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Abstract. Let X be a completely regular Hausdorff space, Cb(X) the space of all scalar-
valued bounded continuous functions on X with strict topologies. We prove that these are
locally convex topological algebras with jointly continuous multiplication. Also we find the
necessary and sufficient conditions for these algebras to be locally m-convex.
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1. Introduction and Notations

In this paper X is a completely regular Hausdorff space, K the field of real or

complex numbers, Cb(X) the space of all K-valued bounded continuous functions
on X . The strict topologies ([11], [13], [6], [7], [5]) β0, β, β1, βp, β∞, βg are defined

Cb(X) (we will also denote β0 by βt, β by βτ , β1 by βσ; the definition of βg will be
taken as given in [5]).

In this paper, considering Cb(X) as an algebra, we first prove that, under the above
topologies, it is a topological algebra with jointly continuous multiplication. Also we

find necessary and sufficient conditions for these algebras to be locally m-convex.
For locally convex spaces, the notations and results of ([10]) will be used. For

the topological spaces we refer to [3]. For topological measure theory notations and
results of [13], [14], [11], [6], [7], [5] will be used. All locally convex spaces are

assumed to be Hausdorff and over K, the field of real or complex numbers. X∼(νX)
will denote the Stone-Čech compactification (real-compactifiaction) of X . We have

X ⊂ νX ⊂ X∼. A topological space is called sham compact if any countable union
of its compact subsets is relatively compact ([2]). P ⊂ Cb(X) is called solid if f ∈ P ,

g ∈ Cb(X), |g| � f implies g ∈ P ([4]). The topologies βz (z = t, τ, σ, g, p) are locally
solid in the sense that there is a 0-neighbourhood base consisting of absolutely convex
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solid sets. Let M(X) = (Cb(X), ‖.‖)′, Mz(X) = (Cb(X), βz)′ (z = t, τ, σ, g, p). Solid

subsets of Mz(X) are defined in a similar way.

For a µ ∈ M(X), we get a µ∼ ∈ M(X∼), µ∼(g) = µ(g
∣∣
X
), g ∈ C(X∼); for a

µ∼ ∈ M(X∼), supp(µ∼) is the smallest compact set C in X∼ such that |µ∼|(C) =
|µ∼|(X∼). For a collection {Aα : α ∈ I} of subsets of a vector space E, ΓAα will
denote the absolutely convex hull of

⋃
α∈I

Aα ([10]).

An algebra with a locally convex topology is called locally m-convex if it has a 0-

neighbourhood base {V : V ∈ V } such that each V is absolutely convex and V V ⊂ V

([8], [1]).

For each of the βz, z = σ, τ,∞, g, p, there is a collection Kz of subsets of X∼ \X

such that for each K ∈ Kz, there is a locally convex topology βK , generated by the

semi-norms pϕ, ϕ ∈ C(X∼ \ K), ϕ vanishing at infinity, pϕ(f) = sup{|f(x)ϕ(x)| :
x ∈ X} (in the case of βp, ϕ consist of bounded functions on (X∼ \ K), vanishing

at infinity). The locally convex topology βz is the infimum of the locally convex
topologies βK ([13]). We denote by κ the topology of uniform convergence on the

compact subsets of X .

X is called absolutely Borel measurable in X∼ if for any regular Borel measure ν

on X∼, there are Borel sets A, B in X∼, with A ⊂ X ⊂ B, ν(B \ A) = 0 ([13],
Def. 8.4).

When X is locally compact, considering (Cb(X), βt) as topological algebra, it is
proved in [1] that the finest locally m-convex topology weaker than βt is the topology

of uniform convergence on the compact subsets of X .

2. Main results

Theorem 1. (Cb(X), βz) is a topological algebra with jointly continuous multi-
plication, for z = t, σ, τ,∞, g, p.

�����. We first consider the case z = t. Take a bounded and vanishing at

infinity ϕ : X → �
+ . Then

√
ϕ is also bounded and vanishes at infinity. Taking

V = {f ∈ Cb(X) : ‖fϕ‖ � 1} and U = {f ∈ Cb(X) : ‖f
√

ϕ‖ � 1}, we get UU ⊂ V .

This proves the result.

Now we come to the cases z = σ, τ,∞, g, p.

For each α ∈ Kz, take a ϕα � 0 and put Vα = {f ∈ Cb(X) : |fϕα| � 1 on X}
and V = ΓVα. Also take Uα = {f ∈ Cb(X) : |f√ϕα| � 1 on X} and U = ΓUα. It

is enough to prove that for every f in U |f |2 ∈ V . Let f =
n∑

i=1
λifi, fi ∈ Uα(i), p =

∑ |λi| � 1. Now
(∑
( |λi|

p )|fi|
)2 �

∑
( |λi|

p )(|fi|)2 ∈ V implies that
(∑ |λi| |fi|

)2 ∈
p2V ⊂ V . This proves the result. �
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Now we discuss the necessary and sufficient conditions for these topologies to be

locally m-convex.

Theorem 2. The topological algebra (Cb(X), βt) is locally m-convex if and only

if X is sham compact. In this case βt = κ.

�����. If X is sham compact κ is finer than βt and so κ = βt. But κ is locally
m-convex and so the result follows.

Conversely suppose βt is locally m-convex. Take V to be an absolutely convex,
solid 0-neighbourhood. Because of locallym-convex property, there exists a bounded

and vanishing at infinity ϕ : X → �
+ such that if U = {f ∈ Cb(X) : |fϕ| � 8} then

ΓUn ⊂ V . Let M = sup{ϕ(x) : x ∈ X}. Put K = {x ∈ X : |ϕ(x) � 1}−. K is

a compact subset of X . Put W = {f ∈ Cb(X) : |f | � 1
(4(M+1)) on K}. We prove

that W ⊂ V . Take an f ∈ W . If f is in U , we are done. If not let K1 = {x ∈
X : |f(x)| � 2} and K2 = {x ∈ X : |f(x)| � 3}. Let f1 = inf(3, |f |), 2f1 ∈ U (note
|ϕ| < 1 outside K). Define g0 ∈ Cb(X), 0 � g0 � 2, g0 = 2 on K2, g0 = 0 on

K1. Then g0 ∈ U . Choose n such that 122f1 +
1
2g

n
0 � |f |. Since V is solid and

1
22f1 +

1
2g

n
0 ∈ V , we get that f ∈ V , which proves that βt � κ � βt. By [4], X is

sham compact. �

Theorem 3. The topological algebra (Cb(X), βz) (z = σ,∞, g, p) is locall
m-convex if and only if X is pseudocompact. In this case these topologies coincide

with norm topology.

�����. Suppose X is pseudocompact. In this case X∼ = νX . For z = σ, p,

Kz is void ([12]) and so these topologies become norm topologies which are locally
m-convex. Also by [8],

(
Cb(X), ‖ ‖

)′
=Mg(X) =M∞(X). Since βg, β∞ are Mackey

([5], [4]), these topologies coincide with norm topology and so are locally m-convex.
Conversely suppose βσ is locally m-convex. Take V to be an absolutely con-

vex, solid 0-neighbourhood in βσ. Then there exists an absolutely convex 0-
neighbourhood U in βσ such that ΓUn ⊂ V . Fix a zero-set Z ⊂ X∼ \ X . Take a

ϕ ∈ C(X∼ \ Z), ϕ vanishing at infinity and U ⊃ {f ∈ Cb(X) : |fϕ| � 8}. K = {x ∈
(X∼ \Z) : |ϕ(x)| � 1} is a compact subset of (X∼ \Z). Proceeding as in Theorem 2,

we get that V ⊃ {f ∈ Cb(X) : |f | � 1
(4(M+1)) on K}, whereM = sup{ϕ(x) : x ∈ X}.

Thus βσ is weaker than the topology of unifrom convergence on the compact subsets

of (X∼ \ Z). Since
⋃{Z : Z a zero set, Z ⊂ (X∼ \ X)} = (X∼ \ νX), support of

|µ|∼ ⊂ νX , for every µ ∈ Mσ(X). Take an f ∈ C(X), f � 0. If f is unbounded,

there exists a sequence {xn} ⊂ X such that f(xn)→∞. Since the compact support
of the measure µ∼, µ =

∞∑
n=1

1
2n xn, must be subset of νX and f is finite-valued on

νX , we get a contradiction. This proves X is pseudocompact.
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In other cases,
⋃{C : C ∈ Kz} ⊃ (X∼ \ νX), and so proceeding exactly as above

we prove that X is pseudocompact. �

Before considering the case of βτ , we prove the lemma:

Lemma 4. If supp(µ∼) ⊂ X , ∀µ ∈ Mτ (X), then βτ = βt.

�����. Take any P ⊂ M+
τ (X), which is σ(Mτ (X), Cb(X))-compact. This

means P is βτ -equicontinuous ([12]). We will prove that it is βt-equicontinuous.
For this it is enough to prove that given η > 0 there is a compact K ⊂ X such

that every measure µ ∈ P , |µ|(X \K) < η. Suppose this is not true. Denoting by
{α : α ∈ I}, all compact subsets of X , and ordering them by inclusion, I becomes

a directed set. There exists an η > 0 such that for every α ∈ I there is a µα ∈ P

with µα(X \ α) � 2η. By taking subnet if necessary, we assume µα → µ ∈ P .

Suppose C = supp(µ), a compact subset of X and V = X \ C. Take an increasing
net {fγ}, γ ∈ J , 0 � fγ � 1 of continuous functions on X such that fγ = 0, on

C, fγ ↑ χV . Since βτ is locally solid and P is βτ -equicontinuous, solid hull of P is
also βτ -equicontinuous. This means the net {fγµα} (the ordering being point-wise)
is relatively σ(Mτ (X), Cb(X))-compact. By talking subnet if necessary, we assume
this net is convergent to some ν ∈ M+

τ (X). We claim ν = 0. Fix a q > 0. There is

(γ0, α0) such that |µα(fγ) − ν(1)| � q for every (γ, α) � (γ0, α0). Keeping γ fixed
and taking limit over α and using the fact that µ(fγ) = 0, we get that ν(1) � q.
This proves ν = 0. Take (γ1, α1) such that µα(fγ) < η for every (γ, α) � (γ1, α1).
Now take a compact α2 ∈ I, α2 � (C ∪ α1). This means µα2(fγ) < η, ∀γ. Taking
limit over γ, we get µα2(V ) � η. Since V ⊃ (X \ α2), this is a contradiction. Thus

we have proved that βt = βτ . �

Theorem 5. The topological algebra (Cb(X), βτ ) is locally m-convex if and only

if X is absolutely Borel measurable in X∼ and sham compact. In this case βτ = κ.

�����. Suppose βτ is locally m-convex. Fix a compact C ⊂ (X∼ \X). Pro-
ceeding exactly as in Theroem 3, we prove that the support of |µ|∼ ⊂ X , for every

µ ∈ Mτ (X). By Lemma 3, βt = βτ . By Theorem 2, X is sham compact and by [12],
X is absolutely Borel measurable in X∼.

Conversely if X is sham compact and absolutely Borel measurable in X∼, κ = βt

(Theorem 2) and Mτ (X) = Mt(X). Thus elements of Mτ (X) are supported by the

compact subsets of X . By Lemma 3, βτ = βt. By Theorem 2, βτ is locallym-convex.
�
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