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Abstract. In this article, it will be shown that every f¢-subgroup of a Specker ¢-group
has singular elements and that the class of /-groups that are ¢-subgroups of Specker /(-
group form a torsion class. Methods of adjoining units and bases to Specker ¢-groups are
then studied with respect to the generalized Boolean algebra of singular elements, as is the
strongly projectable hull of a Specker ¢-group.
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1. INTRODUCTION AND BACKGROUND RESULTS

This paper continues recent research into the class of Specker /-groups begun by the
authors in [4], and continued in [7] and [6]. Earlier work in this series has concentrated
on the lattices of such /-groups and especially on the generalized Boolean algebras
of singular elements. In this paper, we investigate ¢-subgroups and various hulls of
Specker /-groups, especially the strongly projectable hull.

We review now some of the basic terms and concepts of lattices and lattice-ordered
groups. For further reference, the reader should consult [9] (especially Sections 6, 54,
and 55). A lattice is a partially ordered set L such that for every pair of elements
x,y € L, there exists a least upper bound (called the join and written x V y) and
a greatest lower bound (called the meet and written « A y). An ideal of a partially
ordered set P is a subset S such that if z < s € S, then x € S, while a dual ideal
(filter) is a subset T such that ify >t € T, then y € T. An ideal I of a lattice is prime
if x Ay € I implies either x € I or y € I. Within a given partially ordered set P, an
element a covers an element b if b < a and there are no intervening elements.
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Since we will be dealing with both groups and rings, additive notation will be used
to denote all group operations, even in cases when the groups may not be abelian. A
lattice-ordered group (written ¢-group), is a group G whose underlying set is a lattice
such that if g < h, then for any z,y € G, v +g+y <  + h +y. For an {-group
G, G denotes the set {g € G: g > 0}. For g € G, the positive part of g (written
g+) is g V 0, while the negative part of g (written g_) is —g V 0; the absolute value
of g (written |g|) is g+ Vg— = g+ + g— = gV —g. Two elements a,b € G are disjoint
if |a| A |b] = 0. The underlying lattice of an ¢-group is necessarily distributive; an
l-group G is completely distributive if for any sets I, J, \/ Agi; = AV 9¢¢),;- An

IJ JJr

l-group G is archimedean if for any pair of positive elements a,b € G, there exists
an integer n such that na £ b; an archimedean /-group is necessarily abelian. An
{-group is hyperarchimedean if each ¢~-homomorphic image is archimedean.

An (-subgroup A of an ¢-group G is both a sublattice and a subgroup. A is dense
if for each 0 < g € G, there exists 0 < a € A such that a < g; A is large if for
each 0 < g € G, there exists a positive integer n and 0 < a € A such that a < ng.
An fl-subgroup C' is convez if 0 < x < ¢ € C implies x € C; C(G) will denote the
lattice of convex ¢-subgroups of G, partially ordered by inclusion. For C' € C(G),
the (right) cosets of C' are ordered by C' + x < C + y if there exists ¢ € C such that
c+ x < y. A normal convex f-subgroup L is called an ¢-ideal; under the quotient
group operation and coset order, G/L is an f-group. C(G) is a complete sublattice
of the lattice of subgroups of G. Thus for any element g € GG, there exists a minimal
convex (-subgroup containing g; this is called a principal convex ¢-subgroup and is
denoted G(g). Cp(G) will denote the lattice of principal convex ¢-subgroups of G,
partially ordered by inclusion. An element g € G is a strong order unit for G if

Glg) =G.

A convex f-subgroup P of an ¢-group G is prime if PT is a prime lattice ideal of GT;
a convex (-subgroup is prime if and only if its right cosets are totally ordered under
the coset order. Under inclusion, the prime convex ¢-subgroups of an ¢-group form
a root system: i.e., a partially ordered set in which no two incomparable elements
have a lower bound. The intersection of a chain of prime subgroups is a prime
subgroup and so there exist minimal prime subgroups. For any 0 # g € GG, a convex
{-subgroup M maximal with respect to not containing g is called a value of g and is
called regular; if M is a value of some element g € GG, then M is a prime subgroup
of G. T'(@) will denote the regular subgroups of G, partially ordered by inclusion. A
plenary subset A of T'(G) is a dual ideal of I'(G) such that {M: M € A} = (0).
An abelian ¢-group is completely distributive if and only if I'(G) has a (necessarily
unique) minimal plenary subset.
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For X C G, the polar of X, written X1, = {g € G: |g| A|z| =0 for all z € X}.
X+ €C(G). If X = {g} for some g € G, {g}* and {g}** are simply written g
and g+, respectively. If C' € C(G) and G is the (group) direct sum of C' and C*,
we write G = C B C*+. In this case, G is called the cardinal sum of C and C+ and
C is a cardinal summand of G. More generally, for a set {A)}a of l-groups, the
cardinal product, denoted [], Ax, is the (external) group direct product of {Ax}a
with pointwise order operations. The cardinal sum, written ), Ay, is the f-subgroup
of [T, Ax of those elements having finite support. An ¢-group G is projectable if for
all g € G, G = gt+ B g*. An f-group G is strongly projectable if for any polar
subgroup P C G, G = PB P*. A characterization of hyperarchimedean ¢-groups is
that an ¢-group G is hyperarchimedean if and only if for all g € G, G = G(g) B g*.
An element g € G is a weak order unit if g- = (0); strong order units are necessarily
weak order units. An /-group G is complete if any subset of G bounded above has
a least upper bound. Complete /-groups are necessarily archimedean and strongly
projectable and every archimedean /-group G has a unique minimal complete ¢-group
G” into which G can be f-embedded as a dense ¢-subgroup.

An element 0 < g € G is basic if G(g) is a convex totally ordered subgroup of G.
G has a basis if each positive element exceeds a basic element. For an ¢-group G
with a basis, the basis subgroup B(G) is the convex f-subgroup generated by the
basis of G.

A torsion class T of f-groups is a class that is closed with respect to containing
convex f-subgroups, closed with respect to ~-homomorphic images, and also having
the following property: for any ¢-group G, if {C\} is a set of convex {-subgroups
of G such that each C\ € 7, then \/C) € 7.

A lattice-ordered ring, denoted f-ring, is a ring R whose underlying set is lattice-
ordered such that (R, <,+) is an ¢-group and such that if a < b and 0 < cin R, then
ac < be and ca < ¢b. An o-ring is a totally ordered ring. An f-ring is an ¢-ring R
such that R is a subdirect product of o-rings.

Throughout, Z will denote the integers, () the rationals, and R the reals, all with
the usual addition, multiplication, and order.

An element 0 < g in an ¢-group G is singular if for all0 < h < g, h A (g —h) = 0.
An /l-group G is a Specker (-group if G is generated as a group by its singular
elements [8], while G is a singular £-group if for each 0 < g € G, there exists a
singular element s € G such that s < g. The following proposition from [2] gives
many useful characterizations and properties of Specker ¢-groups.

Proposition 1.1. Let G be an {-group and A be its set of minimal prime sub-
groups. The following are equivalent:
a) G is a Specker (-group.
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b) There exists an {-embedding ¢ of G into [], Z such that Go is generated as a
group by characteristic functions.

c) There exists an (-embedding o of G into [[, Z such that for all g € G, the
characteristic function of the support of g, Xsupp(g), 1S iIn Go.

d) There exists an embedding T of G into [[, Z such that Go is generated as a
group by characteristic functions and is an £-subgroup of the subring of functions
of bounded range.

e) There exists an embedding T of G into [[, Z such that Go is generated as a
group by characteristic functions and the set of characteristic functions is closed
with respect to meets.

The following proposition (proven in [2]) gives a useful representation of elements
of a Specker ¢-group.

Proposition 1.2. Let G be a Specker (-group. Then for any 0 # g € G, there
exists a set of mutually disjoint singular elements {s1,...,$,} C G and integers
mi,..., My such that g = m1s1 + ...+ MySy.

We will call mysy + ...+ mys, a Specker representation of g. The reader should
be aware that such a representation is not necessarily unique, but each g has a
representation for which the integers my, ..., m, are distinct and this representation
is unique.

We remark here that every Specker ¢-group is hyperarchimedean and that the class
of Specker ¢-groups form a torsion class.

If G is a Specker /-group, a multiplication can be placed on G by, for elements
g,h € G with respective Specker representations g = mys1 + ... + mgsi and h =
niti + ... + nptp, defining g - h = i i min;i(si At;) [2]. With this multiplication

i=1j=1
and viewing G as an f-subgroup of HJA Z, G is then an f-subring of [[, Z [2]. This
is the unique multiplication on G so that (G,<,+,) is an f-ring and so that for
any two singular elements s and ¢, s-t = s A t. When this natural multiplication is
important, we will refer to the Specker /-group G as a Specker f-ring.

A p-disjoint subset of an f-group G is a subset P C G such that if p,q € P,
then (pAg)A(p— (pAq)) =0. If G is a Specker ¢-group, then its set of singular
elements is a maximal p-disjoint subset. Conversely, if P is a p-disjoint subset of G
closed with respect to meets, then the subgroup (P) of G generated by P is a Specker
{-subgroup of G with P as its set of singular elements [7]. An ¢-group G is said to
have a Specker signature [7] if G has a Specker ¢-subgroup H such that H is large
in G.

Part of the fascination with Specker /-groups is that they are part of the large
class of ¢-groups having a wunique addition. Recall [4] that an ¢-group G has a
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unique addition if, having chosen an element to be the group identity, there exists
a unique group operation + on the lattice (G, <) such that (G, <,+) is an ¢-group,
and that G has essentially one addition if given any two compatible group opera-
tions + and *, (G, <,+) = (G, <, *). Any ¢-group having a unique addition must be
archimedean [12] while at the other extreme, A(R), the ¢-group of order-preserving
permutations of the real line under pointwise order and composition o, has essentially
one addition [10]. Moreover, Holland [11] has shown that .A(R) also has the property
that there exists a unique lattice-ordering < such that (A(R), <, o) is an ¢-group.

No result completely parallel to Holland’s result for A(R) is possible for Specker
{-groups in general. Given the usual operation +, there exist many partial orders <
such that (G, <,+) is an ¢-group. The following is the best result possible.

Proposition 1.3. Let (G,< +) be a Specker ¢-group with S as its generalized
Boolean algebra of singular and identity elements. Then < is the unique lattice order
on (G,+) such that each element of S is singular.

Proof. Suppose < is a lattice order on G such that (G, <, +) is an ¢-group with
each element of S being singular in (G, <, +). Let A; denote the meet operation in
(G, <,+) and Ay denote the meet operation in (G, <, +).

Let s,t € S. Then sA1t=01in (G,<,+) if and only if s+¢ € S, and so s Azt = 0.

Let g € G; g then equals mys1 + ... +my, Sy, where s; A1 s; = 0if ¢ # j. Since by
the above paragraph, disjoint singular elements remain so in (G, <, +), ¢ is positive
in (G, =,+) if and only if each m; > 0, and so g is positive in (G, <, +) if and only
if g is positive in (G, =<, +). O

2. SUBGROUPS AND SUBRINGS OF SPECKER LATTICE-ORDERED GROUPS

Recall [9] that a component of an element g of an ¢-group G is an element x such
that |g — | A || = 0. The components of an element form a generalized Boolean
algebra. S (g) will denote the subgroup of G generated by the components of g;
Sc(g) is then a Specker ¢-subgroup of G.

Theorem 2.1. For an element g of an ¢-group G, G(g) is ¢-isomorphic to an
{-subgroup of a Specker {-group if and only if there exists an integer n such that
nG(g) € Sc(g)-

Proof. Supposethat G is an £-subgroup of a Specker ¢-group H. Let 0 < g € G.
It suffices to prove that there exists an integer n such that nG(g) C S¢(g) only for
the case that G itself is Specker, as nG(g) C nH(g).
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g = n181 + ...+ ngSk, where the s; are pairwise disjoint singular elements and
n; are distinct integers. Let n be the least common multiple of ny,ns,...,nt. Then
ns; € Sg(g) for all 4, and, if ¢ is a singular element of G(g) such that ¢t < s; for
some i, then n;t; is a componen t of g and nt € S(g). Thus if = is any singular
element of G(g), v = (x A s1) + (x A s2) + ...+ ( A si) implies that nx € Sg(g).

Now let h € G(g); h can then be written in the form h = mqt1 +. ..+ m,t,, where
the ¢, are pairwise disjoint singular elements of G(g) and such that for each j, there
exists an 4 such that ¢; < s;, and where the m; are integers. Above it was shown
that nt; € Sg(g) for all j, and so nh = mint1 + ... + mynt, € Sa(g).

Conversely, suppose that G is an ¢-group such that for all g € G, nG(g) C Sa(g).
Now if g > k, then g > nk. But nk € nG(g) C Sc(g), which contradicts that Sc(g)
is archimedean. So G(g) is archimedean and hence abelian. As G(g) is also torsion-
free, the map x — nz is an ¢-isomorphism of G(g) into S(g), which is Specker. O

It should be remarked here that Lin [13] gave the first proof that if A is an
{-subgroup of a Specker ¢-group, then for any g € A, there exists an integer n such
that nA(g) C Sa(g).

Now an /-subgroup of a Specker ¢-group need not be a Specker ¢-group. For
let G = ZFC, the (-group of eventually constant integer sequences with pointwise

(oo}

addition and order [5]. Let A be the ¢-subgroup generated by (Z Z) D1(2,2,...).
i=1

G is then a Specker /-group while A is not. However, any ¢-subgroup A of a Specker

{-group G must have elements that are singular in A.

Theorem 2.2. Let G be a Specker {-group and H be an {-subgroup of G. Then
H has elements that are singular in H.

Proof. Since G is a Specker /-group, there exists an f-embedding of G into
[14 Z such that each singular element of G is mapped to a characteristic function.
In the following, it is presumed that G has such a representation. Moreover, with
such a representation, each g € G has finite range. For every 0 # a € range(yg),
the characteristic function of g~1(«) is a singular element s of G. Each g € G thus
has a unique representation of the form g = a1s1 + ... + ans,, where {aq,...,a,}
is the nonzero range of g, s; is the characteristic function of ¢7!(c;), and a1 <
Qg < ... < ap. This will be called the standard representation of g and «a; the
standard coefficient of s;. Finally, define o(g) = a1 + ... + an.

Let 0 < a € H be such that o(a) is minimal over all positive elements of H; let
a = a181 + ...+ aps, be its standard representation. Note that if 0 < h € H such
that h € H(a) = a*, then supp(h) Nsupp(s;) # 0 for all 1 < i < n. For otherwise,
let x be the projection of a onto H(h) = h*+; then 0 < o(z) < o(a), a contradiction
to the choice of a.
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Let 0 < z < a in H and let b be the projection of a onto z++. Then, since G,
and thus H, is hyperarchimedean, b € H, b A (a — b) = 0, and supp(b) = supp(z).
The goal now is to show that z = b. Let z = (it + ... + Bt be the standard
representation of z; the standard representation of b then is b = ayr1 + ... 4+ apry,
where 0 <r; =s; A(t1 V... Vin).

Suppose there exists r; such that |[{t;: r; At; >0} > 2. Let {3;,,,,...} be the
standard coefficients of those ¢;’s such that r; At; > 0; assume §;, < 8, <.... Now
for any = € supp(r;), B, b(xz)—a;z(x) < 0, and so supp[(5;, b—a;2z)VO]Nsupp(r;) = 0.
By arguments presented above, this means (6;,b — a;2) V0 = 0, and so ;b <
a;z. Since supp(r;) \ supp(tj,) # 0, B3;,b < a;z. Let ¢ be the projection of b onto
(iz — Bj,b)*; since for any = € r; A tj,, a;z(x) — Bj,b(x) = 0, ¢ > 0. Note that
if x € supp(c) N supp(ry), then a;z(x) = Bj, ak, implying that z(z) = G;, ar/c.
Thus for any k such that supp(c) Nsupp(ry) # 0, there exists a unique ¢;, such that
t;, A1 > 0. Since z < a, then 3;, < ag, while 85, < a;. Let w be the projection
of z onto c¢++; then o(a) < o(w) =Y. B, < > ar = o(c) = o(a), a contradiction to
the choice of a.

So for any r;, there exists a unique ¢; such that r; At; > 0. Since t; V... Vi, =
r1 V...V r, and both sets of singular elements of G are pairwise disjoint, we must
have that m < n and that each ¢t; = V{r;: r; At; > 0}.

Suppose now there exists t;, such that |{ri: r; A t;, > 0}’ 2. Let R;, =
{ri: miAtj, > 0} and let o;; < @, < ... be the standard coefficients of the r;’s € Rj,.

Since z < b, B, < a; for all r; € R, and so 3, < a;,. So o(b) < o(z) = > B =
j=1
(Z ﬁj) + Bjo < (Z 53) +20j, < ( 2 Oéz‘) + ai, + i, < 3 a; = o(b), which

J#3jo J#jo i¢ Ry, i=1
is an obvious contradiction.

So for all ¢;, there exists a unique r; such that ¢t; Ar; > 0. Clearly, then, t; = r;.
Since z < b, f; < «; for all ¢, implying o(b) < o(z) = > 6; < > a; = o(b). So for
i=1 i=1

each i, ; = a;, and so z = b. O
Corollary 2.3. Let G be an (-group (-isomorphic to an ¢-subgroup of a Specker
{-group. Then G is a singular ¢-group.
Proof. Let0 < g e G andlet 0 < ¢t € G(g) be a singular element of G(g).
Then 0 < gAt < gand s=gAtis singular. O
Corollary 2.4. Let G be an {-group {-isomorphic to an ¢-subgroup of a Specker

(-group with S as the set of singular elements of G. Then S+ = (0).
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Corollary 2.5. Let G be an (-group (-isomorphic to an ¢-subgroup of a Specker
{-group. Then G has a Specker signature.

Corollary 2.6. Let G be an (-group (-isomorphic to an ¢-subgroup of a Specker
{-group with S as the set of singular elements of G. For s € S and 0 < g € G, let g,
be the projection of g onto s*+. Then g = \/ gs.

ses

Now if A is an /-subgroup of a Specker /-group G, then a singular element of A
may not be singular in G. A will be called a Specker* ¢-subgroup of G if A itself is
a Specker /-group and every singular element of A is also singular in G.

Proposition 2.7. The intersection of Specker® (-subgroups is a Specker* (-
subgroup.

First proof. Let {A)} be Specker* ¢-subgroups of a Specker {-group G,
and let K = (JAx. Let 0 < k € K; then in G, k = kys1 + ... + knSn, where
0< ki <...<k,and s1,...,s, are singular elements of G. Now since for any Ag,
k € A, implies that &k = myt; + ... + mpt, for mutually disjoint singular elements
t1,...,tp € Ay,. Since s = s1V...Vs, = t1V.. .V, € K, k151 = k—[k—k15)V0] € K.
By induction, k;s; € K for all i. Thus s; = s Ak;s; € K and thus K is Specker*. [

Second proof. Let X8 be the set of filters F on the generalized Boolean
algebra of singular elements of G maximal with respect to 0 ¢ F. For any F, Ar is
a pure subring of [] Z, and so K =[] Ar is also a pure subring of [] Z and thus is

B B

a Specker* (-group. O

Now let A be an /-subgroup of a Specker ¢-group G. By Proposition 2.7, there
exists a minimal Specker* ¢-subgroup G(A) of G containing A. However, G(A) may
not be unique in the sense that if A is contained in another Specker ¢-group R, then
R(A) 2 G(A). As an example, 27 C 7 and the minimal Specker* ¢-subgroup of 7
containing 27 is Z. However, 27 is itself a Specker ¢-group. Thus to get uniqueness,
we need an additional hypothesis, which will be presented in Proposition 2.10 below.

Let . be the class of ¢-groups G such that G is ¢-isomorphic to an ¢-subgroup of
a Specker (-group.

Theorem 2.8. .¥ is a torsion class of {-groups, closed with respect to ¢-subgroups.

Proof. First, if A is an f-subgroup of G € ., then clearly A € .. So . is
closed with respect to convex f-subgroups.
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Now let G € . and K be a convex ¢-subgroup of G. Let K + g € G/K, and n be
an integer such that nG(g) C Sg(g). Then

% I C Sa/r(K +9).

n{Q(KJrg)} n{K+G(g)} c K+ Sc(9)
K
So . is closed with respect to ¢-homomorphic images.

Now let C be a chain of convex /-subgroups of an ¢-group G such that for all C' € C,
C e . Let 0 < g € |JC; there exists C € C such that g € C, and so there exists an
integer n such that nC(g) C Sc(g). But since C is convex, C(g) = G(g) = (UC)(9)
and Sc(9) = Syclg) = Sa(g). So UC € &, and thus by Zorn’s Lemma, the set of
convex f-subgroups of G in .¥ has maximal elements.

Now let A, B be convex ¢-subgroups of an ¢-group G that are in .. Since A, B are
also hyperarchimedean, then A V B is also hyperarchimedean. Let 0 < g € AV B.
Then g = a + b, where a € A and b € B. Since A V B is hyperarchimedean,
a=a+a; € (aAb)TBG(anb), and b = B+b1 € (aAb)LBG(aAb). Note 0 < anb =
(a—a1)A(b—b1) < (a—(anb))A(b—(anb)) = 0. So g = a+(ay+b1)+b € (AvB)(a)B
(AV B)(a1+b1)B(AVB)(b), (AVB)(g) = (AVB)(a)B(AV B)(a1 +b1)B(AV B)(b),
and Savp(g9) = Savp(a) B Savp(ar + b1) B Savs(b).

Since @,a; + b1 € A, there exist integers n; and ns such that ni(AV B)(a) =
n1A(a) C Sa(a) = Savp(a) and no(AV B)(a1 +b1) = naA(a; +b1) C Salar+b1) =
Savp(ai+by). Likewise, there exists an integer n3 such that n3(AVB)(b) C Savz(b).
So ninans[(AV B)(g)] € Savp(g). Soif A, B are convex ¢-subgroups of G that are
also in ., then AV B € .. Thus for any collection {C)} of convex ¢-subgroups of
G such that {C\} C .7, \VC) € <.

The closure of . with respect to £-subgroups is obvous. O

Theorem 2.9. For an {-group G, G € . if and only if G is archimedean and G
is a Specker (-group

Proof. If G is archimedean and G" is a Specker /-group, then G C G” implies
that G € 7.

Conversely, G € . implies that G is hyperarchimedean. By Corollary 2.3, G is a
singular /-group and so G” is also singular and hyperarchimedean. But then G” is
Specker. O

Now if G € ., then G” is a Specker /-group and G is dense in G". Let G# be
the intersection of all Specker* ¢-subgroups of G that contain G.

Proposition 2.10. G# is the unique minimal Specker (-group in which G is
dense.
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Proof. Suppose H is a Specker ¢-group and G is dense in H. Then G is dense
in H" as well, and so G C G C H”. Since G is dense in H", any singular element
of G” is also singular in H”\, and thus G" is a Specker* /-subgroup of H".

Now let A be the set of Specker* f-subgroups of H” containing G, and let

J=N{A:AeA}. Since G* € A, J =JNG" = N (ANG") = G¥ since if
AcA
A is a Specker* /-subgroup of G” containing G, then A is also a Specker* ¢-subgroup

of H". Since H is also a Specker* (-subgroup of H", G# C H. O

Proposition 2.11. G# is the intersection of all pure subrings of G that con-
tain G, and so is the pure subring of G generated by G.

Proof. Any Specker* /-subgroup of G” is also a pure subring of G*. O

In [6], it was shown that if I is a ring ideal of a Specker ¢-group G, then (I, +) is
a saturated subgroup of (G, +). The converse is also true.

Proposition 2.12. If R is a Specker f-ring, then any saturated subgroup I of
(R, +) is a ring ideal.

Proof. Let h=mis1+...+mpsp, € [ and y = nit; +... +n,t, € R. Then
h=mi(st At1) +...+mi(s1 Aty) + ... +mp(sr At1) + ... + mp(sy A tp) while
y=mni(s1 At1) +...+ni(sp At1) + ... +np(s1 Atr) + ... + n.(sp A ty). Since

P T
(Sil /\tﬁ) A (81‘2 /\tjz) =0 if il 7’5 i2 or jl 75 jQ, gh = Z Z m,n](sz /\tj). Since

i=1j=1
m;(s; At;) € I because I is saturated, then nym;(s; At;) € I. So gh € I. O

Corollary 2.13. The ring ideals of a Specker f-ring R form a distributive lattice
withIVJ=I1+Jand INJ=1NJ.

Proof. Since ring ideals are identical with saturated subgroups, we must have
that IvJ=I+Jand INJ=1INJ.

Now let I,J, and K be ring ideals of R. Let a € IN(J+ K); then a = b+ ¢
(where b € J and ¢ € K). Without loss of generality, there exists a pairwise disjoint
set of singular elements {s1,...,s,} and sets of integers {a1,...,an}, {b1,...,bn},
{c1,...,¢n} such that a = a1s1 + ... + ansSn, b = b1s1 + ... + bpsy, and ¢, =
181 + ... + ¢S, We can assume without loss of generality that a; # 0 for all
1<1<n.

Now in 7, (a;) N ({b;) + {(c;)) = ({a;) N (b)) + ({a;) N {c;)). Thus each a; = u; + v;,
where u; € (a;) N (b;) and v; € {(a;) N {c;). But {(a;) N (b;) = (d;), where d; is the
least common multiple of a; and b;. Thus w; is a multiple of both a; and b;, and thus
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u;8; € I N J since by saturation, a;s; € I and b;s; € J. Likewise, v;s; € I N K. But
then

a=(u1s1+...+upsp)+(1s1+...+wvusp) € INJ)+ (I NK).

SoIN(J+K)C (INnJ)+ (INK). The reverse containment is clear. O

Now if R is a Specker f-ring, then each convex /-subgroup is saturated and so
by Proposition 2.12 is a ring ideal. The following proposition gives a ring-theoretic
characterization of the convex f-subgroups of R.

Proposition 2.14. For a ring ideal I of a Specker f-ring R, the following are
equivalent:

a) R/I is torsion free.

b) I is pure.

c) I is an f-ideal of (R, <, +).

Proof. Clearly (a < b) and (¢ = a).

Assume that R/I is torsion free. Now let g € I have Specker representation
mi81 + ...+ muSy,. Since [ is a ring ideal, m;s; = s;9 € I for all 1 < ¢ < n. Since
R/I is torsion free, m;s; € I implies s; € I for all i. Thus u = s1 V...V s, =
s1+...+s,€1.

Now suppose 0 <

h in R. Let h = kit1+. ..+ kpt, be a Specker representation
of h. Then for all 1 <

<y

J <p,t; <uimplies that t; =t;u € I. Soh € 1. O
Proposition 2.15. Let G be a Specker f-ring and S be its set of singular elements.

For each s € S, let ns be an integer. Let H be the subgroup of (G,+) generated by

{nss: s € S}. Then H is a ring ideal of G if and only if for every component t of s,

nst € H.

Proof. If H is aring ideal of G, then H is saturated. Thus if ¢ is a component
of a singular element s € (G, then since n,t is a component of nys, ngt € H.

Conversely, let 0 < h € H; then h = k155,51 + ... + kmns,, Sm. Let t € S. Then
ht = king, (s1t) + ... + kmhs,, (Smt) = kins, (s1 At) + ... + kmns,, (Sm A t). Since
s; At is a component of s; for all i, king, (s; At) € H, and so gt € H. So for any
g€ G, hg=nh(aqts + ...+ apty) € H. O
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3. HULLS OF SPECKER /-GROUPS
3A. Adjoining a unit to a Specker /-group.

Proposition 3.1. For an ¢-group G, G is a Specker {-group with an order unit if
and only if G has a strong order unit that is singular.

Let B be a generalized Boolean algebra; let 35 be the set of ultrafilters on B. B can
be considered as a set of subsets of 388, by mapping b € B to {F € ¥B: b € F}. Let
C =BU{ZB\b: b€ B}. Cis then the free Boolean algebra generated by B, and
will be denoted B*. Now if G is a Specker {-group, let {s)\} be a maximal pairwise
disjoint subset of singular elements of G. G can then be f-embedded into [[(sx)*+;
in [[(sx)**, let u be the element (...,s\,,Sx,,--.) and G* be the f-subgroup of
[1(sx)*+ generated by G U {u}. G* is then a Specker ¢-group with singular order
unit u. (Equivalently, if G does not have a unit, G* = G ® (u), where g € G* is

singular if ¢ is singular in G or if u — g is singular in G).

Proposition 3.2. Let B be a generalized Boolean algebra; let G be the Specker
{-group having B as its generalized Boolean algebra of singular and identity elements;
and let H be the Specker (-group having B" as its generalized Boolean algebra of
singular and identity elements. Then G* = H.

Proof. It suffices to show that the generalized Boolean algebras of singular and
identity elements are isomorphic [6]. Now s is singular in G* if either s € G or u — s
is singular in G.

Let C be the generalized Boolean algebra of singular and identity elements of G*.
Define a: B* — C by

t, t € B,
o =
u— (EB\t), té¢hB.
« is then easily verified to be a lattice isomorphism. O

Proposition 3.3. For a Specker {-group G, G" is the unique Specker (-group
with unit containing G as a dense {-subgroup.

Proof. Suppose G is dense in a Specker ¢-group H with order unit z. Let S(G)
and S(H) denote the generalized Boolean algebras of singular and identity elements
of G and H, respectively.

Then x = \/{s: s singular in G}. Define

t, t e S(G),

a: S(GY) — S(H): ta=
() (H): 1 {x(ut), t ¢ S(G).
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« is then easily shown to be a lattice isomorphism of S(G*) into S(H), and so lifts
to an f-embedding of G" into H. O

Proposition 3.4. Let G be a Specker (-group with a unit u. Then the following
are isomorphic as Boolean algebras:

a) the principal polars {g+*} of G,

b) the principal convex ¢-subgroups of G,
¢) the components of u,

d) the singular and identity elements of G.

Proof. Since G is hyperarchimedean, g+ = G(g), showing the identity of
the first two Boolean algebras. Now for any g € G, there exists a unique singular
element s, € G such that G(g) = G(s,4), and so the map G(g) — s, is a Boolean
isomorphism of the principal convex f-subgroups of G onto the components of u,
which form the Boolean algebra of singular and identity elements. O

We remark here that the first three Boolean algebras listed above are isomorphic
for any hyperarchimedean ¢-group with an order unit u.

Proposition 3.5. Let G be a dense ¢-subgroup of a Specker ¢-group H. Then H
can be (-embedded into (G*)".

Proof. Let S(G) and S(H) be the generalized Boolean algebras of singular
elements of G and H, respectively. Let ¢ be singular in H; thent = \/{s € §: s < t}.
Now z = \/{s € §: s < t} exists in (G*)".

So define a: S(H) — S[(G“)"]: t — z. « is clearly a lattice homomorphism and
if t1 # to in S(H), either t; \ t2 > 0 or t1 \ t2 > 0, in which case t; # taa. So « is
injective. O

3B. Adjoining a basis to a Specker /-group.

Let G be a Specker ¢-group; since G is hyperarchimedean, then for any plenary
subset A of I'(G), G can be (-embedded into [[5 Z. Then G ® )", 7 is a Specker
l-subgroup of [[A Z containing G and having a basis. Moreover, in G & Y A Z,
Gt =Go > A Z. This is the only method to ¢-embed G as a Specker* ¢-subgroup
of a Specker /-group H with a basis such that G+ = H.

Now if I'(G) has a minimal plenary subset A, then G is completely distributive and,
without loss of generality, >, Z C G C [[ 5 Z, showing that G already has a basis. If
I'(G) does not have a minimal plenary subset, then for any plenary subset A of I'(G),
there exists another A such that A C A. Thus if G is not completely distributive,
there is no unique way of adjoining a basis to G. Moreover, as will be shown in
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Example 4.4, there is no way of guaranteeing that any two such bases have the same
cardinality.

3C. The strongly projectable hull of a Specker /-group G.

Let B be a generalized Boolean algebra. For X C B, let X+ ={be B: bAx =0
for all z € X}. B will be called strongly projectable if for all X C B, B is the convex
hull of X+ U X+,

Proposition 3.6. Let G be a Specker {-group and S be its generalized Boolean
algebra of singular and identity elements. G is strongly projectable if and only if
S is strongly projectable.

Now any Specker /-group G has a strongly projectable hull; that is, a unique
minimal strongly projectable /-group G°* in which G is dense ([1], [2], [3]). It may
or may not be clear that any generalized Boolean algebra 5 has a strongly projectable
hull B°F, but this will be proven shortly.

Theorem 3.7. Let G be a Specker (-group. Then G°F is a Specker (-group.

Proof. Since G” is strongly projectable and G is dense in G, G C G°F C G".
Since G is dense in G°7, any singular element of G is also singular in G°7. Thus
G C K the Specker radical of G5F.

Let P be a polar in K; then G°F = PL+ @ P+, Since K € C(G), K = (K N
PrHB (KN Pt) = PB (KN P). Therefore, K is strongly projectable. Since G
is dense in K, K = G°, and thus G°* is Specker. O

Proposition 3.8. For any generalized Boolean algebra B, there exists a unique
minimal strongly projectable generalized Boolean algebra C in which B is dense.

Proof. Let G be the Specker ¢-group whose generalized Boolean algebra of
singular and identity elements is isomorphic to B. Let C be the generalized Boolean
algebra of singular and identity elements of G°7; then C is strongly projectable.

Now suppose that D is a strongly projectable generalized Boolean algebra such
that B is dense in D; let H be the Specker ¢-group generated by D. Then G is dense
in H and so G C G°F C H, showing C C D. O

Proposition 3.9. Let G be a Specker (-group and S be its generalized Boolean
algebra of singular and identity elements. Let S be the strongly projectable hull
of S, and let H be the Specker (-group generated by S°F. Then G°F = H.

Proof. By definition, S°? is the generalized Boolean algebra of singular ele-
ments of G°F. O

408



Now let G be a completely distributive Specker ¢-group; then I'(G) has a minimal
plenary subset A and G can be f-embedded into [, Z such that Y, Z C G C
B(A, 7), where B(A, 7 is the {-subgroup of [], 7 of bounded integer functions.

Theorem 3.10. If G is a completely distributive Specker ¢-group with an order
unit u, then G = G = B(A, 7).

Since G has a basis, G is dense in B(A, Z), while B(A, Z) is a complete Specker
{-group. So G5F C GN C B(A, 7). Also, B(A,Z) = B(A,Z)(u) = (T]a Z)(u).

Now for any polar P of B(A, Z), there exists I C A such that P = {z € B(A, Z):
supp(z) C I}. Since G°* is strongly projectable, u|I € G°P. Thus the characteristic
functions of all subsets of A are in G°7, and so G°F = B(A, 7). O

Corollary 3.11. If G is a completely distributive Specker (-group, then G5 =
G" is the (-ideal of B(A, 7) generated by G.

Proof. We canassume, for A the minimal plenary subset of I'(G), that >, Z C
G C G C G C B(A,7). For any g € G, G(g) has a basis and an order unit. Thus

[G(9)]°F = G¥T(g) is a cardinal summand of B(A, 7), and so G°F = \/ G9F(g) is
geG
the ¢-ideal of B(A, 7) generated by G. O

Proposition 3.12. Let G be a Specker (-group and S be its generalized Boolean
algebra of singular and identity elements. S is a complete atomic Boolean algebra if
and only if G is {-isomorphic to B(A, 7) for some index set A.

Proof. Suppose that S is a complete atomic Boolean algebra. Then for any
atom s € S, s is basic in G and so G has a basis. Let A be the minimal plenary subset
of I'(G); there exists an f~embedding o of G into B(A, Z) such that singular elements
of G are mapped to characteristic functions. Let I C A. By the completeness of S,
s = V{sx: A € I} exists in § and so = x;. So Go contains all characteristic
functions of subsets of A and thus Go = B(A, Z).

The converse is clear. O

Theorem 3.13. Let G be a Specker {-group and S be its generalized Boolean
algebra of singular and idientity elements. The following are equivalent:
a) G is complete, completely distributive, and has a unit.
b) G is strongly projectable, completely distributive, and has a unit.
c¢) S is atomic and laterally complete.
d) S is an atomic complete Boolean algebra.
)

e) G = B(A, 7) for some index set A.
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Proof. (a<b) is clear from Theorem 3.10, as is (e = a). For (a = d), since
G has a basis, S is atomic. The equivalence of (¢ < d) is well known, and the
equivalence of (d < e) is Proposition 3.12. O

Corollary 3.14. Let G be a Specker {-group and S be its generalized Boolean
algebra of singular and identity elements. Let S* be the Boolean algebra of joins of
all pairwise disjoint subsets of S, and let H be the Specker (-group generated by S.
Then (G¥)" = H.

Proof. The proof is immediate from Theorem 3.13 and so will be omitted. [

Proposition 3.15. If A is infinite, then B(A, 7) has nonclosed prime subgroups.

Proof. Since A is infinite, A = A; UQq, where A;NQ; = 0 and A1, ; are both
infinite. Likewise, A; = Ay U Qq, where both Aj, Q5 are infinite and As N Qy = 0.
Continuing in this way, we can find a sequence A; D Ay D ... of infinite sets such
that (YA; = 0. Since {A;}$2; has the finite intersection property, there exists an
ultrafilter & on A such that A; € U for all 4. Since (JA; = (), U is nonprincipal and
thus Ky = {g € B(A,Z): supp(g) € U} is a nonclosed prime subgroup. O

Now if G is a completely distributive Specker /-group, then since G is archimedean,
G must have a basis, and so must have a basis subgroup B(G). G is finite-valued
if and only if G = B(G). The following theorem, generalizing an example given
by Conrad in [2], characterizes finite-valued Specker ¢-groups in terms of a-closures.
(Recall that an f-group H is an a-extension of an ¢-group G if for each 0 < h € H,
there exists 0 < g € G and a positive integer n such that h < ng and g < nh. An
l-group G is a-closed if G admits no proper a-extensions.)

Theorem 3.16. Let G be a Specker group. G is finite-valued if and only if G has
a unique a-closure.

Proof. (=) Clear, since I'(G) is trivially ordered [15].

(<) Suppose that G is not finite-valued. Then there exists a singular element a
and pairwise disjoint singular elements {b;}22, such that 0 < b; < a for all j.

We can assume without loss of generality that G = G(a), as in any event, G =
G(a) Ba™t, and so if it can be shown that G(a) has two nonisomorphic a-closures,
then G must also.

Let T' = T'(G); G can then be f-embedded into [[. R such that each singular
element is mapped to the characteristic function of a subset of I'. Define h € [[;- R

410



B\ = n(1+1/j5), A € supp(b;);
T, A ¢ supp(b;) for all j,

and let H be the (-subgroup of [[. R generated by G U {h}.

Now let m be any integer and g be any element of G. The claim is that there
exists a singular element s € G such that supp(s) = supp[(mh + g) V 0]. This is
clearly true if m = 0, and if for all A € T, (mh + g)(A\) > 0, then s = a is a clear
choice. On the other hand, if for all A, (mh + g)(A) < 0, then s = 0 is the choice.

So suppose there exist A1, Ay € I' such that (mh+g)(A1) < 0 < (mh+g)(A2). There
exist pairwise disjoint singular elements {¢1,...,t,} C G and integers {ki,...,kn}
such that g = k1t1 + ... + kntn.

Suppose m > 0. Let N = {i: there exists A\ € supp(¢;) such that (mh + g)(\) <
0}. Fori € N, let K; = {j: t; Ab; > 0and mn(l +1/j) + k; > 0}. Then K;
is finite, else mr + k; = _lirgc[mn(l +1/j) + ki] > 0, and so for all A € supp(t;),
(mh + g)(A) > 0. Hence, ;ince K; is finite, let s=a— > t; + > > (t; Abj).

iEN iEN jEK;

Suppose m < 0. Then let N = {i: there exists A € supp(¢;) such that (mh +
g9)(A) < 0}, and let K; = {j: t; Ab; > 0 and mn(1 + 1/j + k; < 0}. Again, K, is

finite. In this case, let s = ) [ti — 3 (ti NDy)|.
1EN JEK;
Now for any 0 < x € H, there exist finite sets I and J, integers {m;;}rx., and

elements {g;;}rxs C G such that . = \/ A[(msjh+gi5) AO. For (i,7) € I x J, let s;5
IJ

be a singular element of G such that supp(s;;) = supp[(mi;h + gi;) V 0].
Then

supp(z) = U n supp[(mijh + gi;) V 0]
IJ
U n supp(si; )
I J
= supp (\/ /\ sij)
IJ

and so for all 0 < x € H, there exists a singular element s € G such that supp(z) =
supp(s). Since the range of x is bounded and bounded away from 0, x is a-equivalent
to s. Thus H is an a-extension of G, but cannot be represented by step functions [2].
Since G does have an a-closure which consists of real-valued step functions, G has

more than two nonisomorphic a-closures. O
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4. EXAMPLES

Example 4.1. G =Y. 7 @ 7[2,2,2,..] is an {-subgroup of the eventually con-
i=1

1=

o0

stant integer sequences ZF¢ C [] 7 that is not Specker, nor a Specker* (-subgroup
i=1

of 7PC yet is dense. Note that for any g € G, 2G(g) C S(g).

More generally, let {k;} C Z\{0} be a bounded set andlet H = Y Z[(k1, k2, ...)].
i=1
Then (k1, ko, ...) is an order unit for H. Let n = \/{k;}. Then nH C S((k1, k2,...)).

Example 4.2. An example of an /-subgroup A of a Specker ¢-group F' in which
A is not large in the minimal Specker* ¢-subgroup H of F' containing A.

o0
Let F = B(w,Z)B Z and let G = > 7Z & Z[((2,2,2,...),1)]. G is then an

i=1
(oo}
¢-subgroup of F'. Then H = (Z ZH Z) ®7[((1,1,1,...),0)] is the minimal Specker*
i=1
{-subgroup of F' that contains G but G is not dense in H.

Now let K be the (-subgroup of B(w, 7 )BR generated by Y~ 7 and ((1,1,1,...), 3).
i=1
K is then a minimal Specker ¢-group in which G is dense.

Example 4.3. Nobeling [14] proved that if G is a Specker* ¢-subgroup of a Specker
{-group H, then H = G @ A, where A is generated by characteristic functions. This
example will show that in most cases, A can not be chosen to be an ¢-subgroup of H.

Let w=1{0,1,2,3,...} and let 1 < p; < p2 < p3 < ... be an infinite set of prime
integers. For every p;, let z; be the characteristic function of {p;,p?,p?,...}. Note
that if ¢ # j, then z; Az; = 0.

(o)

Assume that B(w, Z) = (Z Z)EBA, where A is an (-subgroup of B(w, Z) generated
i=1

by characteristic functions. Now if ¢ € B(w, Z) is a characteristic function of an

infinite subset of w, ¢ = s+ a, where x € >, 7 and a € A. So a = ¢ — s; let
i=1
N =max{i € w: s(i) # 0}. Then for all i > N, a(i) = ¢(i), and so a V 0 has infinite

support.

o0
Each z; = s;+a;, where s; € > Z and a; € A; let N; = max(supp(s;)) and let n;;
i=1

be the j*% element of supp(a; V 0) after N;. Note that if iy # i, {n;, } N {ny,} = 0.

Let b be the characteristic function of {ni1,na2,n33,...}. Then b = s + d, where
oo

s € >, Z and d € A. Again, d V 0 has infinite support and there exists N such
i=1

that for all k > N, supp(d Vv 0)(k) = b(k). So for all ¢ such that n;; > N, supp(d V
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0) Nsupp(a; V 0) = {n;;}. Thus (dV 0) A (a; V0) € > 7, which contradicts that

AN (ogjl 7) =), i

Example 4.4. Let J denote the set of irrational numbers and let G be the
{-subgroup of [ Z generated by characteristic functions of the form (p, ¢) NJ, where
J

p, q are rational numbers. Let A; = Qr (all rational multiples of ©); A; is then a
countable plenary subset of I'(G). On the other hand, R = Q @ Qr & D, where D
is uncountable. Then A, = D is an uncountable plenary subset of I'(G), disjoint
from A;.
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