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Abstract. For a nontrivial connected graph F , the F -degree of a vertex v in a graph G
is the number of copies of F in G containing v. A graph G is F -continuous (or F -degree
continuous) if the F -degrees of every two adjacent vertices of G differ by at most 1. All
P3-continuous graphs are determined. It is observed that if G is a nontrivial connected
graph that is F -continuous for all nontrivial connected graphs F , then either G is regular
or G is a path. In the case of a 2-connected graph F , however, there always exists a
regular graph that is not F -continuous. It is also shown that for every graph H and every
2-connected graph F , there exists an F -continuous graph G containing H as an induced
subgraph.
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1. Introduction

For a vertex v in a graph G, the degree deg v of v is the number of edges in G

incident with v. For a nontrivial connected graph F , the F -degree F deg v of v in G

is the number of copies of F in G containing v. Thus the K2-degree of a vertex is
synonymous with its degree. The concept of F -degree was introduced and studied

in [2]. If F deg v = r for every vertex v of G, then G is said to be F -regular of
degree r.
In [1] an integer-valued parameter f defined on the vertex set of a graph G is

called continuous if |f(u)− f(v)| � 1 for every two adjacent vertices u and v of G.

Research supported in part by the Western Michigan University Faculty Research and
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In particular, degree continuous graphs have the property that | deg u − deg v| � 1
for every two adjacent vertices u and v. Degree continuous graphs were studied by
Gimbel and Zhang [5], who showed, among other results, that for every two positive
integers r and s with r � s, there exists a degree continuous graph with degree set

{r, r + 1, . . . , s}.
For a nontrivial connected graph F , we define a graph G to be F -degree continuous

or, more simply, F -continuous if the F -degrees of every two adjacent vertices differ

by at most 1.

It is an elementary observation that a graph G is F -continuous for some nontrivial
connected graph F if and only if every component of G is F -continuous. Hence it

suffices to consider only connected graphs G. Also, if G contains no copy of F ,
then every vertex of G has F -degree 0 and G is trivially F -continuous. Therefore,

unless otherwise stated, we assume, for a given graph F , that every graph G under
consideration contains a copy of F . The following fact will be useful. We denote the

path of order n by Pn.

Lemma 1.1. Let F be a nontrivial connected graph with the property that for

every connected graph G, whenever G contains F as a subgraph, then every vertex

of G belongs to a copy of F . Then F is P2, P3, or P4.

�����. Obviously, P2 has the desired property. Suppose next that G is a
connected graph containing F = P4 as a subgraph and let v be a vertex of G. Let

Q be a shortest path (of length �) in G from v to F . If � = 0 or � = 3, then clearly
v lies on a copy of P4. Otherwise, Q together with an appropriate subpath of F gives

a path P4 containing v. The argument for F = P3 is similar.

It remains to show that no graph F different from P2, P3, or P4 has such a property.
Assume first that F = Pk, where k � 5. Let P : v1, v2, . . . , vk be a path of order k

and let G be the tree obtained by adding a new vertex v to P and the edge vv� k
2 �.

Then v lies on no copy of F . Assume then that F is not a path. In this case, let
� be the length of a longest path in F . A graph G is constructed by identifying an

end-vertex of P�+1 with a vertex of F . Let u be the other end-vertex of P�+1. Then
u lies on no copy of F . �

By Lemma 1.1, it then follows that if Pk (2 � k � 4) is a subgraph of a connected
graph G, then every vertex of G has a positive Pk-degree. Moreover, only these paths
have this property.

In this paper, we present several results concerning F -continuous graphs for various

graphs F .
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3. P3-continuous graphs

In this section we consider F -continuous graphs for the case where F = P3, the
path of order 3. We begin with the observation that every path Pn (n � 3) is
P3-continuous. In fact, the P3-degree of every vertex of P3 is 1, that is, P3 is
P3-regular. For n � 4, the end-vertices of Pn have P3-degree 1, while the P3-degrees

of the two vertices adjacent to an end-vertex are 2. The remaining vertices of Pn

have P3-degree 3.

Next we make a general observation about the P3-degree of a vertex. Let G be a
connected graph containing a path of order 3. By Lemma 1.1, every vertex of G lies

on a path of order 3. Denote the neighbourhood of a vertex v (the vertices adjacent
to v) by N(v). Then v is the central vertex of

(deg v
2

)
copies of P3 and it is the

end-vertex of
∑

u∈N(v)
(deg u− 1) copies of P3. Therefore,

(1) P3 deg v =

(
deg v

2

)
+

∑

u∈N(v)

(deg u− 1).

An immediate consequence of this observation is that every r-regular graph is P3-

regular of degree 3
(
r
2

)
and so is P3-continuous. Hence it follows that all cycles, com-

plete graphs, and hypercubes are P3-continuous. Next we determine those complete

bipartite graphs that are P3-continuous.

Theorem 2.1. Among the complete bipartite graphs, only K1,2, K1,3, K2,3 and

Kr,r (r � 2) are P3-continuous.

�����. Since Kr,r (r � 2) is an r-regular graph, Kr,r is P3-continuous. Next,
let G = Kr,s, where 1 � r < s and let u, v ∈ V (G), where deg u = r and deg v = s.

Assume first that P3 deg v � P3 deg u. Then

(
s

2

)
+ s(r − 1) �

(
r

2

)
+ r(s − 1).

So (s − r)(r + s − 3) � 0. This implies that r + s = 3, from which it follows that
(r, s) = (1, 2). Otherwise, P3 deg v = 1+P3 deg u. In this case, s(s−3) = (r−1)(r−2).
Hence (r, s) = (1, 3) or (r, s) = (2, 3). �

The following lemma describes the P3-continuous graphs containing vertices with

P3-degree at most 3.

Lemma 2.2. Let G be a P3-continuous graph. Then

(a) G contains a vertex with P3-degree 1 if and only if G = Pn, where n � 3;
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(b) G contains a vertex with P3-degree 2 if and only if G = Pn, where n � 4, or
G = K1,3;

(c) G contains a vertex with P3-degree 3 if and only if G = Pn, where n � 5, or
G = Cn, where n � 3, or G = K1,3.

�����. Let v be a vertex with P3 deg v = 1. Necessarily, then, deg v � 2.
If deg v = 1, then v is an end-vertex that is adjacent to a vertex u of degree 2.

Let N(u) = {v, w}. Now degw � 2; otherwise, P3 deg u � 3, contradicting the
P3-continuity of G. Repeating this procedure, it follows that G = Pn, where n � 3.
If deg v = 2, then G = P3. This verifies (a).
Next let v be a vertex with P3 deg v = 2. Then deg v � 2. If deg v = 1, then v

is an end-vertex adjacent to a vertex u of degree 3. Let N(u) = {v, w1, w2}. Now
degw1 = degw2 = 1; otherwise, P3 deg u � 4, contradicting the P3-continuity of G.

Therefore, G = K1,3.
Now suppose that deg v = 2, and let N(v) = {u, w}. Then exactly one of u and w

is an end-vertex with P3-degree 1. By (a), it follows that G = Pn, in this case with
n � 4. This verifies (b).
Finally, let v be a vertex with degree P3 deg v = 3. Then deg v � 3. If deg v = 1,

then v is an end-vertex adjacent to a vertex u of degree 4. Consequently, P3 deg u �(4
2

)
= 6, contradicting the P3-continuity of G. Hence deg v � 2.
If deg v = 2, then v is adjacent to two vertices u and w, neither of which is an

end-vertex. Necessarily, deg u = degw = 2. Continuing in this manner, we see that
either G = Cn, where n � 3, or G = Pn where n � 5. If deg v = 3, then G = K1,3.

This verifies (c). �

As a consequence of Lemma 2.2, we are able to determine all P3-continuous trees.

Corollary 2.3. The only P3-continuous trees are Pn, where n � 3, and K1,3.

�����. Let T be a P3-continuous tree and let v be an end-vertex of T that is
adjacent to w. Let degw = k. Then

(
k

2

)
� P3 degw � 1 + P3 deg v.

Thus 1+(k−1) = k �
(
k
2

)
, so k � 3. If k = 2, then P3 deg v = 1. By Lemma 2.2 (a),

G = Pn, where n � 3. If k = 3, then P3 deg v = 2 and either G = Pn, where n � 4,
or G = K1,3 by Lemma 2.2 (b). �

We have already noted that every r-regular graph, r � 2, is P3-continuous; indeed

it is P3-regular of degree 3
(
r
2

)
. We now determine the possible P3-degree sets of all

P3-continuous graphs. Necessarily these sets are of the form {r, r + 1, r + 2, . . . , s}
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for positive integers r and s with r � s. We begin by determining the P3-degree sets

of cardinality 2 in a connected P3-continuous graph.

Theorem 2.4. If G is a connected P3-continuous graph with P3-degree set

{k, k + 1}, then k ∈ {1, 2, 5}.
�����. Since the vertices of G have two distinct P3-degrees, G is not regular.

Since G �= P3, it follows that the order of G is at least 4. Let u and v be vertices
of G with deg u = δ(G) = δ and deg v = ∆(G) = ∆, where δ < ∆. First we show

that P3 deg v > P3 deg u. Assume, to the contrary, that

(2) P3 deg v � P3 deg u.

Then, by (1), it follows that
(
∆
2

)
+∆(δ − 1) � P3 deg v � P3 deg u �

(
δ

2

)
+ δ(∆− 1),

which yields the inequality ∆2−3∆ � δ2−3δ or, equivalently, (∆−δ)(∆+δ−3) � 0.
This implies that ∆ + δ = 3, so (δ,∆) = (1, 2). So G = Pn for n � 4 and P3 deg v >

P3 deg u, which contradicts (2). Hence, as claimed, P3 deg v > P3 deg u. Since the
P3-degree set of G is {k, k + 1}, we must have P3 deg v = 1 + P3 deg u. So

(
∆
2

)
+∆(δ − 1) � P3 deg v = 1 + P3 deg u � 1 +

(
δ

2

)
+ δ(∆− 1),

which produces the inequality

(3) (∆− δ)(∆ + δ − 3) � 2.

The only pairs (δ,∆) satisfying (3) are (1, 2), (1, 3), and (2, 3).

If (δ,∆) = (1, 2), then P3 deg u = 1 and by Lemma 2.2, G = P4, producing the
P3-degree set {1, 2}. Assume that (δ,∆) = (1, 3). Then deg u = 1. Let w be the

neighbour of u. So 2 � degw � 3. If degw = 2, then P3 deg u = 1 and G = Pn for
n � 4 by Lemma 2.2 (b). This, however, is impossible since ∆ = 3. Thus degw = 3.

Then P3 deg u = 2, which implies by Lemma 2.2 (b) that G = K1,3. This gives the
P3-degree set {2, 3}.
If (δ,∆) = (2, 3), then, of course, every vertex of G has degree 2 or 3. Since

P3 deg u �
(2
2

)
+ 2 + 2 = 5 and P3 deg v �

(3
2

)
+ 1 + 1 + 1 = 6, a vertex of degree 3

can only be adjacent to vertices of degree 2 while a vertex of degree 2 can only be
adjacent to vertices of degree 3. Thus k = 5 and the P3-continuous graphs with

P3-degree set {5, 6} are the subdivision graphs of cubic graphs or cubic multigraphs.
�
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In Lemma 2.2, we have described P3-continuous graphs containing vertices with

P3-degree 1, 2, or 3. No vertex of a P3-continuous graph can have P3-degree 4,
however; suppose, to the contrary, that G is a P3-continuous graph containing a
vertex v with P3 deg v = 4. By (1), it follows that 1 � deg v � 3. If deg v = 1, then

its neighbour u has degree 5, so P3 deg u � 10, contradicting the P3-continuity of G.
Thus deg v = 2 or deg v = 3. In either case, v cannot be adjacent to an end-vertex

for such a vertex has P3-degree at most 2, again contradicting the P3-continuity of G.
Since a vertex v with P3 deg v = 4 and deg v = 3 in a P3-continuous graph must be

adjacent to an end-vertex, we are left with only one possibility, namely deg v = 2 and
one neighbour of v, say u, has degree 3 and the other neighbour of v has degree 2.

Since 4 � P3 deg u � 5, it follows that u is adjacent to an end-vertex w. However,
then, P3 degw = 2, again a contradiction.

The following theorem provides us with additional information about the degrees
of the vertices of a P3-continuous graph.

Theorem 2.5. Every P3-continuous graph is regular or has maximum degree at

most 3.

�����. Let G be a P3-continuous graph that is not regular. We show that
∆(G) � 3. Assume first that δ(G) = 1. Let deg u = 1 and assume that v is adjacent
to u. Then deg v � 3. Therefore, P3 deg u = 1 or P3 deg u = 2. By Lemma 2.2,

G = Pn for some n � 3 or G = K1,3 and so ∆(G) � 3.
Hence we may assume that δ(G) � 2. Assume, to the contrary, that ∆(G) =

∆ � 4. First we show that no vertex of degree 2 can be adjacent to a vertex of
degree at least 4; assume, to the contrary, that u and w are adjacent vertices with

deg u = 2 and degw � 4. Furthermore, we may assume that if v is another neighbour
of u, then deg v � degw. Then P3 deg u �

(2
2

)
+ 2(degw − 1) = 2 degw − 1, while

P3 degw �
(degw
2

)
+ degw. This implies that P3 degw − P3 deg u � 3 as degw � 4.

Thus a vertex of degree ∆ � 4 can be adjacent only to vertices of degree 3 or more.
Let k be the smallest degree of a vertex that is adjacent to a vertex of degree ∆.
Say deg x = k and deg y = ∆, where xy ∈ E(G). Then 3 � k < ∆. Therefore,

P3 deg y �
(∆
2

)
+∆(k − 1) and P3 deg x �

(
k
2

)
+ k(∆− 1), so

P3 deg y − P3 deg x �
(
∆
2

)
+∆(k − 1)−

(
k

2

)
− k(∆− 1)

=
1
2
(∆− k)(∆ + k − 3) � 2.

This is a contradiction. �

With the aid of Theorem 2.5, we now see that only certain P3-degrees are possible
for the vertices of a P3-continuous graph.
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Corollary 2.6. The only integers that can occur as the P3-degrees of the vertices

of a P3-continuous graph are 1, 2, 3, 5, 6, and 3
(
r
2

)
, where r � 3.

�����. Let G be a P3-continuous graph. If G is r-regular, then we have already
seen that G is P3-regular of degree 3

(
r
2

)
. Thus we may assume that 1 � δ(G) = δ <

∆(G) = ∆, where ∆ � 3 by Theorem 2.5. Hence the only possible pairs for (δ,∆)
for G are (1,2), (1,3), and (2,3). For (δ,∆) = (1, 2), G = Pn, which has P3-degrees

1, 2, and 3 for its vertices. For (δ,∆) = (1, 3), G = K1,3, which has P3-degrees 2 and
3 for its vertices. For (δ,∆) = (2, 3), each P3-continuous graph is the subdivision of

a cubic graph or a cubic multigraph. The P3-degrees of the vertices of these graphs
are 5 and 6. Hence each of the numbers 1, 2, 3, 5, 6 is realizable as the P3-degree of

some vertex in a P3-continuous graph. �

Corollary 2.7. The P3-degree sets of a P3-continuous graph are
{
3
(
r
2

)}
for r � 2,

{1, 2}, {2, 3}, {5, 6}, and {1, 2, 3}. Furthermore, the only P3-continuous graphs are

regular graphs, Pn for n � 3, K1,3, and the subdivisions of a cubic graph or a cubic
multigraph.

3. Other results concerning F -continuous graphs

By Corollary 2.7, the only P3-continuous graphs are regular graphs, the paths Pn

for n � 3, the star K1,3, and the subdivisions of cubic graphs or cubic multigraphs.

Certainly, every vertex of K1,3 has degree 1 or 3; hence K1,3 is not P2-continuous.
If G is a subdivision of a cubic graph or a cubic multigraph, then every vertex of
degree 3 in G has P4-degree 12, while every vertex of degree 2 in G has P4-degree 6.

These observations give the following result.

Corollary 3.1. If G is a connected graph of order n � 2 that is F -continuous for

every nontrivial connected graph F , then either G is regular or G = Pn.

Although the paths Pn, n � 2, are F -continuous for every nontrivial connected

graph F , the converse of Corollary 3.1. is not true as there are many nontrivial con-
nected graphs F for which there exist regular graphs that are not F -continuous. Of

course, vertex-transitive graphs are F -regular for every nontrivial connected graph F ,
so they are F -continuous as well. Also, regular graphs that are notK2-regular clearly

do not exist. Since every regular graph is P3-regular, there is no regular graph that
is not P3-continuous. The paths P2 and P3 are also both stars. Indeed, if G is an

r-regular graph and F = K1,k, k � 2, then every vertex of G has F -degree (k+1)
(

r
k

)

and is consequently F -regular and so F -continuous.
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The situation is different, however, if F = P4. Indeed, if v is a vertex of an

r-regular graph, then

(4) P4 deg v = 2r(r − 1)2 − 4K̇3 deg v.

By (4), if G is a regular graph not all of whose vertices belong to the same number
of triangles, then G is not P4-continuous. Indeed (4) shows us that an r-regular

graph G is P4-continuous if and only if G is K3-regular. A regular graph that is not
P4-continuous is shown in Fig. 1, where its vertices are labeled with their P4-degrees.

20

20

16 16

20

20

16 16�
Fig. 1

This suggests the problem of determining those graphs F for which there exists

a regular graph G that is not F -continuous. If F is 2-connected, then we have a
solution to this problem. Before presenting this solution, it is useful to make a few

preliminary remarks. If G is a graph with cycles, then its circumference c(G) is the
length of its largest cycle, while its girth g(G) is the length of its smallest cycle.

It was shown by Erdös and Sachs [4] that for every two integers r � 2 and g � 3,
there exists an r-regular graph having girth g. An r-regular graph having girth g of

minimum order is called an (r, g)-cage.

Theorem 3.2. For every 2-connected graph F , there exists a regular graph that

is not F -continuous.

�����. Let F have order n, and let H be the graph obtained by identifying

three copies F1, F2, F3 of F at the same vertex v, where degF v = ∆(F ) = ∆.
Thus F degH v = 3 and F degH x = 1 for x �= v. Hence H is not F -continuous and

∆(H) = 3∆. If either ∆ or n is even, let r = 3∆; otherwise, let r = 3n + 1. We
construct an r-regular graph G that is not F -continuous. Observe that

(5)
∑

u∈V (H)

(r − degH u) = r(3n− 2)−
∑

u∈V (H)

degH u = 2q

is even. Let c denote the circumference of F . Hence the circumference of H is c as
well. Let J denote an r-regular cage of girth c + 1. Certainly F is not a subgraph
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of J . Let J1, J2, . . . , Jq be q copies of J and delete the same edge, say yz, in each

copy. Necessarily, the edge yz lies on some cycle (of length at least c+ 1). We now
join y and z in each graph Ji − yz (1 � i � q) to distinct vertices of H in such a
way that the resulting graph G is r-regular. No copy of F contains these two edges

since the length of the smallest cycle in G containing these edges exceeds c. Hence
the only copies of F in G are F1, F2, and F3. Thus, F degG v = 3, F degG x = 1 for

x ∈ V (Fi − v), 1 � i � 3, and F degG x = 0 for x ∈ V (Ji), 1 � i � q. Therefore, the
graph G has the desired properties. �

Although we have seen that regular graphs exist that are not P4-continuous, we
know of no general construction that shows that regular graphs exist which are not

F -continuous when F is not a star. However, we believe that this is the case.

Conjecture 3.3. For every nontrivial connected graph F different from the star

K1,k, k � 1, there exists a regular graph that is not F -continuous.

Fig. 2 shows the graph of Fig. 1 again, but this time the K3-degrees of its vertices
are shown.

1

1

2 2

1

1

2 2�
Fig. 2

As we can see from Fig. 2, there exist regular, K3-continuous graphs that are not
K3-regular. This statement is true ifK3 is replaced by any nontrivial complete graph.

For n � 4, the graph of Fig. 3 describes a construction of a regular, Kn-continuous
graph that is not Kn-regular. It is obtained by removing an edge from each of two

copies of Kn+1 and joining the corresponding vertices.

Kn+1 − e −→ ←− Kn+1 − e�
Fig. 3

A regular, C4-continuous graph that is not C4-regular is shown in Fig. 4. The
C4-degrees of its vertices are indicated in the figure. We state the following problems.
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2

2

3

3
2

2
3

3

2

2

�
Fig. 4

Problem 3.4. For every nontrivial connected graph F different from the star

K1,k, k � 1, does there exist a regular, F -continuous graph that is not F -regular?

Problem 3.5. Is it true that every regular graph G that is not vertex-transitive
is not F -continuous for some nontrivial connected graph F?

A well known theorem of König [6] states that for every graph H , there exists a
regular graph G containing H as an induced subgraph. Certainly, such a graph G

is K2-continuous as well. In the case of 2-connected graphs F , we can extend this
result to F -continuous graphs.

Theorem 3.6. For every graph H and every 2-connected graph F , there exists

an F -continuous graph G containing H as an induced subgraph.

�����. Let H be a g raph and let ∆F = max
v∈V (H)

(F degH v). If ∆F � 1, then let
G = H , which has the desired properties. So we may assume that ∆F � 2. For each
vertex v in H , if F degH v = i, then we attach ∆F − i copies Fv,j (1 � j � ∆F − i)
of F to H at v by identifying v and a vertex in each graph Fv,j for all j. Denote the

resulting graph by G1. Then H is a induced subgraph of G1 and every vertex in H

is a cut-vertex in G1.

Since F is 2-connected, every copy of F in G1 is either a subgraph of H or is
some graph Fu,j for u ∈ V (H) and 1 � j � ∆F − F degH u. Thus F degG1 v = ∆F

for v ∈ V (H) and F degG1 v = 1 for all v ∈ V (G1) − V (H). If ∆F = 2, then G1
is F -continuous and G = G1 has the desired properties. Otherwise, we construct a

graph G2 from G1 by attaching ∆F − 2 copies of F to G1 at v for each v ∈ V (G1)−
V (H) as above. Again, H is an induced subgraph of G2 and every vertex in G1 is

a cut-vertex of G2. Hence, F degG2 v = ∆F for all v ∈ V (H), F degG2 v = ∆F − 1
for all v ∈ V (G1) − V (H), and F degG2 v = 1 for all v ∈ V (G2) − V (G1). If G2 is

F -continuous, then G = G2 has the desired properties. Otherwise, we repeat the
procedure described above for each k with 3 � k � ∆F − 1 to obtain the graph Gk.

In the F -continuous graph G = G∆F−1, the graph H is an induced subgraph of G,
as desired. �
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The F -degree set of the graph G constructed in the proof of Theorem 3.6 is

{1, 2, . . . ,∆F }. So we have the following consequence of the proof of Theorem 3.6.

Corollary 3.7. For every 2-connected graph F and integer s � 1, there exists an
F -continuous graph G whose F -degree set is {1, 2, . . . , s}.

�����. Let G1 be obtained by identifying s copies of F at a vertex u. Then
F degG1 u = s and F degG1 v = 1 for all v ∈ V (G1)− {u}. We repeat the procedure
in the proof of Theorem 3.6 to construct a sequence G1, G2, . . . , Gs of graphs. Then
G = Gs has the desired properties. �
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