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Abstract. In this article, it will be shown that every �-subgroup of a Specker �-group
has singular elements and that the class of �-groups that are �-subgroups of Specker �-
group form a torsion class. Methods of adjoining units and bases to Specker �-groups are
then studied with respect to the generalized Boolean algebra of singular elements, as is the
strongly projectable hull of a Specker �-group.
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1. Introduction and Background Results

This paper continues recent research into the class of Specker �-groups begun by the
authors in [4], and continued in [7] and [6]. Earlier work in this series has concentrated

on the lattices of such �-groups and especially on the generalized Boolean algebras
of singular elements. In this paper, we investigate �-subgroups and various hulls of

Specker �-groups, especially the strongly projectable hull.
We review now some of the basic terms and concepts of lattices and lattice-ordered

groups. For further reference, the reader should consult [9] (especially Sections 6, 54,
and 55). A lattice is a partially ordered set L such that for every pair of elements

x, y ∈ L, there exists a least upper bound (called the join and written x ∨ y) and
a greatest lower bound (called the meet and written x ∧ y). An ideal of a partially

ordered set P is a subset S such that if x � s ∈ S, then x ∈ S, while a dual ideal
(filter) is a subset T such that if y � t ∈ T , then y ∈ T . An ideal I of a lattice is prime

if x∧ y ∈ I implies either x ∈ I or y ∈ I. Within a given partially ordered set P , an
element a covers an element b if b < a and there are no intervening elements.
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Since we will be dealing with both groups and rings, additive notation will be used

to denote all group operations, even in cases when the groups may not be abelian. A
lattice-ordered group (written �-group), is a group G whose underlying set is a lattice
such that if g � h, then for any x, y ∈ G, x + g + y � x + h + y. For an �-group

G, G+ denotes the set {g ∈ G : g � 0}. For g ∈ G, the positive part of g (written
g+) is g ∨ 0, while the negative part of g (written g−) is −g ∨ 0; the absolute value
of g (written |g|) is g+ ∨ g− = g+ + g− = g ∨−g. Two elements a, b ∈ G are disjoint
if |a| ∧ |b| = 0. The underlying lattice of an �-group is necessarily distributive; an

�-group G is completely distributive if for any sets I, J ,
∨
I

∧
J

gij =
∧
J

∨
JI

gf(j),j . An

�-group G is archimedean if for any pair of positive elements a, b ∈ G+, there exists
an integer n such that na �< b; an archimedean �-group is necessarily abelian. An

�-group is hyperarchimedean if each �-homomorphic image is archimedean.

An �-subgroup A of an �-group G is both a sublattice and a subgroup. A is dense
if for each 0 < g ∈ G, there exists 0 < a ∈ A such that a � g; A is large if for
each 0 < g ∈ G, there exists a positive integer n and 0 < a ∈ A such that a � ng.

An �-subgroup C is convex if 0 � x � c ∈ C implies x ∈ C; C(G) will denote the
lattice of convex �-subgroups of G, partially ordered by inclusion. For C ∈ C(G),
the (right) cosets of C are ordered by C + x � C + y if there exists c ∈ C such that
c + x � y. A normal convex �-subgroup L is called an �-ideal ; under the quotient

group operation and coset order, G/L is an �-group. C(G) is a complete sublattice
of the lattice of subgroups of G. Thus for any element g ∈ G, there exists a minimal

convex �-subgroup containing g; this is called a principal convex �-subgroup and is
denoted G(g). Cp(G) will denote the lattice of principal convex �-subgroups of G,

partially ordered by inclusion. An element g ∈ G is a strong order unit for G if
G(g) = G.

A convex �-subgroup P of an �-groupG is prime if P+ is a prime lattice ideal ofG+;
a convex �-subgroup is prime if and only if its right cosets are totally ordered under

the coset order. Under inclusion, the prime convex �-subgroups of an �-group form
a root system: i.e., a partially ordered set in which no two incomparable elements

have a lower bound. The intersection of a chain of prime subgroups is a prime
subgroup and so there exist minimal prime subgroups. For any 0 �= g ∈ G, a convex

�-subgroupM maximal with respect to not containing g is called a value of g and is
called regular ; if M is a value of some element g ∈ G, then M is a prime subgroup

of G. Γ(G) will denote the regular subgroups of G, partially ordered by inclusion. A
plenary subset ∆ of Γ(G) is a dual ideal of Γ(G) such that

⋂{M : M ∈ ∆} = (0).
An abelian �-group is completely distributive if and only if Γ(G) has a (necessarily
unique) minimal plenary subset.
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For X ⊆ G, the polar of X , written X⊥, = {g ∈ G : |g| ∧ |x| = 0 for all x ∈ X}.
X⊥ ∈ C(G). If X = {g} for some g ∈ G, {g}⊥ and {g}⊥⊥ are simply written g⊥

and g⊥⊥, respectively. If C ∈ C(G) and G is the (group) direct sum of C and C⊥,
we write G = C � C⊥. In this case, G is called the cardinal sum of C and C⊥ and

C is a cardinal summand of G. More generally, for a set {Aλ}Λ of �-groups, the
cardinal product, denoted

∏
ΛAλ, is the (external) group direct product of {Aλ}Λ

with pointwise order operations. The cardinal sum, written
∑
ΛAλ, is the �-subgroup

of
∏
ΛAλ of those elements having finite support. An �-group G is projectable if for

all g ∈ G, G = g⊥⊥ � g⊥. An �-group G is strongly projectable if for any polar
subgroup P ⊆ G, G = P � P⊥. A characterization of hyperarchimedean �-groups is

that an �-group G is hyperarchimedean if and only if for all g ∈ G, G = G(g)� g⊥.
An element g ∈ G is a weak order unit if g⊥ = (0); strong order units are necessarily

weak order units. An �-group G is complete if any subset of G bounded above has
a least upper bound. Complete �-groups are necessarily archimedean and strongly

projectable and every archimedean �-groupG has a unique minimal complete �-group
G∧ into which G can be �-embedded as a dense �-subgroup.

An element 0 � g ∈ G is basic if G(g) is a convex totally ordered subgroup of G.

G has a basis if each positive element exceeds a basic element. For an �-group G

with a basis, the basis subgroup B(G) is the convex �-subgroup generated by the

basis of G.

A torsion class T of �-groups is a class that is closed with respect to containing

convex �-subgroups, closed with respect to �-homomorphic images, and also having
the following property: for any �-group G, if {Cλ} is a set of convex �-subgroups

of G such that each Cλ ∈ T , then
∨

Cλ ∈ T .
A lattice-ordered ring, denoted �-ring, is a ring R whose underlying set is lattice-

ordered such that (R, �,+) is an �-group and such that if a � b and 0 � c in R, then

ac � bc and ca � cb. An o-ring is a totally ordered ring. An f -ring is an �-ring R

such that R is a subdirect product of o-rings.

Throughout, � will denote the integers, � the rationals, and � the reals, all with
the usual addition, multiplication, and order.

An element 0 < g in an �-group G is singular if for all 0 � h � g, h ∧ (g − h) = 0.

An �-group G is a Specker �-group if G is generated as a group by its singular
elements [8], while G is a singular �-group if for each 0 < g ∈ G, there exists a

singular element s ∈ G such that s � g. The following proposition from [2] gives
many useful characterizations and properties of Specker �-groups.

Proposition 1.1. Let G be an �-group and Λ be its set of minimal prime sub-
groups. The following are equivalent:

a) G is a Specker �-group.
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b) There exists an �-embedding σ of G into
∏
Λ� such that Gσ is generated as a

group by characteristic functions.

c) There exists an �-embedding σ of G into
∏
Λ� such that for all g ∈ G, the

characteristic function of the support of g, χsupp(g), is in Gσ.

d) There exists an embedding τ of G into
∏
Λ� such that Gσ is generated as a

group by characteristic functions and is an �-subgroup of the subring of functions

of bounded range.

e) There exists an embedding τ of G into
∏
Λ� such that Gσ is generated as a

group by characteristic functions and the set of characteristic functions is closed

with respect to meets.

The following proposition (proven in [2]) gives a useful representation of elements
of a Specker �-group.

Proposition 1.2. Let G be a Specker �-group. Then for any 0 �= g ∈ G, there

exists a set of mutually disjoint singular elements {s1, . . . , sn} ⊆ G and integers

m1, . . . , mn such that g = m1s1 + . . .+mnsn.

We will call m1s1 + . . .+mnsn a Specker representation of g. The reader should
be aware that such a representation is not necessarily unique, but each g has a

representation for which the integersm1, . . . , mn are distinct and this representation
is unique.

We remark here that every Specker �-group is hyperarchimedean and that the class
of Specker �-groups form a torsion class.

If G is a Specker �-group, a multiplication can be placed on G by, for elements
g, h ∈ G with respective Specker representations g = m1s1 + . . . + mksk and h =

n1t1 + . . . + nptp, defining g · h =
k∑

i=1

p∑
j=1

minj(si ∧ tj) [2]. With this multiplication

and viewing G as an �-subgroup of
∏
Λ�, G is then an f -subring of

∏
Λ� [2]. This

is the unique multiplication on G so that (G, �,+, ·) is an f -ring and so that for
any two singular elements s and t, s · t = s ∧ t. When this natural multiplication is

important, we will refer to the Specker �-group G as a Specker f-ring.
A p-disjoint subset of an �-group G is a subset P ⊆ G+ such that if p, q ∈ P ,

then (p ∧ q) ∧ (p − (p ∧ q)) = 0. If G is a Specker �-group, then its set of singular
elements is a maximal p-disjoint subset. Conversely, if P is a p-disjoint subset of G

closed with respect to meets, then the subgroup 〈P 〉 of G generated by P is a Specker
�-subgroup of G with P as its set of singular elements [7]. An �-group G is said to

have a Specker signature [7] if G has a Specker �-subgroup H such that H is large
in G.

Part of the fascination with Specker �-groups is that they are part of the large
class of �-groups having a unique addition. Recall [4] that an �-group G has a
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unique addition if, having chosen an element to be the group identity, there exists

a unique group operation + on the lattice (G, �) such that (G, �,+) is an �-group,
and that G has essentially one addition if given any two compatible group opera-
tions + and ∗, (G, �,+) ∼= (G, �, ∗). Any �-group having a unique addition must be

archimedean [12] while at the other extreme, A(�), the �-group of order-preserving
permutations of the real line under pointwise order and composition ◦, has essentially
one addition [10]. Moreover, Holland [11] has shown that A(�) also has the property
that there exists a unique lattice-ordering � such that (A(�), �, ◦) is an �-group.

No result completely parallel to Holland’s result for A(�) is possible for Specker
�-groups in general. Given the usual operation +, there exist many partial orders �
such that (G, �,+) is an �-group. The following is the best result possible.

Proposition 1.3. Let (G, � +) be a Specker �-group with S as its generalized
Boolean algebra of singular and identity elements. Then � is the unique lattice order
on (G,+) such that each element of S is singular.

�����. Suppose � is a lattice order on G such that (G,�,+) is an �-group with
each element of S being singular in (G,�,+). Let ∧1 denote the meet operation in
(G, �,+) and ∧2 denote the meet operation in (G,�,+).

Let s, t ∈ S. Then s∧1 t = 0 in (G, �,+) if and only if s+ t ∈ S, and so s∧2 t = 0.
Let g ∈ G; g then equals m1s1 + . . .+mnsn, where si ∧1 sj = 0 if i �= j. Since by

the above paragraph, disjoint singular elements remain so in (G,�,+), g is positive

in (G,�,+) if and only if each mi � 0, and so g is positive in (G, �,+) if and only
if g is positive in (G,�,+). �

2. Subgroups and subrings of Specker lattice-ordered groups

Recall [9] that a component of an element g of an �-group G is an element x such

that |g − x| ∧ |x| = 0. The components of an element form a generalized Boolean
algebra. SG(g) will denote the subgroup of G generated by the components of g;

SG(g) is then a Specker �-subgroup of G.

Theorem 2.1. For an element g of an �-group G, G(g) is �-isomorphic to an

�-subgroup of a Specker �-group if and only if there exists an integer n such that

nG(g) ⊆ SG(g).

�����. Suppose that G is an �-subgroup of a Specker �-groupH . Let 0 < g ∈ G.

It suffices to prove that there exists an integer n such that nG(g) ⊆ SG(g) only for
the case that G itself is Specker, as nG(g) ⊆ nH(g).
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g = n1s1 + . . . + nksk, where the si are pairwise disjoint singular elements and

ni are distinct integers. Let n be the least common multiple of n1, n2, . . . , nk. Then
nsi ∈ SG(g) for all i, and, if t is a singular element of G(g) such that t � si for
some i, then niti is a componen t of g and nt ∈ S(g). Thus if x is any singular

element of G(g), x = (x ∧ s1) + (x ∧ s2) + . . .+ (x ∧ sk) implies that nx ∈ SG(g).
Now let h ∈ G(g); h can then be written in the form h = m1t1+ . . .+mrtr, where

the tr are pairwise disjoint singular elements of G(g) and such that for each j, there
exists an i such that tj � si, and where the mj are integers. Above it was shown

that ntj ∈ SG(g) for all j, and so nh = m1nt1 + . . .+mrntr ∈ SG(g).
Conversely, suppose that G is an �-group such that for all g ∈ G, nG(g) ⊆ SG(g).

Now if g � k, then g � nk. But nk ∈ nG(g) ⊆ SG(g), which contradicts that SG(g)
is archimedean. So G(g) is archimedean and hence abelian. As G(g) is also torsion-

free, the map x → nx is an �-isomorphism of G(g) into SG(g), which is Specker. �

It should be remarked here that Lin [13] gave the first proof that if A is an

�-subgroup of a Specker �-group, then for any g ∈ A, there exists an integer n such
that nA(g) ⊆ SA(g).

Now an �-subgroup of a Specker �-group need not be a Specker �-group. For
let G = �EC, the �-group of eventually constant integer sequences with pointwise

addition and order [5]. Let A be the �-subgroup generated by
( ∞∑

i=1
�

)
⊕�(2, 2, . . .).

G is then a Specker �-group while A is not. However, any �-subgroup A of a Specker

�-group G must have elements that are singular in A.

Theorem 2.2. Let G be a Specker �-group and H be an �-subgroup of G. Then

H has elements that are singular in H .

�����. Since G is a Specker �-group, there exists an �-embedding of G into∏
Λ� such that each singular element of G is mapped to a characteristic function.

In the following, it is presumed that G has such a representation. Moreover, with
such a representation, each g ∈ G has finite range. For every 0 �= α ∈ range(g),
the characteristic function of g−1(α) is a singular element s of G. Each g ∈ G thus
has a unique representation of the form g = α1s1 + . . . + αnsn, where {α1, . . . , αn}
is the nonzero range of g, si is the characteristic function of g−1(αi), and α1 <

α2 < . . . < αn. This will be called the standard representation of g and αi the

standard coefficient of si. Finally, define σ(g) = α1 + . . .+ αn.
Let 0 < a ∈ H be such that σ(a) is minimal over all positive elements of H ; let

a = α1s1 + . . .+ αnsn be its standard representation. Note that if 0 < h ∈ H such
that h ∈ H(a) = a⊥⊥, then supp(h) ∩ supp(si) �= ∅ for all 1 � i � n. For otherwise,

let x be the projection of a onto H(h) = h⊥⊥; then 0 < σ(x) < σ(a), a contradiction
to the choice of a.
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Let 0 � z � a in H and let b be the projection of a onto z⊥⊥. Then, since G,

and thus H , is hyperarchimedean, b ∈ H , b ∧ (a − b) = 0, and supp(b) = supp(z).
The goal now is to show that z = b. Let z = β1t1 + . . . + βrtm be the standard
representation of z; the standard representation of b then is b = α1r1 + . . . + αnrn,

where 0 < ri = si ∧ (t1 ∨ . . . ∨ tm).

Suppose there exists ri such that
∣∣{tj : ri ∧ tj > 0}

∣∣ � 2. Let {βj1 , βj2 , . . .} be the
standard coefficients of those tj ’s such that ri ∧ tj > 0; assume βj1 < βj2 < . . .. Now
for any x ∈ supp(ri), βj1b(x)−αiz(x) � 0, and so supp[(βj1b−αiz)∨0]∩supp(ri) = 0.
By arguments presented above, this means (βj1b − αiz) ∨ 0 = 0, and so βj1b �
αiz. Since supp(ri) \ supp(tj1 ) �= ∅, βj1b < αiz. Let c be the projection of b onto
(αiz − βj1b)

⊥; since for any x ∈ ri ∧ tj1 , αiz(x) − βj1b(x) = 0, c > 0. Note that

if x ∈ supp(c) ∩ supp(rk), then αiz(x) = βj1αk, implying that z(x) = βj1αk/αi.
Thus for any k such that supp(c)∩ supp(rk) �= ∅, there exists a unique tjk

such that

tjk
∧ rk > 0. Since z � a, then βjk

� αk, while βj1 < αi. Let w be the projection
of z onto c⊥⊥; then σ(a) � σ(w) =

∑
βjk

<
∑

αk = σ(c) = σ(a), a contradiction to

the choice of a.

So for any ri, there exists a unique tj such that ri ∧ tj > 0. Since t1 ∨ . . . ∨ tm =
r1 ∨ . . . ∨ rn and both sets of singular elements of G are pairwise disjoint, we must

have that m � n and that each tj = ∨{ri : ri ∧ tj > 0}.
Suppose now there exists tj0 such that

∣∣{ri : ri ∧ tj0 > 0}
∣∣ � 2. Let Rj0 =

{ri : ri∧tj0 > 0} and let αi1 < αi2 < . . . be the standard coefficients of the ri’s ∈ Rj0 .

Since z � b, βj0 � αi for all ri ∈ Rj0 , and so βj0 < αi2 . So σ(b) � σ(z) =
m∑

j=1
βj =

( ∑
j �=j0

βj

)
+ βj0 <

( ∑
j �=j0

βj

)
+ 2βj0 <

( ∑
i/∈Rj0

αi

)
+ αi1 + αi2 �

n∑
i=1

αi = σ(b), which

is an obvious contradiction.

So for all tj , there exists a unique ri such that tj ∧ ri > 0. Clearly, then, tj = ri.

Since z � b, βi � αi for all i, implying σ(b) � σ(z) =
n∑

i=1
βi �

n∑
i=1

αi = σ(b). So for

each i, βi = αi, and so z = b. �

Corollary 2.3. Let G be an �-group �-isomorphic to an �-subgroup of a Specker

�-group. Then G is a singular �-group.

�����. Let 0 < g ∈ G and let 0 < t ∈ G(g) be a singular element of G(g).

Then 0 < g ∧ t � g and s = g ∧ t is singular. �

Corollary 2.4. Let G be an �-group �-isomorphic to an �-subgroup of a Specker

�-group with S as the set of singular elements of G. Then S⊥ = (0).
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Corollary 2.5. Let G be an �-group �-isomorphic to an �-subgroup of a Specker

�-group. Then G has a Specker signature.

Corollary 2.6. Let G be an �-group �-isomorphic to an �-subgroup of a Specker

�-group with S as the set of singular elements of G. For s ∈ S and 0 < g ∈ G, let gs

be the projection of g onto s⊥⊥. Then g =
∨

s∈S

gs.

Now if A is an �-subgroup of a Specker �-group G, then a singular element of A

may not be singular in G. A will be called a Specker∗ �-subgroup of G if A itself is
a Specker �-group and every singular element of A is also singular in G.

Proposition 2.7. The intersection of Specker∗ �-subgroups is a Specker∗ �-

subgroup.

����� �����. Let {Aλ} be Specker∗ �-subgroups of a Specker �-group G,

and let K =
⋂

Aλ. Let 0 < k ∈ K; then in G, k = k1s1 + . . . + knsn, where
0 < k1 < . . . < kn and s1, . . . , sn are singular elements of G. Now since for any λ0,

k ∈ Aλ0 implies that k = m1t1 + . . .+mptp for mutually disjoint singular elements
t1, . . . , tp ∈ Aλ0 . Since s = s1∨. . .∨sn = t1∨. . .∨tp ∈ K, k1s1 = k−[k−k1s)∨0] ∈ K.

By induction, kisi ∈ K for all i. Thus si = s∧ kisi ∈ K and thus K is Specker∗. �

	
���
 �����. Let ΣB be the set of filters F on the generalized Boolean
algebra of singular elements of G maximal with respect to 0 /∈ F . For any F , AF is
a pure subring of

∏
ΣB
�, and so K =

⋂
AF is also a pure subring of

∏
ΣB
� and thus is

a Specker∗ �-group. �

Now let A be an �-subgroup of a Specker �-group G. By Proposition 2.7, there
exists a minimal Specker∗ �-subgroup G(A) of G containing A. However, G(A) may
not be unique in the sense that if A is contained in another Specker �-group R, then

R(A) ∼= G(A). As an example, 2� ⊂ � and the minimal Specker∗ �-subgroup of �
containing 2� is �. However, 2� is itself a Specker �-group. Thus to get uniqueness,

we need an additional hypothesis, which will be presented in Proposition 2.10 below.

Let S be the class of �-groups G such that G is �-isomorphic to an �-subgroup of
a Specker �-group.

Theorem 2.8. S is a torsion class of �-groups, closed with respect to �-subgroups.

�����. First, if A is an �-subgroup of G ∈ S , then clearly A ∈ S . So S is
closed with respect to convex �-subgroups.
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Now let G ∈ S and K be a convex �-subgroup of G. Let K + g ∈ G/K, and n be

an integer such that nG(g) ⊆ SG(g). Then

n

[
G

K
(K + g)

]
= n

[
K +G(g)

K

]
⊆ K + SG(g)

K
⊆ SG/K(K + g).

So S is closed with respect to �-homomorphic images.
Now let C be a chain of convex �-subgroups of an �-groupG such that for all C ∈ C,

C ∈ S . Let 0 < g ∈ ⋃ C; there exists C ∈ C such that g ∈ C, and so there exists an
integer n such that nC(g) ⊆ SC(g). But since C is convex, C(g) = G(g) = (

⋃ C)(g)
and SC(g) = S⋃ C(g) = SG(g). So

⋃ C ∈ S , and thus by Zorn’s Lemma, the set of
convex �-subgroups of G in S has maximal elements.

Now let A, B be convex �-subgroups of an �-group G that are in S . Since A, B are
also hyperarchimedean, then A ∨ B is also hyperarchimedean. Let 0 < g ∈ A ∨ B.

Then g = a + b, where a ∈ A and b ∈ B. Since A ∨ B is hyperarchimedean,
a = a+a1 ∈ (a∧b)⊥�G(a∧b), and b = b̄+b1 ∈ (a∧b)⊥�G(a∧b). Note 0 � a∧ b̄ =

(a−a1)∧(b−b1) � (a−(a∧b))∧(b−(a∧b)) = 0. So g = a+(a1+b1)+b̄ ∈ (A∨B)(a)�
(A∨B)(a1+b1)�(A∨B)(b̄), (A∨B)(g) = (A∨B)(a)�(A∨B)(a1+b1)�(A∨B)(b̄),
and SA∨B(g) = SA∨B(a)� SA∨B(a1 + b1)� SA∨B(b̄).

Since a, a1 + b1 ∈ A, there exist integers n1 and n2 such that n1(A ∨ B)(a) =
n1A(a) ⊆ SA(a) = SA∨B(a) and n2(A∨B)(a1+ b1) = n2A(a1+ b1) ⊆ SA(a1+ b1) =

SA∨B(a1+b1). Likewise, there exists an integer n3 such that n3(A∨B)(b̄) ⊆ SA∨B(b̄).
So n1n2n3[(A ∨B)(g)] ⊆ SA∨B(g). So if A, B are convex �-subgroups of G that are

also in S , then A ∨ B ∈ S . Thus for any collection {Cλ} of convex �-subgroups of
G such that {Cλ} ⊆ S ,

∨
Cλ ∈ S .

The closure of S with respect to �-subgroups is obvous. �

Theorem 2.9. For an �-group G, G ∈ S if and only if G is archimedean and G∧

is a Specker �-group

�����. If G is archimedean and G∧ is a Specker �-group, then G ⊆ G∧ implies
that G ∈ S .

Conversely, G ∈ S implies that G is hyperarchimedean. By Corollary 2.3, G is a
singular �-group and so G∧ is also singular and hyperarchimedean. But then G∧ is

Specker. �

Now if G ∈ S , then G∧ is a Specker �-group and G is dense in G∧. Let G# be

the intersection of all Specker∗ �-subgroups of G∧ that contain G.

Proposition 2.10. G# is the unique minimal Specker �-group in which G is

dense.
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�����. Suppose H is a Specker �-group and G is dense in H . Then G is dense

in H∧ as well, and so G ⊆ G∧ ⊆ H∧. Since G is dense in H∧, any singular element
of G∧ is also singular in H∧, and thus G∧ is a Specker∗ �-subgroup of H∧.

Now let A be the set of Specker∗ �-subgroups of H∧ containing G, and let
J =

⋂{A : A ∈ A}. Since G∧ ∈ A, J = J ∩ G∧ =
⋂

A∈A
(A ∩ G∧) = G# since if

A is a Specker∗ �-subgroup of G∧ containing G, then A is also a Specker∗ �-subgroup
of H∧. Since H is also a Specker∗ �-subgroup of H∧, G# ⊆ H . �

Proposition 2.11. G# is the intersection of all pure subrings of G∧ that con-

tain G, and so is the pure subring of G∧ generated by G.

�����. Any Specker∗ �-subgroup of G∧ is also a pure subring of G∧. �

In [6], it was shown that if I is a ring ideal of a Specker �-group G, then (I,+) is
a saturated subgroup of (G,+). The converse is also true.

Proposition 2.12. If R is a Specker f -ring, then any saturated subgroup I of

(R, +) is a ring ideal.

�����. Let h = m1s1 + . . .+mpsp ∈ I and y = n1t1 + . . . + nrtr ∈ R. Then

h = m1(s1 ∧ t1) + . . . + m1(s1 ∧ tr) + . . . + mr(sr ∧ t1) + . . . + mr(sr ∧ tp) while
y = n1(s1 ∧ t1) + . . . + n1(sp ∧ t1) + . . . + nr(s1 ∧ tr) + . . . + nr(sp ∧ tr). Since

(si1 ∧ tj1) ∧ (si2 ∧ tj2) = 0 if i1 �= i2 or j1 �= j2, gh =
p∑

i=1

r∑
j=1

minj(si ∧ tj). Since

mi(si ∧ tj) ∈ I because I is saturated, then njmi(si ∧ tj) ∈ I. So gh ∈ I. �

Corollary 2.13. The ring ideals of a Specker f -ring R form a distributive lattice

with I ∨ J = I + J and I ∧ J = I ∩ J .

�����. Since ring ideals are identical with saturated subgroups, we must have

that I ∨ J = I + J and I ∧ J = I ∩ J .

Now let I, J, and K be ring ideals of R. Let a ∈ I ∩ (J + K); then a = b + c

(where b ∈ J and c ∈ K). Without loss of generality, there exists a pairwise disjoint
set of singular elements {s1, . . . , sn} and sets of integers {a1, . . . , an}, {b1, . . . , bn},
{c1, . . . , cn} such that a = a1s1 + . . . + ansn, b = b1s1 + . . . + bnsn, and cn =
c1s1 + . . . + cnsn. We can assume without loss of generality that ai �= 0 for all
1 � i � n.

Now in �, 〈ai〉 ∩ (〈bi〉+ 〈ci〉) = (〈ai〉 ∩ 〈bi〉) + (〈ai〉 ∩ 〈ci〉). Thus each ai = ui+ vi,

where ui ∈ 〈ai〉 ∩ 〈bi〉 and vi ∈ 〈ai〉 ∩ 〈ci〉. But 〈ai〉 ∩ 〈bi〉 = 〈di〉, where di is the
least common multiple of ai and bi. Thus ui is a multiple of both ai and bi, and thus
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uisi ∈ I ∩ J since by saturation, aisi ∈ I and bisi ∈ J . Likewise, visi ∈ I ∩K. But

then

a = (u1s1 + . . .+ unsn) + (v1s1 + . . .+ vnsn) ∈ (I ∩ J) + (I ∩K).

So I ∩ (J +K) ⊆ (I ∩ J) + (I ∩K). The reverse containment is clear. �

Now if R is a Specker f -ring, then each convex �-subgroup is saturated and so

by Proposition 2.12 is a ring ideal. The following proposition gives a ring-theoretic
characterization of the convex �-subgroups of R.

Proposition 2.14. For a ring ideal I of a Specker f -ring R, the following are

equivalent:

a) R/I is torsion free.

b) I is pure.

c) I is an �-ideal of (R, �,+).

�����. Clearly (a ⇔ b) and (c ⇒ a).

Assume that R/I is torsion free. Now let g ∈ I have Specker representation

m1s1 + . . .+mnsn. Since I is a ring ideal, misi = sig ∈ I for all 1 � i � n. Since
R/I is torsion free, misi ∈ I implies si ∈ I for all i. Thus u = s1 ∨ . . . ∨ sn =

s1 + . . .+ sn ∈ I.

Now suppose 0 � h � g in R. Let h = k1t1+ . . .+kptp be a Specker representation

of h. Then for all 1 � j � p, tj � u implies that tj = tju ∈ I. So h ∈ I. �

Proposition 2.15. LetG be a Specker f -ring and S be its set of singular elements.

For each s ∈ S, let ns be an integer. Let H be the subgroup of (G,+) generated by
{nss : s ∈ S}. Then H is a ring ideal of G if and only if for every component t of s,

nst ∈ H .

�����. If H is a ring ideal of G, then H is saturated. Thus if t is a component

of a singular element s ∈ G, then since nst is a component of nss, nst ∈ H .

Conversely, let 0 < h ∈ H ; then h = k1ss1s1 + . . . + kmnsmsm. Let t ∈ S. Then
ht = k1ns1(s1t) + . . . + kmhsm(smt) = k1ns1(s1 ∧ t) + . . . + kmnsm(sm ∧ t). Since

si ∧ t is a component of si for all i, kinsi(si ∧ t) ∈ H , and so gt ∈ H . So for any
g ∈ G, hg = h(α1t1 + . . .+ αptp) ∈ H . �
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3. Hulls of Specker �-groups

3A. Adjoining a unit to a Specker �-group.

Proposition 3.1. For an �-group G, G is a Specker �-group with an order unit if

and only if G has a strong order unit that is singular.

Let B be a generalized Boolean algebra; let ΣB be the set of ultrafilters on B. B can
be considered as a set of subsets of ΣB, by mapping b ∈ B to {F ∈ ΣB : b ∈ F}. Let
C = B ∪ {ΣB \ b : b ∈ B}. C is then the free Boolean algebra generated by B, and
will be denoted Bu. Now if G is a Specker �-group, let {sλ} be a maximal pairwise
disjoint subset of singular elements of G. G can then be �-embedded into

∏
(sλ)⊥⊥;

in
∏
(sλ)⊥⊥, let u be the element (. . . , sλ1 , sλ2 , . . .) and Gu be the �-subgroup of∏

(sλ)⊥⊥ generated by G ∪ {u}. Gu is then a Specker �-group with singular order
unit u. (Equivalently, if G does not have a unit, Gu = G ⊕ 〈u〉, where g ∈ Gu is

singular if g is singular in G or if u− g is singular in G).

Proposition 3.2. Let B be a generalized Boolean algebra; let G be the Specker

�-group having B as its generalized Boolean algebra of singular and identity elements;
and let H be the Specker �-group having Bu as its generalized Boolean algebra of

singular and identity elements. Then Gu ∼= H .

�����. It suffices to show that the generalized Boolean algebras of singular and
identity elements are isomorphic [6]. Now s is singular in Gu if either s ∈ G or u− s

is singular in G.
Let C be the generalized Boolean algebra of singular and identity elements of Gu.

Define α : Bu → C by

tα =

{
t, t ∈ B,

u− (ΣB \ t), t /∈ B.

α is then easily verified to be a lattice isomorphism. �

Proposition 3.3. For a Specker �-group G, Gu is the unique Specker �-group

with unit containing G as a dense �-subgroup.

�����. Suppose G is dense in a Specker �-group H with order unit x. Let S(G)
and S(H) denote the generalized Boolean algebras of singular and identity elements
of G and H , respectively.

Then x =
∨{s : s singular in G}. Define

α : S(Gu)→ S(H) : tα =

{
t, t ∈ S(G),
x− (u− t), t /∈ S(G).

406



α is then easily shown to be a lattice isomorphism of S(Gu) into S(H), and so lifts
to an �-embedding of Gu into H . �

Proposition 3.4. Let G be a Specker �-group with a unit u. Then the following

are isomorphic as Boolean algebras:

a) the principal polars {g⊥⊥} of G,
b) the principal convex �-subgroups of G,

c) the components of u,

d) the singular and identity elements of G.

�����. Since G is hyperarchimedean, g⊥⊥ = G(g), showing the identity of
the first two Boolean algebras. Now for any g ∈ G, there exists a unique singular

element sg ∈ G such that G(g) = G(sg), and so the map G(g) → sg is a Boolean
isomorphism of the principal convex �-subgroups of G onto the components of u,

which form the Boolean algebra of singular and identity elements. �

We remark here that the first three Boolean algebras listed above are isomorphic

for any hyperarchimedean �-group with an order unit u.

Proposition 3.5. Let G be a dense �-subgroup of a Specker �-group H . Then H

can be �-embedded into (Gu)∧.

�����. Let S(G) and S(H) be the generalized Boolean algebras of singular
elements of G and H , respectively. Let t be singular in H ; then t =

∨{s ∈ S : s � t}.
Now x =

∨{s ∈ S : s � t} exists in (Gu)∧.

So define α : S(H)→ S[(Gu)∧] : t → x. α is clearly a lattice homomorphism and

if t1 �= t2 in S(H), either t1 \ t2 > 0 or t1 \ t2 > 0, in which case t1α �= t2α. So α is
injective. �

3B. Adjoining a basis to a Specker �-group.
Let G be a Specker �-group; since G is hyperarchimedean, then for any plenary

subset ∆ of Γ(G), G can be �-embedded into
∏
∆�. Then G ⊕∑

∆� is a Specker
�-subgroup of

∏
∆� containing G and having a basis. Moreover, in G ⊕ ∑

∆�,

G⊥⊥ = G⊕∑
∆�. This is the only method to �-embed G as a Specker∗ �-subgroup

of a Specker �-group H with a basis such that G⊥⊥ = H .

Now if Γ(G) has a minimal plenary subset ∆, thenG is completely distributive and,

without loss of generality,
∑
∆�⊆ G ⊆ ∏

∆�, showing that G already has a basis. If
Γ(G) does not have a minimal plenary subset, then for any plenary subset ∆ of Γ(G),

there exists another Λ such that Λ ⊂ ∆. Thus if G is not completely distributive,
there is no unique way of adjoining a basis to G. Moreover, as will be shown in
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Example 4.4, there is no way of guaranteeing that any two such bases have the same

cardinality.

3C. The strongly projectable hull of a Specker �-group G.
Let B be a generalized Boolean algebra. For X ⊆ B, let X⊥ = {b ∈ B : b ∧ x = 0

for all x ∈ X}. B will be called strongly projectable if for all X ⊆ B, B is the convex
hull of X⊥⊥ ∪X⊥.

Proposition 3.6. Let G be a Specker �-group and S be its generalized Boolean
algebra of singular and identity elements. G is strongly projectable if and only if

S is strongly projectable.

Now any Specker �-group G has a strongly projectable hull ; that is, a unique
minimal strongly projectable �-group GSP in which G is dense ([1], [2], [3]). It may

or may not be clear that any generalized Boolean algebra B has a strongly projectable
hull BSP , but this will be proven shortly.

Theorem 3.7. Let G be a Specker �-group. Then GSP is a Specker �-group.

�����. Since G∧ is strongly projectable and G is dense in G∧, G ⊆ GSP ⊆ G∧.

Since G is dense in GSP , any singular element of G is also singular in GSP . Thus
G ⊆ K the Specker radical of GSP .

Let P be a polar in K; then GSP = P⊥⊥ � P⊥. Since K ∈ C(G), K = (K ∩
P⊥⊥) � (K ∩ P⊥) = P � (K ∩ P⊥). Therefore, K is strongly projectable. Since G

is dense in K, K = GSP , and thus GSP is Specker. �

Proposition 3.8. For any generalized Boolean algebra B, there exists a unique
minimal strongly projectable generalized Boolean algebra C in which B is dense.

�����. Let G be the Specker �-group whose generalized Boolean algebra of
singular and identity elements is isomorphic to B. Let C be the generalized Boolean
algebra of singular and identity elements of GSP ; then C is strongly projectable.
Now suppose that D is a strongly projectable generalized Boolean algebra such

that B is dense in D; let H be the Specker �-group generated by D. Then G is dense
in H and so G ⊆ GSP ⊆ H , showing C ⊆ D. �

Proposition 3.9. Let G be a Specker �-group and S be its generalized Boolean
algebra of singular and identity elements. Let SSP be the strongly projectable hull

of S, and let H be the Specker �-group generated by SSP . Then GSP = H .

�����. By definition, SSp is the generalized Boolean algebra of singular ele-
ments of GSP . �
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Now let G be a completely distributive Specker �-group; then Γ(G) has a minimal

plenary subset ∆ and G can be �-embedded into
∏
∆� such that

∑
∆� ⊆ G ⊆

B(∆,�), where B(∆,� is the �-subgroup of
∏
∆� of bounded integer functions.

Theorem 3.10. If G is a completely distributive Specker �-group with an order

unit u, then GSP = G∧ = B(∆,�).

Since G has a basis, G is dense in B(∆,�), while B(∆,�) is a complete Specker
�-group. So GSP ⊆ G∧ ⊆ B(∆,�). Also, B(∆,�) = B(∆,�)(u) = (

∏
∆�)(u).

Now for any polar P of B(∆,�), there exists I ⊆ ∆ such that P = {x ∈ B(∆,�) :

supp(x) ⊆ I}. Since GSP is strongly projectable, u
∣∣
I
∈ GSP . Thus the characteristic

functions of all subsets of ∆ are in GSP , and so GSP = B(∆,�). �

Corollary 3.11. If G is a completely distributive Specker �-group, then GSP =

G∧ is the �-ideal of B(∆,�) generated by G.

�����. We can assume, for ∆ the minimal plenary subset of Γ(G), that
∑
∆�⊆

G ⊆ GSP ⊆ G∧ ⊆ B(∆,�). For any g ∈ G, G(g) has a basis and an order unit. Thus

[G(g)]SP = GSP (g) is a cardinal summand of B(∆,�), and so GSP =
∨

g∈G

GSP (g) is

the �-ideal of B(∆,�) generated by G. �

Proposition 3.12. Let G be a Specker �-group and S be its generalized Boolean
algebra of singular and identity elements. S is a complete atomic Boolean algebra if
and only if G is �-isomorphic to B(Λ,�) for some index set Λ.

�����. Suppose that S is a complete atomic Boolean algebra. Then for any
atom s ∈ S, s is basic in G and so G has a basis. Let Λ be the minimal plenary subset
of Γ(G); there exists an �-embedding σ of G into B(Λ,�) such that singular elements

of G are mapped to characteristic functions. Let I ⊆ Λ. By the completeness of S,
s =

∨{sλ : λ ∈ I} exists in S and sσ = χI . So Gσ contains all characteristic

functions of subsets of Λ and thus Gσ = B(Λ,�).

The converse is clear. �

Theorem 3.13. Let G be a Specker �-group and S be its generalized Boolean
algebra of singular and idientity elements. The following are equivalent:

a) G is complete, completely distributive, and has a unit.

b) G is strongly projectable, completely distributive, and has a unit.

c) S is atomic and laterally complete.
d) S is an atomic complete Boolean algebra.
e) G ∼= B(Λ,�) for some index set Λ.

409



�����. (a⇔b) is clear from Theorem 3.10, as is (e ⇒ a). For (a ⇒ d), since

G has a basis, S is atomic. The equivalence of (c ⇔ d) is well known, and the
equivalence of (d ⇔ e) is Proposition 3.12. �

Corollary 3.14. Let G be a Specker �-group and S be its generalized Boolean
algebra of singular and identity elements. Let SL be the Boolean algebra of joins of

all pairwise disjoint subsets of S, and let H be the Specker �-group generated by SL.

Then (Gu)∧ ∼= H .

�����. The proof is immediate from Theorem 3.13 and so will be omitted. �

Proposition 3.15. If Λ is infinite, then B(Λ,�) has nonclosed prime subgroups.

�����. Since Λ is infinite, Λ = Λ1∪Ω1, where Λ1∩Ω1 = ∅ and Λ1, Ω1 are both
infinite. Likewise, Λ1 = Λ2 ∪ Ω2, where both Λ2, Ω2 are infinite and Λ2 ∩ Ω2 = ∅.
Continuing in this way, we can find a sequence Λ1 ⊃ Λ2 ⊃ . . . of infinite sets such
that

⋂
Λi = ∅. Since {Λi}∞i=1 has the finite intersection property, there exists an

ultrafilter U on Λ such that Λi ∈ U for all i. Since
⋂
Λi = ∅, U is nonprincipal and

thus KU = {g ∈ B(Λ,�) : supp(g) ∈ U} is a nonclosed prime subgroup. �

Now if G is a completely distributive Specker �-group, then since G is archimedean,

G must have a basis, and so must have a basis subgroup B(G). G is finite-valued
if and only if G = B(G). The following theorem, generalizing an example given

by Conrad in [2], characterizes finite-valued Specker �-groups in terms of a-closures.
(Recall that an �-group H is an a-extension of an �-group G if for each 0 < h ∈ H ,

there exists 0 < g ∈ G and a positive integer n such that h < ng and g < nh. An
�-group G is a-closed if G admits no proper a-extensions.)

Theorem 3.16. Let G be a Specker group. G is finite-valued if and only if G has

a unique a-closure.

�����. (⇒) Clear, since Γ(G) is trivially ordered [15].
(⇐) Suppose that G is not finite-valued. Then there exists a singular element a

and pairwise disjoint singular elements {bj}∞j=1 such that 0 < bj < a for all j.

We can assume without loss of generality that G = G(a), as in any event, G =

G(a) � a⊥, and so if it can be shown that G(a) has two nonisomorphic a-closures,
then G must also.

Let Γ = Γ(G); G can then be �-embedded into
∏
Γ � such that each singular

element is mapped to the characteristic function of a subset of Γ. Define h ∈ ∏
Γ �
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by:

h(λ) =

{
�(1 + 1/j), λ ∈ supp(bj);

�, λ /∈ supp(bj) for all j,

and let H be the �-subgroup of
∏
Γ � generated by G ∪ {h}.

Now let m be any integer and g be any element of G. The claim is that there

exists a singular element s ∈ G such that supp(s) = supp[(mh + g) ∨ 0]. This is
clearly true if m = 0, and if for all λ ∈ Γ, (mh + g)(λ) > 0, then s = a is a clear

choice. On the other hand, if for all λ, (mh+ g)(λ) � 0, then s = 0 is the choice.

So suppose there exist λ1, λ2 ∈ Γ such that (mh+g)(λ1) < 0 < (mh+g)(λ2). There

exist pairwise disjoint singular elements {t1, . . . , tn} ⊆ G and integers {k1, . . . , kn}
such that g = k1t1 + . . .+ kntn.

Suppose m > 0. Let N = {i : there exists λ ∈ supp(ti) such that (mh+ g)(λ) <

0}. For i ∈ N , let Ki = {j : ti ∧ bj > 0 and m�(1 + 1/j) + ki > 0}. Then Ki

is finite, else m� + ki = lim
j→∞
[m�(1 + 1/j) + ki] � 0, and so for all λ ∈ supp(ti),

(mh+ g)(λ) � 0. Hence, since Ki is finite, let s = a− ∑
i∈N

ti +
∑

i∈N

∑
j∈Ki

(ti ∧ bj).

Suppose m < 0. Then let N = {i : there exists λ ∈ supp(ti) such that (mh +

g)(λ) < 0}, and let Ki = {j : ti ∧ bj > 0 and m�(1 + 1/j + ki < 0}. Again, Ki is

finite. In this case, let s =
∑

i∈N

[
ti −

∑
j∈Ki

(ti ∧ bj)
]
.

Now for any 0 < x ∈ H , there exist finite sets I and J , integers {mij}I×J , and
elements {gij}I×J ⊆ G such that x =

∨
I

∧
J

[(mijh+ gij)∧ 0. For (i, j) ∈ I × J , let sij

be a singular element of G such that supp(sij) = supp[(mijh+ gij) ∨ 0].
Then

supp(x) =
⋃

I

⋂

J

supp[(mijh+ gij) ∨ 0]

=
⋃

I

⋂

J

supp(sij)

= supp
(∨

I

∧

J

sij

)

and so for all 0 < x ∈ H , there exists a singular element s ∈ G such that supp(x) =
supp(s). Since the range of x is bounded and bounded away from 0, x is a-equivalent

to s. Thus H is an a-extension of G, but cannot be represented by step functions [2].
Since G does have an a-closure which consists of real-valued step functions, G has

more than two nonisomorphic a-closures. �
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4. Examples

Example 4.1. G =
∞∑

i=1
�⊕ �[2, 2, 2, . . .] is an �-subgroup of the eventually con-

stant integer sequences �EC ⊆
∞∏

i=1
� that is not Specker, nor a Specker* �-subgroup

of �EC, yet is dense. Note that for any g ∈ G, 2G(g) ⊆ S(g).

More generally, let {ki} ⊆ �+\{0} be a bounded set and letH =
∞∑

i=1
�[(k1, k2, . . .)].

Then (k1, k2, . . .) is an order unit for H . Let n =
∨{ki}. Then nH ⊆ S((k1, k2, . . .)).

Example 4.2. An example of an �-subgroup A of a Specker �-group F in which

A is not large in the minimal Specker* �-subgroup H of F containing A.

Let F = B(ω,�) � � and let G =
∞∑

i=1
� ⊕ �[((2, 2, 2, . . .), 1)]. G is then an

�-subgroup of F . Then H =
( ∞∑

i=1
���

)
⊕�[((1, 1, 1, . . .), 0)] is the minimal Specker∗

�-subgroup of F that contains G but G is not dense in H .

Now letK be the �-subgroup ofB(ω,�)�� generated by
∞∑

i=1
�and ((1, 1, 1, . . .), 12 ).

K is then a minimal Specker �-group in which G is dense.

Example 4.3. Nobeling [14] proved that ifG is a Specker∗ �-subgroup of a Specker
�-group H , then H = G⊕A, where A is generated by characteristic functions. This

example will show that in most cases, A can not be chosen to be an �-subgroup of H .

Let ω = {0, 1, 2, 3, . . .} and let 1 < p1 < p2 < p3 < . . . be an infinite set of prime
integers. For every pi, let xi be the characteristic function of {pi, p

2
i , p
3
i , . . .}. Note

that if i �= j, then xi ∧ xj = 0.

Assume thatB(ω,�) =
( ∞∑

i=1
�

)
⊕A, where A is an �-subgroup ofB(ω,�) generated

by characteristic functions. Now if c ∈ B(ω,�) is a characteristic function of an

infinite subset of ω, c = s + a, where x ∈
∞∑

i=1
� and a ∈ A. So a = c − s; let

N = max{i ∈ ω : s(i) �= 0}. Then for all i > N , a(i) = c(i), and so a ∨ 0 has infinite
support.

Each xi = si+ai, where si ∈
∞∑

i=1
� and ai ∈ A; let Ni = max(supp(si)) and let nij

be the jth element of supp(ai ∨ 0) after Ni. Note that if i1 �= i2, {ni1} ∩ {ni2} = ∅.
Let b be the characteristic function of {n11, n22, n33, . . .}. Then b = s+ d, where

s ∈
∞∑

i=1
� and d ∈ A. Again, d ∨ 0 has infinite support and there exists N such

that for all k > N , supp(d ∨ 0)(k) = b(k). So for all i such that nii > N , supp(d ∨
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0) ∩ supp(ai ∨ 0) = {nii}. Thus (d ∨ 0) ∧ (ai ∨ 0) ∈
∞∑

i=1
�, which contradicts that

A ∩
( ∞∑

i=1
�

)
= (0).

Example 4.4. Let J denote the set of irrational numbers and let G be the
�-subgroup of

∏
J
� generated by characteristic functions of the form (p, q)∩J , where

p, q are rational numbers. Let ∆1 = �� (all rational multiples of �); ∆1 is then a
countable plenary subset of Γ(G). On the other hand, � = � ⊕ �� ⊕D, where D

is uncountable. Then ∆2 = D is an uncountable plenary subset of Γ(G), disjoint
from ∆1.
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