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DEGREE-CONTINUOUS GRAPHS

John Gimbel, Faibanks, and Ping Zhang, Kalamazoo
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Abstract. A graph G is degree-continuous if the degrees of every two adjacent vertices
of G differ by at most 1. A finite nonempty set S of integers is convex if k ∈ S for every
integer k with min(S) � k � max(S). It is shown that for all integers r > 0 and s � 0
and a convex set S with min(S) = r and max(S) = r + s, there exists a connected degree-
continuous graph G with the degree set S and diameter 2s + 2. The minimum order of a
degree-continuous graph with a prescribed degree set is studied. Furthermore, it is shown
that for every graph G and convex set S of positive integers containing the integer 2, there
exists a connected degree-continuous graph H with the degree set S and containing G as an
induced subgraph if and only if max(S) � ∆(G) and G contains no r−regular component
where r = max(S).
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1. Introduction

In the newly introduced area of analytic graph theory (see [1]), an integer-valued

function f defined on a metric space M associated with a graph G, where there
is a symmetric adjacency relation defined on M, is said to be continuous on M if

|f(x) − f(y)| � 1 for every two adjacent elements x and y of M. Certainly, one of
the best known and most studied integer-valued parameters associated with a graph

is the degree of a vertex. Inspired by the terminology just described, we begin a
study of this topic. Consequently, we define a graph G to be degree-continuous if the

degrees of every two adjacent vertices of G differ by at most 1. Observe that a graph
G is degree-continuous if and only if every component of G is degree-continuous.

A finite nonempty set S of integers is convex if k ∈ S for every integer k with

min(S) � k � max(S). The degree set D(G) of a graph G is the set of the degrees of
the vertices of G. Necessarily, the degree set of every connected degree-continuous
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graph is convex. In this paper, we assume that a convex set S is of the form

(1) S = {r, r + 1, r + 2, . . . , r + s}

where r and s are nonnegative integers with s � 0.
In fact, every convex set S as given by (1) is the degree set of some connected

degree-continuous graph. For example, let Tr,s be a rooted tree with root v such
that if the distance d(u, v) between u and v in Tr,s is i, then degTr,s

u = r+ i, where

0 � i � s− 1. In particular, degTr,s
v = r. Furthermore, the distance between v and

every end-vertex of Tr,s is s. It follows that

D(Tr,s) = {r, r + 1, r + 2, . . . , r + s− 1} ∪ {1}.

If r+ s � 3, then Tr,s is degree-continuous since the degree of each of its vertices is 1

or 2. Suppose that r+ s > 3. Since every vertex u that is adjacent to an end-vertex
w has degree r + s − 1, it follows that degTr,s

u − degTr,s
w = r + s − 2 > 1 and so

Tr,s is not degree-continuous. However, |degTr,s
u1 − degTr,s

u2| = 1 for every two
adjacent vertices u1 and u2 that are not end-vertices. For each end-vertex of Tr,s

we construct a complete graph Kr+s−1 of order r + s− 1 and add an edge between
this end-vertex and each vertex in the corresponding Kr+s−1. Denote the resulting

graph by Gr,s. It is not difficult to see that:

degTr,s
u = degGr,s

u for every vertex u of Tr,s that is not an end-vertex,
degGr,s

w = r + s for every end-vertex w of Tr,s, and

degGr,s
u = r + s− 1 for every vertex u of Gr,s that does not belong to Tr,s.

It follows that
D(Gr,s) = (D(Tr,s)− {1}) ∪ {r + s} = S.

Note that if d(u, v) is r + s − 1 or r + s + 1, then degGr,s
u = r + s − 1. More-

over, |degGr,s
u1 − degGr,s

u2| = 1 for every two adjacent vertices u1 and u2 of Gr,s.

Hence the graph Gr,s is degree-continuous. From the structure of Gr,s it follows that
diamGr,s = 2s + 2 and Gr,s contains a path P of length s such that the degrees

of its vertices attain each element of the set S exactly once. In fact, every v − w

path, where w is an end-vertex of Tr,s, has this property. Figure 1 illustrates the

structure of G2,4 and so S = {2, 3, 4, 5, 6}. Clearly, diamG2,4 = 10 and the path
P : v2, v3 . . . , v6 of G has the property that deg vi = i for 2 � i � 6.
The discussion above gives the following theorem.

Theorem 1.1. For all integers r � 1 and s � 0 and a convex set S of integers

with min(S) = r and max(S) = r + s, there exists a connected degree-continuous
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Figure 1. The degree-continuous graph G2,4

graph G with the degree set S and diam(G) = 2s+ 2. Moreover, G contains a path

P : vr, vr+1, . . . , vr+s

of length s with deg vi = i for r � i � r + s.

2. The minimum order of a degree-continuous graph

In this section we investigate the minimum order of a degree-continuous graph
with some prescribed properties. First, we study the minimum order of a degree-

continuous tree with a given maximum degree.
A fact from number theory will be useful to us here. Let an denote the number

of nonempty words that can be formed from n given characters, where no character
is repeated in the word. The number an (see [4], p. M3503) is given by

an = n+ n(n− 1) + n(n− 1)(n− 2) + . . .+ n!.

Alternatively, the sequence {an} can be defined recursively by the initial value

a1 = 1

and the recursive relation

an = n(1 + an−1) for n � 2.

We are now prepared to present a result on the order of a degree-continuous tree
that is not a path.

Theorem 2.1. The order of every degree-continuous tree with maximum degree
∆ � 3 is at least 1 + ∆+∆a∆−2.
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�����. Let v be a vertex of a degree-continuous tree T with deg v = ∆. We

partition V (T ) as {V1, V2, . . . , V∆}, where Vk consists of the vertices of degree k in
T . We now root T at v and orient each edge of T away from v. We note that each
vertex in Vk has at least k − 1 descendants in Vk−1. Hence,

|Vk−1| � (k − 1)|Vk|.

Furthermore, V∆−1 has cardinality at least ∆. Thus,

|V∆|+ |V∆−1|+ . . .+ |V2|+ |V1| � 1 + ∆+∆(∆ − 2)
+ ∆(∆− 2)(∆− 3) + . . .+∆[(∆− 2)!]

= 1 +∆+∆a∆−2

and the proof is complete. �

We see that this result is sharp by considering a tree that is rooted at a vertex of

degree ∆ and in which each vertex of degree k � 2 has k−1 children of degree k−1.
Now we consider the minimum orders of more general degree-continuous graphs.

We begin by stating some additional definitions. Let G1, G2, . . . , Gk be k graphs
with disjoint vertex sets. Then the k-path composition G = Pk[G1, G2, . . . , Gk] has

V (G) =
k⋃

i=1

V (Gi)

and

E(G) =

( k⋃

i=1

E(Gi)

)
∪

(k−1⋃

i=1

{vivi+1 : vi ∈ V (Gi) and vi+1 ∈ V (Gi+1)}
)

.

Observe that Pk[K1, K1, . . . , K1] is simply a path of order k. Moreover, for v1 ∈
V (G1),

(2) degG v1 = degG1 v1 + |V (G2)|.

For vi ∈ V (Gi) (2 � i � k − 1),

(3) degG vi = |V (Gi−1)|+ degGi
vi + |V (Gi+1)|.

For vk ∈ V (Gk),

(4) degG vk = |V (Gk−1)|+ degGk
vk.

166



For a set S as given by (1), define m(S) to be the minimum order of a degree-

continuous graph G having S as its degree set. The following theorems (see [2],
pp. 227, 272) will be useful.

Theorem A. For integers r and n with 0 � r < n, there exists an r-regular graph

of order n if and only if r and n are not both odd.

Theorem B. Every r-regular bipartite graph with r � 1 is 1-factorable.

The following theorem gives the minimum orders for degree-continuous graphs
with given degree sets.

Theorem 2.2. Let S be a convex set as described in (1) and let m =
⌈

s
3

⌉
.

1. If s ≡ 0 (mod 3), then

(m+ 1)

(
r + 1 +

3m
2

)
� m(S) � 1 + (m+ 1)

(
r + 1 +

3m
2

)
.

Moreover, if r and m are not both even, then

m(S) = (m+ 1)

(
r + 1 +

3m
2

)
.

2. If s ≡ 1 (mod 3), then

m(S) = (m+ 1)

(
r + 2 +

3m
2

)
.

3. If s ≡ 2 (mod 3), then

1 + (m+ 1)

(
r +
3(m+ 2)
2

)
� m(S) � 2 + (m+ 1)

(
r +
3(m+ 2)
2

)
.

Moreover, if r is even or m is odd, then

m(S) = 1 + (m+ 1)

(
r +
3(m+ 2)
2

)
.

�����. We will only prove the theorem in the case when s ≡ 0 (mod 3) since
the proofs of the remaining cases are similar. In this case,

S = {r, r + 1, r + 2, . . . , r + 3m}
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where m � 0. Let G be a connected degree-continuous graph with the degree set S.

First, we show that

|V (G)| � (m+ 1)
(

r + 1 +
3m
2

)
.

For each j (r � j � r + 3m), define

(5) Vj = {v ∈ V (G) : deg v = j}.

Then V (G) =
r+s⋃
j=r

Vj . Let N(vj) denote the neighborhood of a vertex vj ∈ Vj . Then

|N(vj)| = deg vj = j, where r � j � r + 3m. Assume first that m = 0. Since every
graph with the degree set {r} has at least r+1 vertices and the complete graphKr+1

is a degree-continuous graph with the degree set {r}, it follows that m(S) = r + 1.
Next assume that m > 0. Let vr ∈ Vr. Since G is degree-continuous, it follows that

{vr} ∪N(vr) ⊆ Vr ∪ Vr+1

and so

(6) |Vr ∪ Vr+1| � |N(vr)|+ 1 = r + 1.

For each i (1 � i � m− 1), since

{vr+3i} ∪N(vr+3i) ⊆ Vr+3i−1 ∪ Vr+3i ∪ Vr+3i+1,

it follows that

(7) |Vr+3i−1 ∪ Vr+3i ∪ Vr+3i+1| � |N(vr+3i)|+ 1 = r + 3i+ 1.

Similarly, since {vr+3m} ∪N(vr+3m) ⊆ Vr+3m−1 ∪ Vr+3m, we have that

(8) |Vr+3m−1 ∪ Vr+3m| � |N(vr+3m)|+ 1 = r + 3m+ 1.

Combining (6), (8), and (7), we obtain

|V (G)| �
m∑

i=0

(r + 3i+ 1) = (m+ 1)

(
r + 1 +

3m
2

)
.

In order to construct the desired degree-continuous graph, we consider two cases.

168



Case 1. At least one of r and m is odd. In this case, we can construct a degree-

continuous graph G of order (m+ 1)
(
r + 1 + 3m2

)
with the degree set S. Let H1 be

the (3m− 1)-path composition

H1 = P3m−1 [K1, Kr, K1, K2, Kr+1, K2, K3, Kr+2, . . . , Km−1, Km, Kr+m−1] .

By Theorem A, there exists an (r − 3)-regular graph F of order r +m− 1. Let

H2 = P2[P2[F, K2m+1], K1].

By Theorem B, we can construct a graph G from H1 and H2 by connecting the
graph Kr+m−1 in H1 with the graph F in H2 using an m-regular bipartite graph

B such that the partite sets of B are V1 = V (Kr+m−1) and V2 = V (F ), where
|V1| = |V2| = r +m − 1. The graph G is shown in Figure 2, where then |V (G)| =
(m+ 1)

(
r + 1 + 3m2

)
and D(G) = S.

K1
Kr K1 K2

Kr+1 K2 K3
Kr+2 Km−1 Km Kr+m−1 F

K1

K2m−1

B�
Figure 2. A degree-continuous graph G of order (m+ 1)

(
r + 1 + 3m2

)

Case 2. r and m are both even. In this case, we construct a degree-continuous

graph G′ of order 1 + (m+1)
(
r + 1 + 3m2

)
and with the degree set S. Let H ′

1 = H1
be as described in Case 1, F ′ an (r − 2)-regular graph of order r + m − 1, and
L = K2m+1−{e1, e2, . . . , em}, where the edges ei = viui (1 � i � m) are independent
in K2m+1. Now let

H ′
2 = P2[P2[F

′, L], K1].

The desired graph G′ is obtained from H ′
1 and H ′

2 by first connecting the graph

Kr+m−1 in H ′
1 with the graph F ′ in H ′

2 using an (m− 1)-regular bipartite graph B′

with its partite sets V1 = V (Kr+m−1) and V2 = V (F ′) and then adding a new vertex

x and edges {xv : v ∈ V (Kr+m−1) ∪ {v1, u1, v2, u2, . . . , vm, um}} where Kr+m−1 is
the subgraph of H ′

1. �

The following corollary is a direct result of the manner in which degree-continuous
graphs were constructed in Theorem 2.2.

Corollary 2.3. For each set S = {r, r + 1, r + 2, . . . , r + s} of positive integers
with s � 0, there exists a degree-continuous graph G of minimum order such that

diamG = 2s+ 2.
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3. Degree-continuous graphs with prescribed induced subgraphs

It is a well known result of König [3] that every graph G can be embedded as an

induced subgraph in an r-regular graph H for every integer r � ∆(G). Of course, H
is a degree-continuous graph with the degree set D(H) = {r}. We now provide an
extension of König’s theorem, the proof of which is similar to König’s.

Lemma 3.1. If G is a connected, non-regular graph and S is a convex set of pos-

itive integers where max{2,∆(G)} � max(S), then there exists a connected degree-
continuous graphH with D(H) = S such that H contains G as an induced subgraph.

�����. LetM = max(S) andm = min(S). LetG′ be a second copy of the graph

G. If a vertex v has degree less thanM , then join v in G to the vertex corresponding
to v in G′. This procedure is repeated until an M -regular graph HM is produced.

The graph HM contains at least two disjoint copies of G as induced subgraphs. If
S = {M}, then H = HM . Suppose then that S �= {M}. For m � r < M , let
Hr denote an r-regular graph. For each r with m � r � M − 1, delete an edge
urvr from Hr. Furthermore, for each r with m + 1 � r � M , delete an edge wrxr

(distinct from urvr) from Hr. For k = m, m+ 1, . . . , M − 1, the edges ukwk+1 and

vkxk+1 are added, denoting the resulting graph by H . The graph H has the desired
properties. �

We now present the following result.

Theorem 3.2. For a non-regular graph G and a convex set S of positive integers

containing the number 2, there exists a connected degree-continuous graph H with

D(H) = S which contains G as an induced subgraph if and only if

(a) G contains no r-regular component where r = max(S), and

(b) max(S) � ∆(G).

�����. First, we establish the necessity of condition (a). Suppose that G is a
non-regular subgraph of a connected degree-continuous graph H . Clearly, if G is

connected, then G contains no regular component. Suppose that G is disconnected
and contains an r-regular component G1 with r = max(S). Since H is connected,

there exists a vertex of H not in G1 that is adjacent to a vertex in G1, implying that
max(S) > r, a contradiction. Since ∆(H) � ∆(G), it follows that (b) is necessary
as well.

For the converse, if G is connected, then the result follows from Lemma 3.1.

Therefore, we assume that G is disconnected. Let G1, G2, . . . , Gk be components of
G. We consider two cases.
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Case 1 : max(S) = 2. Then every component of G is a path. So suppose that Gi

is a path with end-vertices ui and vi, where 1 � i � k. If S = {1, 2}, then we add
k− 1 new vertices wi (1 � i � k− 1) and the new edges viwi and wiui+1 to G. The
resulting graph H is a path. If S = {2}, we also add a vertex wk and two edges u1wk

and wkvk to G. The resulting graph H is a cycle. So H is degree-continuous with
D(H) = S. Moreover, H contains G as an induced subgraph.

Case 2 : max(S) � 3. By (a), every component of G contains at least one vertex
of degree less than max(S). Let ui ∈ V (Gi) with degG ui < max(S). We add a
new vertex wk−1 and new edges uk−1wk−1 and wk−1uk to G to produce a graph G∗.

Then G∗ contains k − 1 components, namely G1, G2, . . ., Gk−2, G′
k−1, where G′

k−1
consists of Gk−1, Gk, and the edges uk−1wk−1, wk−1uk. Since wk−1 ∈ V (G′

k−1) and

degG∗ wk−1 = 2 < max(S), we can repeat this procedure with G∗, producing a graph
with k − 2 components. In fact, if we repeat this procedure k − 1 times, we obtain
a connected graph G′ containing G as an induced subgraph. Since G′ satisfies the
conditions described in Lemma 3.1 we can apply Lemma 3.1 to G′ and produce a

graph H with the desired properties. �
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