a(�) for each n ∈ �. We have to show that

(1)
∨

n∈�
an(�) = a(�)

is valid in A /�. By way of contradiction, suppose that (1) fails to hold. Thus there

is b ∈ A such that an(�) � b(�) for each n ∈ � and b(�) < a(�). We have a∧b ∈ b(�),
thus without loss of generality we can suppose that b � a. Then

(2) (an ∨ b) ∧ a↗ (a ∨ b) ∧ a = a

is valid in A and

(an ∨ b) ∧ a ∈ b(�)

for each n ∈ �. Since b(�) is σ-closed we obtain from (2) that the element a belongs
to b(�), which is a contradiction. �

The mapping ψ considered above was constructed by means of �. Let us now write

ψϕ instead of ψ.
From 2.6, 2.7 and 2.8 we obtain

2.9. Proposition. Let � ∈ ConA . Suppose that the ideal 0(�) of A is maximal

and σ-closed. Then the mapping ψ� is a state-homomorphism in A .

3. Maximal ideal corresponding to a state-homomorphism

Suppose that m is a state-homomorphism on the MV -algebra A . Let G be as

above.
We define a partial binary operation − on A as follows. If a1, a2 ∈ A and a1 � a2,

then a2 − a1 in A has the same meaning as a2 − a1 in G; otherwise, a2 − a1 is not

defined in A.
From 9.16 and 9.1.7 in [13] we obtain

3.1. Lemma. If a, b ∈ A and a � b, then m(b− a) = m(b)−m(a).

Similarly as in the preceding section we consider the interval [0, 1] of � as the
underlying set of the MV -algebra B = A0(�, 1).
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Put B1 = m(A). In view of 3.1 and according to Proposition 3.1 of [3] we have

3.2. Lemma.
(i) B1 is an underlying set of a subalgebra B1 of B;

(ii) m is a homomorphism of A onto B1.

We remark that the corresponding proof in [1] is performed by using different set

of operations on an MV -algebra than we are applying in the present paper, but the
notions of a congruence relation and of a homomorphism in both settings are the
same.

Consider the congruence relation �m on A which is defined by means of the ho-
momorphism m (cf. Section 2 above). Since A /�m is isomorphic to B1, we obtain

3.3. Lemma. A /�m is linearly ordered and archimedean.

Thus according to 2.2 and [7], Proposition 2.4 we have

3.4. Lemma. G/(�m)0 is linearly ordered and archimedean.

From 3.4 we infer that G/(�m)0 has no non-trivial �-ideal. This yields that the
�-ideal 0((�m)0) of G is maximal. Then 2.1 yields

3.5. Lemma. 0(�m) is a maximal ideal of A .

3.6. Lemma. 0(�m) is a σ-closed subset of A.

�����. a) Let (xn) be a sequence in 0(�m), x ∈ A and suppose that the relation
∨

n∈�
xn = x

is valid in A . Denote yn = x1 ∨ x2 ∨ . . . ∨ xn for each n ∈ �. Then yn � yn+1 for
each n ∈ � and ∨

n∈�
yn = x,

whence yn ↗ x in A . Since m is a state-homomorphism on A we obtain m(yn)↗
m(x). Clearly yn ∈ 0(�m), thus m(yn) = 0 for each n ∈ � and hence m(x) = 0.
Therefore x ∈ 0(�m).

b) Let (zn) be a sequence in 0(�m), z ∈ A. Assume that
∧

n∈�
zn = z

holds in A . Then 0 � z � zn for each n ∈ �. Since 0(�m) is a convex sublattice of
�(A ) and 0 ∈ 0(�m) we obtain z ∈ 0(�m). �
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3.7. Lemma. Let G1 and G2 be �-subgroups of � such that 0, 1 ∈ Gi for i = 1, 2.

Assume that ϕ is an isomorphism of G1 onto G2 with ϕ(1) = 1. Then G1 = G2 and
ϕ is the identity on G1.

�����. By way of contradiction, suppose that ϕ fails to be the identical mapping

on G1. Hence there is 0 < x ∈ G1 such that ϕ(x) = y 	= x. Then there exist positive
integers n and m such that either (i) mx < n < my, or (ii) my < n < mx. Suppose

that (i) holds. Then ϕ(mx) < ϕ(n). Clearly ϕ(mx) = my, ϕ(n) = n, whence
my < n, which is a contradiction. The case (ii) is analogous. �

3.8. Lemma. Let G1 and G2 be �-subgroups of � such that 0, 1 ∈ Gi for i = 1, 2.
Put A0 = A0(G1, 1), A2 = A0(G2, 1). Suppose that ϕ0 is an isomorphism of A1
onto A2. Then ϕ0 is the identical mapping on A1.

�����. From the fact that ϕ0 is an isomorphism of A1 onto A2 we easily obtain

that there exists an isomorphism ϕ of G1 onto G2 such that ϕ(x) = ϕ0(x) for each
x ∈ A1. In particular, we have ϕ(1) = 1. Then it suffices to apply 3.7. �

3.9. Lemma ([7], Lemma 1.11). Let �1 and �2 be congruence relations on A

such that 0(�1) = 0(�2). Then �1 = �2.

Let us denote by

I—the set of all σ-closed maximal ideals of A ;

S—the set of all state-homomorphisms on A .

Consider a mapping f1 : I → S defined by

f1(X) = ψ�

for each X ∈ I , where � is a congruence relation on A with 0(�) = X (cf. 2.9 and
3.9).

Further, let f2 be the mapping of S into I such that

f2(m) = 0(�m)

for each m ∈ S (cf. 3.5 and 3.6).

From the construction of ψ� we immediately obtain

f2(f1(X)) = X

for each X ∈ I .
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Also, 3.8 and the definition of f2 yield

f1(f2(m)) = m

for each m ∈M .
Hence we have

3.10. Theorem. Under the notation as above, f1 is a bijection of I onto S

and f2 = f
−1
1 .

The above results show that state-homomorphisms on the MV -algebra A can be

viewed—up to isomorphism—as mappings of the form

a→ a⊕ 0(�) (a ∈ A),

where 0(�) is a σ-closed maximal ideal of A .
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