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Abstract. The higher order neutral functional differential equation

(1)
dn

dtn
[
x(t) + h(t)x(τ (t))

]
+ σf

(
t, x(g(t))

)
= 0

is considered under the following conditions: n � 2, σ = ±1, τ (t) is strictly increasing in
t ∈ [t0,∞), τ (t) < t for t � t0, lim

t→∞
τ (t) = ∞, lim

t→∞
g(t) = ∞, and f(t, u) is nonnegative

on [t0,∞) × (0,∞) and nondecreasing in u ∈ (0,∞). A necessary and sufficient condition
is derived for the existence of certain positive solutions of (1).

Keywords: neutral differential equation, positive solution

MSC 2000 : 34K11

1. Introduction

In this paper we consider the higher order neutral functional differential equation

(1)
dn

dtn
[
x(t) + h(t)x(τ(t))

]
+ σf

(
t, x(g(t))

)
= 0,

where n � 2 and σ = +1 or −1. It is assumed throughout this paper that
(a) t0 > 0, τ : [t0,∞) −→ � is continuous and strictly increasing in t ∈ [t0,∞),

τ(t) < t for t � t0, and lim
t→∞

τ(t) =∞;
(b) h : [τ(t0),∞) −→ � is continuous;

(c) g : [t0,∞) −→ � is continuous, g(t) > 0 for t � t0 and lim
t→∞

g(t) =∞;
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(d) f : [t0,∞)× (0,∞) −→ � is continuous, f(t, u) � 0 for (t, u) ∈ [t0,∞)× (0,∞),
and f(t, u) is nondecreasing in u ∈ (0,∞) for each fixed t ∈ [t0,∞).

By a solution of (1) we mean a function x(t) which is continuous and satisfies (1)
on [tx,∞) for some tx � t0.

There has been an increasing interest in studying the existence of positive solutions
of higher order neutral differential equations. We refer the reader to [1]–[17], [19]–[21].

In particular, the following result is known:

Theorem 0. Let k ∈ {0, 1, 2, . . . , n − 1}. Suppose that one of the following
conditions (i)–(iii) holds:

(i) |h(t)|[τ(t)/t]k � λ < 1 and h(t)h(τ(t)) � 0 ([17]);
(ii) h(t) ≡ 1 and τ(t) = t− τ (τ > 0) ([11]);

(iii) 1 < µ � h(t)[τ(t)/t]k � λ < ∞ ([17]).
Then (1) has a solution x(t) satisfying

(2) 0 < lim inf
t→∞

x(t)
tk

� lim sup
t→∞

x(t)
tk

< ∞

if and only if

(3)
∫ ∞

t0

tn−k−1f
(
t, a[g(t)]k

)
dt < ∞ for some a > 0.

However, very little is known about the existence of a solution x(t) of (1) satisfy-
ing (2) in other cases, such as

(4) lim inf
t→∞

h(t)

[
τ(t)
t

]k

< 1 < lim sup
t→∞

h(t)

[
τ(t)
t

]k

.

The condition (4) seems to be natural and important. Nevertheless, it is not difficult

to construct an example illustrating that, while (4) is satisfied, (1) has no solution
x(t) with the property (2). Thus we need a condition different from (4).

In this paper we consider the following case:

(5)





h(t)
[τ(t)

t

]k

> −1,

h(τ(t))
[ τ(τ(t))

τ(t)

]k

= h(t)
[τ(t)

t

]k

, t � τ−1(t0),

where τ−1(t) is the inverse function of τ(t) and k ∈ {0, 1, . . . , n− 1}. We note here
that if (5) holds, then there are constants µ and λ such that

(6) −1 < µ � h(t)

[
τ(t)

t

]k

� λ, t � t0.
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(As a general result it is verified that, under the hypothesis (a) on τ(t), if a continuous

function ϕ(t) on [t0,∞) satisfies ϕ(t) > −1 and ϕ(τ(t)) = ϕ(t) for t � τ−1(t0), then
there are constants µ and λ such that −1 < µ � ϕ(t) � λ for t � t0.) In the case of
k ∈ {0, 1, 2, . . . , n− 1}, we easily see that

x(t) =
b tk

1 + h(t)[τ(t)/t]k
(b > 0)

satisfies (2) and is a solution of the unperturbed equation

dn

dtn
[
x(t) + h(t)x

(
τ(t)

)]
= 0,

and so it is natural to expect that, if f is small enough in some sense, (1) has a

solution x(t) which behaves like the function b tk
[
1 + h(t)[τ(t)/t]k

]−1
as t → ∞. In

fact, the following theorem will be proved.

Theorem 1. Let k ∈ {0, 1, 2, . . . , n− 1}. Suppose that (5) holds. Then (1) has
a solution x(t) satisfying

(7) x(t) =

[
b

1 + h(t)[τ(t)/t
]k
+ o(1)

]
tk as t →∞ for some b > 0

if and only if (3) holds.

In particular, for the case k = 0, Theorem 1 gives the following

Corollary 1. Suppose that

(8) h(t) > −1 and h(τ(t)) = h(t), t � τ−1(t0).

Then (1) has a solution x(t) satisfying

x(t) =
b

1 + h(t)
+ o(1) as t →∞ for some b > 0

if and only if
∫ ∞

t0

tn−1f(t, a) dt < ∞ for some a > 0.

Remark 1. Pairs of functions

τ(t) =t− 2�, h(t) = 1 + 32 sin t,

τ(t) =γt, h(t) = 1 + 32 sin(2�[log γ]−1 log t) (0 < γ < 1),

τ(t) =t1/e, h(t) = 1 + 32 sin(2� log(log t)) (t0 > 1)

give typical examples satisfying (8).
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Now let us consider the special case τ(t) = γt (0 < γ < 1):

(9)
dn

dtn
[
x(t) + h(t)x(γt)] + σf

(
t, x(g(t))

)
= 0.

Applying Theorem 1 to equation (9), we obtain the following result.

Corollary 2. Let k ∈ {0, 1, 2, . . . , n− 1} and 0 < γ < 1. Suppose that

h(t) > −γ−k and h(γt) = h(t), t � γ−1t0.

Then (9) has a solution x(t) satisfying

x(t) =

[
b

1 + γkh(t)
+ o(1)

]
tk as t →∞ for some b > 0

if and only if (3) holds.

2. Proof of Theorem 1

First we prove the “only if” part of Theorem 1. The following lemma is a more
general result.

Lemma 1. Let k ∈ {0, 1, 2, . . . , n− 1}. Suppose that h(t)[τ(t)/t]k is bounded

on [t0,∞). If there exists a solution x(t) of (1) which satisfies (2), then (3) holds.

�����. Put y(t) = x(t) + h(t)x(τ(t)). We get

(10)
y(t)
tk
=

x(t)
tk
+ h(t)

[
τ(t)
t

]k
x(τ(t))
[τ(t)]k

,

which implies that y(t)/tk is bounded. From (1) we have

(11) σy(n)(t) = −f
(
t, x(g(t))

)
� 0 for all large t.

We see that y(i)(t) (i = 0, 1, 2, . . . , n − 1) are eventually monotonic and that
lim

t→∞
y(i)(t) (i = 0, 1, 2, . . . , n−1) exist in �∪{−∞,∞}. Since y(t)/tk is bounded, we

find that lim
t→∞

y(k)(t) = c for some c ∈ � and lim
t→∞

y(i)(t) = 0 for i = k+1, . . . , n− 1.
Repeated integration of (11) yields

y(k)(t) = c+ (−1)n−k−1σ
∫ ∞

t

(s− t)n−k−1

(n− k − 1)! f
(
s, x(g(s))

)
ds
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for all large t. Consequently, we obtain

∫ ∞

T

sn−k−1f
(
s, x(g(s))

)
ds < ∞

for some T � t0. By virtue of (2) and the monotonicity of f , we conclude that
(3) holds. �

Now we show the “if” part of Theorem 1.

Let k ∈ {0, 1, 2, . . . , n − 1}. Suppose that (5) holds. Take a sufficiently large
number T � τ(t0) such that

h(T )[τ(T )/T ]k = max{h(t)[τ(t)/t]k : t ∈ [t0,∞)}

and

T∗ ≡ min
{
τ(T ), inf{g(t) : t � T }

}
� t0(> 0).

Let C[T∗,∞) denote the Fréchet space of all continuous functions on [T∗,∞) with
the topology of uniform convergence on every compact subinterval of [T∗,∞). Let
η ∈ C[T,∞) with η(t) � 0 for t � T and lim

t→∞
η(t) = 0. We consider the set Y of all

functions y ∈ C[T∗,∞) which are nonincreasing on [T,∞) and satisfy

y(t) = y(T ) for t ∈ [T∗, T ], 0 � y(t) � η(t) for t � T.

It is easy to see that Y is a closed convex subset of C[T∗,∞).
The next result follows from the Proposition in [18].

Lemma 2. Suppose that (2) holds. Let η ∈ C[T,∞) with η(t) � 0 for t � T

and lim
t→∞

η(t) = 0. For this η, define Y as above. Then there exists a mapping

Φ: Y −→ C[T∗,∞) which has the following properties:
(a) For each y ∈ Y , Φ[y] satisfies

lim
t→∞

Φ[y](t) = 0

and

Φ[y](t) + h(t)

[
τ(t)
t

]k

Φ[y](τ(t)) = y(t), t � T ;

(b) Φ is continuous on Y in the C[T∗,∞)-topology, i.e., if {yj}∞j=1 is a sequence
in Y converging to y ∈ Y uniformly on every compact subinterval of [T∗,∞),
then Φ[yj ] converges to Φ[y] uniformly on every compact subinterval of [T∗,∞).

We first prove the “if” part of Theorem 1 for the case k = 0.
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����� of the “if” part (k = 0). Put

η(t) =
∫ ∞

t

(s− t)n−1

(n− 1)! f(s, a) ds, t � T.

We use Lemma 2 for this η. In view of (6), we can take constants b > 0, δ > 0 and
ε > 0 such that

0 < δ + ε � b

1 + h(t)
� a− ε, t � T∗.

We denote the function Ψ[y](t) by

Ψ[y](t) =
b

1 + h(t)
+ (−1)n−1σΦ[y](t), t � T∗, y ∈ Y.

Define a mapping F : Y −→ C[T∗,∞) as follows:

(Fy)(t) =





∫ ∞

t

(s− t)n−1

(n− 1)! f0
(
s,Ψ[y](g(s))

)
ds, t � T,

(Fy)(T ), t ∈ [T∗, T ],

where

f0(t, u) =





f(t, a), u � a,

f(t, u), δ � u � a,

f(t, δ), u � δ.

It is easy to see that F maps Y into itself.

From Lemma 2 it follows that the mapping Ψ is continuous on Y , and the Lebesgue

dominated convergence theorem shows that F is continuous on Y .

Since

|(Fy)′(t)| �
∫ ∞

T

sn−2f(s, a) ds, t � T, y ∈ Y,

the mean value theorem implies that F(Y ) is equicontinuous on [T,∞). Since
|(Fy)(t1) − (Fy)(t2)| = 0 for t1, t2 ∈ [T∗, T ], we conclude that F(Y ) is equicon-
tinuous on [T∗,∞). Obviously, F(Y ) is uniformly bounded on [T∗,∞). Hence, by
the Ascoli-Arzela theorem, F(Y ) is relatively compact.
Consequently, we are able to apply the Schauder-Tychonoff fixed point theorem to

the operator F and conclude that there exists an element ỹ ∈ Y such that ỹ = F ỹ.

Set x(t) = Ψ[ỹ](t). Lemma 2 implies that x(t) satisfies (7) with k = 0 and hence
there exists a number T̃ � T such that δ � x(g(t)) � a for t � T̃ . Then we have
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f0
(
t, x(g(t))

)
= f

(
t, x(g(t))

)
for t � T̃ . Using Lemma 2 and (5), we observe that

x(t) + h(t)x(τ(t))(12)

=
b

1 + h(t)
+

bh(t)
1 + h(τ(t))

+ (−1)n−1σ
[
Φ[ỹ](t) + h(t)Φ[ỹ](τ(t))

]

= b+ (−1)n−1σỹ(t)

= b+ (−1)n−1σ
∫ ∞

t

(s− t)n−1

(n− 1)! f
(
s, x(g(s))

)
ds, t � T̃ .

By differentiation of (12), we see that x(t) is a solution of (1). The proof is complete.

�

The following lemma will be used in the proof of the “if” part of Theorem 1 for

the case k �= 0.

Lemma 3. Let 	 ∈ � and let T > 0. Suppose that u ∈ C[T,∞) is nonnegative
and nonincreasing on [T,∞) and c is a number such that c � u(T )T [(	 − 1)!]−1.
Then the function

U(t) = ct−1 + t−�

∫ t

T

(t− s)�−1

(	− 1)! u(s) ds

satisfies −2cT−2 � U ′(t) � 0 for t � T .

�����. We note that

−c(	− 1)!−
∫ t

T

u(s) ds+ tu(t) � − c(	− 1)!− u(t)(t− T ) + tu(t)(13)

= u(t)T − c(	− 1)! � 0, t � T.

If 	 = 1, then we find by (13) that

U ′(t) = − ct−2 − t−2
∫ t

T

u(s) ds+ t−1u(t)

= t−2
[
−c−

∫ t

T

u(s) ds+ tu(t)

]
� 0, t � T

and

U ′(t) � − ct−2 − t−2
∫ t

T

u(s) ds � −cT−2 − t−2u(T )(t− T )

� − cT−2 − t−2cT−1t � −2cT−2, t � T.

579



Now we assume that 	 � 2. We see that

U ′(t) = − ct−2 − 	t−�−1
∫ t

T

(t− s)�−1

(	− 1)! u(s) ds+ t−�

∫ t

T

(t− s)�−2

(	− 2)! u(s) ds

= t−�−1
[
−ct�−1 − 	

∫ t

T

(t− s)�−1

(	− 1)! u(s) ds+ t

∫ t

T

(t− s)�−2

(	− 2)! u(s) ds

]

≡ t−�−1V (t), t � T.

Since

∫ t

T

(t− s)�−1

(	− 1)! u(s) ds � u(T )
∫ t

T

(t− s)�−1

(	− 1)! ds

= u(T )
(t− T )�

	!
� cT−1	−1t�, t � T,

we obtain
U ′(t) � −ct−2 − cT−1t−1 � −2cT−2, t � T.

We claim that V (t) � 0 for t � T . In view of the equality

−	(t− s) + (	− 1)t = (	− 1)s− (t− s),

we can rewrite V (t) as

V (t) = − ct�−1 +
∫ t

T

(t− s)�−2

(	− 1)! u(s)[−	(t− s) + (	− 1)t] ds

= − ct�−1 +
∫ t

T

(t− s)�−2

(	− 2)! su(s) ds−
∫ t

T

(t− s)�−1

(	− 1)! u(s) ds.

Then we find that

V (i)(t) = − c
(	− 1)!

	− 1− i)!
t(�−1−i +

∫ t

T

(t− s)�−2−i

(	− 2− i)!
su(s) ds

−
∫ t

T

(t− s)�−1−i

(	− 1− i)!
u(s) ds, t � T, 0 � i � 	− 2

and

V (�−1)(t) = − c(	− 1)! + tu(t)−
∫ t

T

u(s) ds, t � T.

From (13) it follows that V (�−1)(t) � 0 for t � T and hence

V (�−2)(t) � V (�−2)(T ) = −c(	− 1)!T � 0, t � T.
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In exactly the same way, we conclude that

V (i)(t) � 0, t � T, 0 � i � 	− 2.

Consequently, V (t) � 0 for t � T as claimed. This shows that U ′(t) � 0 for t � T .

The proof is complete. �

We now show the “if” part of Theorem 1 for the case k �= 0.
����� of the “if” part (k �= 0). Put

ϕ(t) =
∫ ∞

t

(s− t)n−k−1

(n− k − 1)! f(s, a[g(s)]
k) ds, c =

ϕ(T )T
(k − 1)!

and

η(t) = ct−1 + t−k

∫ t

T

(t− s)k−1

(k − 1)! ϕ(s) ds.

Then η(t) � 0 for t � T and lim
t→∞

η(t) = 0, and we use Lemma 2 for this η. By

using (6), there are constants b > 0, δ > 0 and ε > 0 such that

0 < δ + ε � b

1 + h(t)[τ(t)/t]k
� a− ε, t � T∗.

We introduce the function Ψ[y](t) by

Ψ[y](t) = tk
[

b

1 + h(t)[τ(t)/t]k
+ (−1)n−k−1σΦ[y](t)

]
, t � T∗, y ∈ Y,

and define the mapping F : Y −→ C[T∗,∞) as follows:

(Fy)(t) =





ct−1 + t−k

∫ t

T

(t− s)k−1

(k − 1)!

×
∫ ∞

s

(r − s)n−k−1

(n− k − 1)! fk

(
r,Ψ[y](g(r))

)
dr ds, t � T,

(Fy)(T ), t ∈ [T∗, T ],

where

fk(t, u) =





f
(
t, a[g(t)]k

)
, u � a[g(t)]k,

f(t, u), δ[g(t)]k � u � a[g(t)]k,

f
(
t, δ[g(t)]k

)
, u � δ[g(t)]k.

Lemma 3 implies that

−2cT−2 � (Fy)′(t) � 0, t � T, y ∈ Y.
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Then (Fy)(t) is nonincreasing on [T,∞) and hence F maps Y into itself. In a fashion
similar to the case k = 0, we see that F is continuous on Y and F(Y ) is relatively
compact. Then the Schauder-Tychonoff fixed point theorem shows that ỹ = F ỹ

for some ỹ ∈ Y . We set x(t) = Ψ[ỹ](t). Since lim
t→∞

Φ[ỹ](t) = 0, we find that x(t)

satisfies (7) and δ[g(t)]k � x(g(t)) � a[g(t)]k for t � T̃ , where T̃ � T is sufficiently
large, so that fk

(
t, x(g(t))

)
= f

(
t, x(g(t))

)
for t � T̃ . In view of (5) and Lemma 2,

we find that

x(t) + h(t)x(τ(t))

=
b

1 + h(t)[τ(t)/t]k
tk +

bh(t)

1 + h(τ(t))
[
τ(τ(t))/τ(t)

]k

[
τ(t)
t

]k

tk

+ (−1)n−k−1σ
[
Φ[ỹ](t) + h(t)[τ(t)/t

]k
Φ[ỹ](τ(t))

]
tk

= b tk + (−1)n−k−1σỹ(t)tk

= b tk + (−1)n−k−1σctk−1

+ (−1)n−k−1σ
∫ t

T

(t− s)k−1

(k − 1)!

∫ ∞

s

(r − s)n−k−1

(n− k − 1)! fk

(
r, x(g(r))

)
dr ds

for t � T̃ . Differentiation of the above equality implies that

dn

dtn
[
x(t) + h(t)x(τ(t))

]
= −σfk

(
t, x(g(t))

)
= −σf

(
t, x(g(t))

)
, t � T̃ .

Consequently, x(t) is a solution of (1). This completes the proof. �
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