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CONNECTED DOMATIC NUMBER IN PLANAR GRAPHS

Bert L. Hartnell, Halifax, and Douglas F. Rall, Greenville
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Abstract. A dominating set in a graph G is a connected dominating set of G if it induces a
connected subgraph of G. The connected domatic number of G is the maximum number of
pairwise disjoint, connected dominating sets in V (G). We establish a sharp lower bound on
the number of edges in a connected graph with a given order and given connected domatic
number. We also show that a planar graph has connected domatic number at most 4 and
give a characterization of planar graphs having connected domatic number 3.
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1. Introduction

A set of vertices D in a graph G = (V, E) is a dominating set if every vertex

in V − D has at least one neighbour in D. Such a dominating set D is called a
connected dominating set if the subgraph induced byD, 〈D〉, is a connected subgraph
of G. In this paper we assume that all graphs are connected since we are interested
in connected dominating sets. The minimum number of vertices in a connected

dominating set of G is called the connected domination number of G, and is denoted
by γc(G). A connected domatic partition of G is a partition of the vertex set, V , into

connected dominating sets. The maximum number of subsets in such a partition is
called the connected domatic number of G and is denoted by dc(G). Equivalently,

dc(G) is the maximum number of pairwise disjoint, connected dominating sets which
can be found in V (G). The concept of a connected dominating set was defined in

[5] and the connected domatic number was introduced by S.T. Hedetniemi and R.
Laskar in [4].

A graph G = (V, E) is planar if it is possible to establish a one-to-one correspon-
dence (vi ↔ pi) between V and a set {p1, p2, . . . , pn} of points in the plane in such
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a way that if vrvs ∈ E then a curve can be drawn joining pr and ps such that the

interiors of distinct curves do not intersect. Such an embedding of a planar graph
is called a plane graph. G is called outerplanar if the embedding can be chosen so
that the boundary of one of the planar regions contains every vertex of G. A graph

G2 is called an elementary contraction of G1 if there is an edge uv of G1 such that
V (G2) = (V (G1) − {u, v}) ∪ {x} (where x does not belong to V (G1), and the edge

set of G2 consists of all edges of G1 which are not incident with either of u or v

together with all edges of the form xy where at least one of uy or vy is an edge of

G1. If the graph H is isomorphic to G or is obtainable from G by a finite sequence of
elementary contractions, then we say that H is a contraction of G. Perhaps a more

intuitive way to think of a contraction H of a graph G is to consider a partition of
V (G) into subsets each of which induces a connected subgraph of G. Each member of

the partition corresponds to a vertex of H , and two vertices of H are adjacent if the
union of the corresponding subsets of G induces a connected subgraph of G. In effect

each member of the partition has been shrunk to a single vertex and multiple edges
have then been removed. It is clear that the property of being planar is preserved

under contractions.

For our purposes here we need the following result concerning planar and outer-

planar graphs. See chapter 4 of [1].

Theorem 1.1. A graph G is planar (outerplanar) if and only if neither K5 nor

K3,3 (K4 nor K2,3) is a contraction of a subgraph of G.

Hedetniemi and Laskar observed that dc(G) � δ(G) unless G is a complete graph.

If G is not complete, there is a proper subset A of V (G) such that the subgraph
G − A is disconnected. Every connected dominating set D of G must intersect A

nontrivally since D induces a connected subgraph and dominates the vertices in each

component of G−A. B. Zelinka used this idea to prove the following result.

Theorem 1.2. ([6]) If G is a connected graph which is not complete, then the

connected domatic number is no larger than κ(G), the vertex connectivity of G.

For general graphs the upper bound of κ(G) for dc(G) is the best known. In what

follows we will prove a better bound for planar graphs.
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2. Size and Connected Domatic Number

We begin by establishing a sharp lower bound on the number of edges in a con-
nected graph G having a given order and given connected domatic number. Unless

otherwise noted we will use n to denote the order of a graph G. If A and B are
disjoint subsets of V (G), then we use E(A, B) to denote the set of all edges of G

which join a vertex in A and a vertex in B.

Lemma 2.1. Let G be a connected graph of order n with connected domatic

number k � 1. Then G must have at least k+1
2 n− k edges.

�����. Since G is connected of order n it must have at least n− 1 = 1+1
2 n− 1

edges, so the result is true for k = 1. Thus we assume k � 2. Let D1, D2, . . . , Dk

be a connected domatic partition of G, and let Gi = 〈Di〉 have order ni, for each i.
Then since Di is a dominating set for G it follows that |E(Di, V (G)−Di)| � n− ni

and so

|E(G)| �
k∑

i=1

|E(Gi)|+
1
2

k∑

i=1

|E(Di, V (G)−Di)|

�
k∑

i=1

(ni − 1) +
1
2

k∑

i=1

(n− ni)

� (n− k) +
1
2
n(k − 1)

=
k + 1
2

n− k.

�

For each value of k the complete bipartite graph Kk,k shows that the lower bound
of Lemma 2.1 is sharp. Figure 1 contains three other graphs showing the sharpness

of the bound.

K3 K2

�
G1

�
G2

�
Figure 1. Regular Graphs Achieving Bound of Lemma 2.1.
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By Theorem 1.2, dc(G) � r if G is an r-regular graph, unless G is the complete

graph Kr+1.

Corollary 2.2. If G is a cubic graph and dc(G) = 3, then G is one of K3,3 or

K3 K2. If G is 4-regular such that dc(G) = 4, then G is one of K4,4, G1 or G2 of

Figure 1.

�����. Assume G is a cubic graph such that dc(G) = 3. By Lemma 2.1 G must
have at least 2n− 3 edges. Thus 32n � 2n− 3, and so G has order at most six. It is

straightforward to check that K3,3 and K3 K2 are the only such cubic graphs with
connected domatic number three. Similar reasoning establishes the second statement

of the corollary. �

In general, if G is r-regular and dc(G) = r, then by Lemma 2.1 r
2n = |E(G)| �

r+1
2 n− r, and so G has order at most 2r. The following result then follows.

Corollary 2.3. For each positive integer r there are a finite number of r-regular

graphs with connected domatic number r. Each of these graphs must have order

2r, and each of the connected dominating sets in the connected domatic partition

induces a path of order 2.

3. Planar Graphs

We first learned of the connected domatic number ‘problem’ from Steve Hedetniemi
[2], who was considering various domination problems on chessboard graphs. A

chessboard graph is a graph whos vertices are those of a square grid graph with edges
corresponding to legal moves of a particular chess piece. Individuals working on these

problems consider chessboard graphs corresponding to queens, kings, knights, rooks
and bishops. In addition the usual grid graph, which is the Cartesian product of

two paths of order n, is included in this class of graphs and is the chessboard graph
of a ‘chess piece’, often called the cross, which can move one square horizontally or

vertically. See [3] for a survey. We will concentrate here on planar graphs.

We consider first the more general r× s grid graph, Gr,s = Pr Ps, the Cartesian

product of two paths. Specifically, let Pr be the path v1, v2, . . . , vr and let Ps be
the path w1, w2, . . . , ws. Then V (Gr,s) = {(vi, wj)|1 � i � r, 1 � j � s}. Assume
2 � r � s. Since κ(Gr,s) = 2 it follows from 1.2 that dc(Gr,s) � 2. When r = 2 the
subsets D1 = {(v1, wi)|1 � i � s} and D2 = {(v2, wi)|1 � i � s} partition the vertex
set of the r × s grid into two connected dominating sets. These are the only grid
graphs with connected domatic number larger than one.
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Theorem 3.1. Let 2 � r � s. If r = 2, then dc(Gr,s) = 2. For r � 3,

dc(Gr,s) = 1.

�����. The case r = 2 is covered above. Assume r � 3 and that {D1, D2} is
a partition of V (Gr,s) into two connected dominating sets. For ease of reference
let a, b, c, d, e, f be the vertices (v1, w2), (v2, w1), (v1, ws−1), (v2, ws), (vr−1, ws),

(vr, ws−1), respectively. Note that if r = 3, then d = e. (If, in addition, s = 3,
then a = c as well.) We may assume without loss of generality that a ∈ D1 and

b ∈ D2. Since D1 and D2 are connected dominating sets of Gr,s, some neighbour of
(v1, ws) must belong to D2, and some neighbour of (vr , ws) must belong to D1. Let

{x} = D2 ∩ {c, d} and let {y} = D1 ∩ {e, f}.
If r = 3 = s, then f ∈ D1 and d ∈ D2. But then (v2, w2) ∈ D1 and so 〈D2〉 is

not connected, a contradiction. Therefore, assume s � 4. There are three cases to
consider. If r = 3 (so that d = e) and y = e, then it follows that x = c and f ∈ D2.

Thus the vertices of any a − y path form a cutset which separates vertices b and c.
If r = 3 and y = f , then the vertex set of any a− y path separates vertices b and d.

If r � 4, then vertices b and x are separated by the vertex set of any a− y path. In
each case there is a contradiction to the assumption that 〈D2〉 is connected. �

Any tree T has exactly one minimum connected dominating set, namely the set
consisting of all vertices of T having degree larger than one. Since every planar graph

has a vertex of degree at most five, it follows from Theorem 1.2 that if G is planar
then 1 � dc(G) � 5. We conclude by showing that dc(G) � 4 and by specifying the
structure of the subgraphs induced by the subsets in a connected domatic partition
when dc(G) is three or four.

Theorem 3.2. Let G be a planar graph. The connected domatic number of G is

at most 4, and K4 is the only planar graph achieving this bound.

�����. Assume G is a planar graph of order n such that dc(G) � 5. By
Lemma 2.1, G has at least 5+12 n − 5 edges. But this contradicts the well known
upper bound of 3n− 6 for a planar graph of order n. Thus, dc(G) � 4.
Now assume that dc(G) = 4 but that G is not isomorphic to K4. Let D1 ∪ D2 ∪

D3 ∪ D4 be a connected domatic partition of G. We may assume that |D1| � 2.
Let a and b be adjacent vertices in D1 and let ui ∈ Di for i = 2, 3, 4. Let H be the

contraction of G formed by identifying the vertices in each of D2, D3 and D4 to a
single vertex x2, x3 and x4, respectively. H is planar since it is a contraction of a

planar graph. But since D2 is a dominating set in G it follows that x2 is adjacent
to each of a, b, x3, x4 in H . Similar statements hold for x3 and x4. But then H

contains the subgraph 〈{a, b, x2, x3, x4}〉 which has been shown to be isomorphic to
K5. This contradiction shows that G must be isomorphic to K4. �
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The planar graph G in Figure 2 is an example of a graph with connected domatic

number three. The three “vertical” paths are connected dominating sets. In this
particular example the three connected dominating sets in the partition have orders
four, five and seven.

�
Figure 2. Planar Graph G such that dc(G) = 3.

The following result shows that the structure present in the connected dominating
sets of any planar graph having connected domatic number three must be similar to

that of the graph in Figure 2.

Theorem 3.3. Let G be a planar graph such that dc(G) = 3 and let D1∪D2∪D3
be any connected domatic partition of G. Each of the induced subgraphs 〈D1〉, 〈D2〉
and 〈D3〉 is a path.

�����. Assume first that G is a planar graph and D1 ∪D2 ∪D3 is a connected

domatic partition of G such that 〈D1〉 has a vertex a of degree at least three. Let
b, c, d be three of its neighbours in D1 and let u2 ∈ D2 and u3 ∈ D3. Let H be

the planar graph obtained from G by contracting Di onto ui for i = 2, 3, and by
removing any of the edges bc, bd, cd which is present in G. Since D2 dominates D1,

each of a, b, c and d is adjacent to u2 in H . Consider any planar embedding of H . By
Euler’s formula, the subgraph K = 〈{a, b, c, d, u2}〉 has four regions, and u2 belongs

to the boundary of each of these regions. Since K contains a subgraph isomorphic
to K2,3, it is not outerplanar, and so none of the four regions has a boundary which

contains all of a, b, c and d. But u3 lies in one of these regions and can be adjacent
only to vertices on the boundary of this region. But then u3 does not dominate D1,

contradicting our assumption above. Therefore, the maximum degree of any of the
induced subgraphs 〈D1〉, 〈D2〉 and 〈D3〉 is no more than two.
Now assume that one of these subgraphs, say 〈D1〉, is a cycle of length k � 3. By

contracting this cycle to K3 and the other two subgraphs 〈D2〉 and 〈D3〉 to single
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vertices it follows that G has a subgraph which can be contracted to K5. This

contradiction establishes the theorem. �

For any three given positive integers r, s and t it is straightforward to see how

to modify the construction in Figure 2 to embed a planar graph with a connected
domatic partition whose dominating sets induce the paths Pr, Ps and Pt. Similarly,

for any two given outerplanar graphsH1 andH2, Figure 3 illustrates how to construct
a plane embedding of a graph with connected domatic number 2 such that the

two connected dominating sets in the partition induce subgraphs isomorphic to H1
and H2.

v3 y u4

u3

u2x

v2
v1

u1�
Figure 3. Planar Graph G such that dc(G) = 2.
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