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SUBFIELDS OF LATTICE-ORDERED FIELDS THAT MIMIC

MAXIMAL TOTALLY ORDERED SUBFIELDS

R.H. Redfield, Clinton

(Received December 30, 1997)

0. Introduction

A lattice-ordered field (or �-field) is a field (L,+, ·) with a compatible lattice or-
der �. A totally ordered subfield of L is called an o-subfield, and for any subset
S ⊆ L, S� = {s ∈ S | s � 0}. It is well known that every �-field L in which 1 > 0

has a maximal o-subfield M(L) (cf. [4], [7]). For archimedean �-fields, Schwartz
proved in [7] that even if 1 �> 0, there is a subfield with properties similar to those of
the o-subfields M(L). Specifically, he showed that if (L,+, ·, �) is an archimedean
�-field, then L contains a subfield K with the following properties:

(1) K is the largest subfield of L which has a compatible total order � such that
K�L� ⊆ L�;

(2) K is the largest subfield of L such that for all 0 < a ∈ L, aK is a totally
ordered subgroup of (L,+, ·, �);

(3) K� = {x ∈ L | for all a, b ∈ L, a ∧ b = 0 =⇒ xa ∧ b = 0}.

The object of this paper is to investigate the existence of such a subfield without
assuming that L is archimedean.

In section 1, we show that partially ordered fields may have distinct maximal
o-subfields, which may even be nonisomorphic. In the remainder of the paper, we

restrict ourselves to �-fields (L,+, ·, �). In section 2, we introduce a compatible
partial order � on L to show that a subfield satisfies condition (1) if and only
if it also satisfies condition (2). In section 3, we show that, with respect to �,

The author presented many of these results at the Summer School on General Algebra
and Ordered Sets held in September 1997 in Štrbské Pleso. He would like to thank the
organizers (especially Štefan Černák) for giving him the opportunity to speak and the
participants for making the conference both very interesting and very congenial.
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the positive cone of a subfield which satisfies condition (1) or (2) is contained in

the set determined by condition (3). And then in section 4, we find several con-
ditions, each of which is equivalent to this set being the positive cone of an o-
subfield of (L,+, ·, �). In sections 5 and 6, we use the results of sections 3 and 4
to show that common constructions of �-fields in which 1 �> 0 lead to �-fields in
which the set determined by condition (3) is always the positive cone of such an

o-subfield.
We will use the following terminology without further comment; for terminology

and notation left undefined, see [2]. If (L,+, ·, �) is an �-field, then an element b ∈ L

can be “basic” in two senses. It can be an element of a basis of L as a vector space

over some subfield T or it can be a positive element for which the interval [0, b] is
totally ordered. We distinguish between these two situations by calling a positive

element b for which [0, b] is totally ordered �-basic and by calling a basis of L as a
vector space over some subfield a v-basis.

1. Totally ordered subfields of partially ordered fields

We noted in the introduction above that an �-field (L,+, ·, �) in which 1 > 0
contains a unique maximal o-subfieldM(L). In this section, we give examples which

show that this may not be true for partially ordered fields in general.
These examples are based on Hahn fields, whose general construction is the fol-

lowing. Let F be a field and let T be a totally ordered group. Form the product∏
T F . For f ∈ ∏

T F , let Supp(f) = {t ∈ T | f(t) �= 0} denote the support of f .

Then form the subset

X

∏
T

F =
{
f ∈

∏
T

F | Supp(f) is inversely well-ordered
}
.

It is well known ([2], [4], [5], [6]) that X

∏
T F is a field with respect to coordinatewise

addition and to convolution as multiplication:

(f + g)δ = fδ + gδ; (fg)δ =
∑

α+γ=δ

fαgγ .

If F is totally ordered, then X

∏
T F is also totally ordered with respect to the order

f > 0 ⇐⇒ fµ > 0, where µ =
∨
Supp(f).
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Example 1.1. Construct the Hahn field H = X

∏
�(
√
2) �. We will partially

order H in an unusual way. Let

L1 = {f ∈ H | fa+b
√
2 = 0 if b �= 0},

P (L1) =
{
f ∈ L1 | fµ > 0 where µ =

∨
Supp(f)

}
,

L2 = {f ∈ H | fa+b
√
2 = 0 if a �= 0},

P (L2) = {f ∈ L2 | fµ > 0 where µ =
∨
Supp(f)}.

Then L1, being a copy of the field X

∏
�
�, is a subfield of H , and P (L1) is the

strictly positive cone of a compatible total order on L1 (viz., the order defined in
the preceding paragraph). Similarly L2 is a subfield of H and P (L2) is the strictly

positive cone of a compatible total order on L2. Now let P (H) denote the set of all
finite sums of the form

∑
i

figi, where fi ∈ P (L1) and gi ∈ P (L2). We will show that

P (H) is the strictly positive cone of a compatible partial order on H , with respect
to which 1 > 0 and L1 and L2 are distinct maximal o-subfields.

We first show that P (H) determines a compatible partial order on H . Suppose
that

∑
i

figi,
∑
k

akbk ∈ P (H), and let

µ =
∨
Supp

( ∑

i

figi +
∑

k

akbk

)
,

ν =
∨
Supp

( ∑

i

figi

∑

k

akbk

)
,

ϕi =
∨
Supp(fi), γi =

∨
Supp(gi),

αk =
∨
Supp(ak), βk =

∨
Supp(bk),

λ1 =
∨
{ϕi + γi}, λ2 =

∨
{αk + βk}.

Then µ = λ1 ∨ λ2 and ν = λ1 + λ2, and
( ∑

i

figi +
∑

k

akbk

)

µ

=

( ∑

i

(figi)µ

)
+

( ∑

k

(akbk)µ

)

=

( ∑

i

∑

ϕi+γi=µ

(fi)ϕi(gi)γi

)
+

(∑

k

∑

αk+βk=µ

(ak)αk
(bk)βk

)
> 0,

( ∑

i

figi

∑

k

akbk

)

ν

=

( ∑

i

(figi)

)

λ1

( ∑

k

(akbk)

)

λ2

=

( ∑

i

∑

ϕi+γi=λ1

(fi)ϕi(gi)γi

)( ∑

k

∑

αk+βk=λ2

(ak)αk
(bk)βk

)
> 0.
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It follows that P (H) + P (H) ⊆ P (H) and P (H)P (H) ⊆ P (H). Furthermore,

λ1 =
∨
Supp(−∑

i

figi), and

(
−

∑

i

figi

)

λ1

= −
( ∑

ϕi+γi=λ1

(fi)ϕi(gi)γi

)
< 0

so that −∑
i

figi /∈ P (H). Thus it is also the case that P (H) ∩ (−P (H)) = ∅, and
we conclude from [2, p. 105] that P (H) is the strictly positive cone of a compatible
partial order � on H .

Since 1 ∈ P (L1) and 1 ∈ P (L2), 1 ∈ P (H), and hence (H,+, ·, �) is a partially
ordered field in which 1 > 0. As well, since P (L1) = P (H) ∩ L1 and P (L2) =

P (H)∩L2, L1 and L2 are both o-subfields of H . We will show that both L1 and L2
are maximal o-subfields of H .

For Z ∈ P (H), let

R(Z) = {q ∈ � | q + s
√
2 ∈ Supp(Z) for some s ∈ �},

S(Z) = {q ∈ � | r + q
√
2 ∈ Supp(Z) for some r ∈ �}.

We first show that

(a) for all Z ∈ P (H), both R(Z) and S(Z) are inversely well-ordered.

Since Z ∈ P (H), Z =
∑
k

akbk for ak ∈ P (L1) and bk ∈ P (L2). So if α+β
√
2 ∈ S(Z),

then for some k, α+β
√
2 ∈ S(akbk), and hence for some k, α ∈ S(ak) and β ∈ S(bk).

It follows that R(Z) ⊆ ⋃
k

R(ak) and S(Z) ⊆ ⋃
k

S(bk), and thus since all the R(ak)

and S(bk) are inversely well-ordered, both R(Z) and S(Z) are inversely well-ordered.

This proves (a).
Now suppose that X ∈ P (H), that X /∈ P (L1), and, by way of contradiction, that

L1(X) is totally ordered.
We will need the following notation. For w ∈ �(

√
2), define Ew ∈ P (H) by letting

(Ew)λ =

{
1 if λ = w

0 if λ �= w;

and for 0 �= Z ∈ H and 0 < i ∈ �>, let

µ0(Z) =
∨
Supp(Z), µi(Z) =

∨
(Supp(Z) � {µ0(Z), . . . , µi−1(Z)}).

We begin by showing that

(b) there exist Y ∈ L1(X) ∩ P (H) and 0 < γ, q ∈ � such that µ0(Y ) = γ
√
2,

µ1(Y ) < q < µ0(Y ), and for all α ∈ R(Y ) and all 0 < n ∈ �, α �= nq.
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Since X ∈ P (H), X =
∑
k

akbk for ak ∈ P (L1) and bk ∈ P (L2). If bk ∈ P (L1), then

X − akbk ∈ L1(X), and hence we may assume that bk /∈ P (L1) for all k. Thus,
if

∨
Supp(X) = α + γ

√
2, then γ �= 0. Suppose that γ < 0. Then since L1(X) is

totally ordered, X−1 is also in L1(X)∩P (H) and µ0(X−1) = (−α)+(−γ)
√
2, where

−γ > 0. So since L1(X) = L1(X−1), we may also assume that γ > 0. Furthermore,

since E−α ∈ P (L1), E−αX ∈ L1(X), and hence, since µ0(E−αX) = γ
√
2, we have

found Y ∈ L1(X) such that µ0(Y ) = γ
√
2 for γ > 0. Now (a) implies both that∨

R(Y ) exists in R(Y ) and that for all 0 < n < N ,

rn =
∨{

r ∈ R(Y ) | r

n
< µ0(Y )

}

exists in R(Y ) and rn

n < µ0(Y ). Then for some 0 < N ∈ �,
∨

R(Y )
N < µ0(Y ), and

for all n � N , rn

n �
∨

R(Y )
N = rN

N . Let M = r1
1 ∨ . . .∨ rN

N ∨ µ1(Y ). Then M < µ0(Y )
and hence, since 0 < µ0(Y ), there exists 0 < q ∈ � such that M < q < µ0(Y ).

If q = nα for α ∈ R(Y ), then α
n = q < µ0(Y ) and hence q = α

n � rn

n � M , a
contradiction. So for all α ∈ R(Y ) and all 0 < n ∈ �, α �= nq, and since µ1(Y ) � M ,

µ1(Y ) < q < µ0(Y ). This proves (b).

So we may assume that Y ∈ L1(X) ∩ P (H) and γ, q ∈ � satisfy the conditions
given in (b). Then Eq ∈ L1, and hence Z = Eq + Y is an element in L1(X) ∩ P (H)

such that µ0(Z) = µ0(Y ) = γ
√
2 and µ1(Z) = q. Now we are assuming that L1(X)

is totally ordered, and hence we must have Z−1 ∈ P (H). We will show that R(Z−1)

is unbounded.

Certainly µ0(Z−1) = −γ
√
2. Since ZZ−1 = 1 and µ1(Z) = q, we must have

q − γ
√
2 = µ1(Z) + µ0(Z−1)

= µ0(Z) + µ1(Z−1) = γ
√
2 + µ1(Z−1),

and hence µ1(Z−1) = q − 2γ
√
2. But µ1(Z) + µ1(Z−1) /∈ Supp(1) = Supp(ZZ−1)

and hence either

2q − 2γ
√
2 = µ1(Z) + µ1(Z

−1)

= µ0(Z) + µ2(Z−1) = γ
√
2 + µ2(Z−1)

or for some α+ β
√
2 ∈ Supp(Z),

2q − 2γ
√
2 = µ1(Z) + µ1(Z−1)

= (α+ β
√
2) + µ0(Z−1) = α+ (β − γ)

√
2).
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In the latter case, α ∈ R(Z) and q = α
2 , a contradiction. So we must have µ2(Z−1) =

2q − 3γ
√
2. Similarly, either

3q − 3γ
√
2 = µ1(Z) + µ2(Z−1)

= µ0(Z) + µ3(Z
−1) = γ

√
2 + µ3(Z

−1)

or for some α+ β
√
2 ∈ Supp(Z), one of the following two equations holds:

3q − 3γ
√
2 = µ1(Z) + µ2(Z−1)

= (α + β
√
2) + µ0(Z−1) = α+ (β − γ)

√
2),

3q − 3γ
√
2 = µ1(Z) + µ2(Z−1)

= (α + β
√
2) + µ1(Z−1) = (α+ q) + (β − 2γ)

√
2).

In the third case, α ∈ R(Z) and q = α
2 and in the second case, α ∈ R(Z) and q = α

3 .
Since both cases contradict our assumptions concerning q, µ3(Z−1) = 3q − 4γ

√
2.

Continuing in this fashion, we conclude that for any 0 < n ∈ �, µn(Z−1) = nq −
(n + 1)γ

√
2, and hence that R(Z−1) ⊇ {nq | 0 < n ∈ �}. But then Z−1 is an

element of P (H) for which R(Z−1) has no maximum element. This contradicts (a)
and therefore, L1(X) is not totally ordered.

It follows that L1 is a maximal o-subfield of H . A similar argument shows that L2
is also a maximal o-subfield and hence that H has two distinct maximal o-subfields.

Note that L1 and L2, both being isomorphic to X

∏
�
� as totally ordered fields, are

also isomorphic to each other as totally ordered fields.

In Example 1.1, we constructed a partially ordered field with 1 > 0 having distinct
maximal o-subfields that are isomorphic. A similar construction may be used to find

a partially ordered field with 1 > 0 having distinct maximal o-subfields that are not
isomorphic.

Example 1.2. Let � be a subgroup of � that is uncountable, divisible and
order-dense and for which � ∩ � = {0}, and let � = � ⊕ �. Then � is a totally
ordered group with respect to the usual total order on �, and we may construct
the Hahn field H = X

∏
�
�. We will define a partial order on H in similar to that

defined on X

∏
�(
√
2) � in Example 1.1. Let

L1 = {f ∈ H | fq+u = 0 if u �= 0},
P (L1) =

{
f ∈ L1 | fµ > 0 where µ =

∨
Supp(f)

}
,

L2 = {f ∈ H | fq+u = 0 if q �= 0},
P (L2) =

{
f ∈ L2 | fµ > 0 where µ =

∨
Supp(f)

}
.
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Then L1, being a copy of the field X

∏
�
�, is a subfield ofH , and P (L1) is the strictly

positive cone of the usual compatible total order on L1. Similarly L2, being a copy
of the field X

∏
�
�, is a subfield of H , and P (L2) is the strictly positive cone of the

usual compatible total order on L2. Now let P (H) denote the set of all finite sums

of the form
∑
i

figi, where fi ∈ P (L1) and gi ∈ P (L2). An argument similar to that

given in Example 1.1 shows that P (H) is the strictly positive cone of a compatible
partial order on H , with respect to which 1 > 0 and L1 and L2 are distinct maximal

o-subfields. Since � is countable and � is uncountable, X

∏
�
� is not isomorphic to

X

∏
�
�. So L1 and L2 are maximal o-subfields of H that are not isomorphic.

2. A partially ordered field associated with a lattice-ordered field

As noted in the introduction, if (L,+, ·, �) is an archimedean �-field, then, even if

1 �> 0, L nonetheless contains a subfield K with properties similar to those of M(L),
the specific properties (1), (2) and (3) being given in the introduction. In the sequel,

we will investigate subfields with similar properties in �-fields that are not assumed
to be archimedean.

To this end, let (L,+, ·, �) be an �-field and let

P (L) = {x ∈ L | for all a � 0, ax � 0}.

It is easy to check that P (L) ∩ (−P (L)) = {0}, that P (L) + P (L) ⊆ P (L), and that

P (L)P (L) ⊆ P (L), and hence by [2, p. 105] that P (L) is the positive cone of a
compatible partial order, �, on L, i.e. that (L,+, ·, �) is a partially ordered field,
where L� = P (L). In the archimedean case, property (1) implies that the subfield
K is a maximal o-subfield of (L,+, ·, �). In the general case, since 1 ∈ P (L), L

contains a copy of the rational numbers which is given the usual total order by �,
and thus by Zorn’s Lemma, (L,+, ·, �) contains at least one maximal o-subfield. So
to address property (1) in general, we letM1(L) denote the set of maximal o-subfields
of (L,+, ·, �). Note that the examples of section 1 show that there exist partially
ordered fields in which 1 > 0 and which have more than one maximal o-subfield.
As noted above, L contains a copy Q of the rational numbers. By [2, p. 67], Q

has the following property:

(c) for all 0 < a ∈ L, aQ is a totally ordered subgroup of (L,+, �).

Thus by Zorn’s Lemma, L contains at least one subfield T which is maximal with

respect to property (c). So to address property (2), we let M2(L) denote the set of
all subfields of (L,+, ·) which are maximal with respect to property (c).
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Finally, to address property (3), we let

P3(L) = {x ∈ L | for all a, b ∈ L, a ∧ b = 0 =⇒ ax ∧ b = 0},
M3(L) = {x− y | x, y ∈ P3(L)}.

(In the terminology of [1], P3(L) is the set of all x such that the function a 
→ ax

defines a “polar preserving endomorphism” of L.) The work of Schwartz [7] shows

that if 1 > 0, then M3(L) = M(L) and that if L is archimedean, then K = M3(L)
is a subfield of L satisfying properties (1), (2) and (3) given in the introduction and

as well M1(L) = M2(L) = {M3(L)}. In general, if 1 > 0 and x ∈ P (L), then
x = 1x � 0 and hence P (L) ⊆ L�. Since always P (L) ⊇ L�, in this case P (L) = L�

so that M1(L) = {M(L)} = {M3(L)}. (A stronger result is Corollary 2.4 below.)
What can be said in general, if we assume neither that L is archimedean nor that

1 > 0? We begin our answer to this question by showing thatM1(L) =M2(L) for all
�-fields L. Note that this leaves open the possibilities first thatM1(L) contains more

than one element and second that the subfields that comprise M1(L) may have no
relation to M3(L). In section 3, we will show that any subfield in M1(L) =M2(L)

is contained in M3(L); in section 4, we will show that M1(L) =M2(L) = {M3(L)}
if and only if M3(L) is totally ordered. In sections 5 and 6, we will apply this result

to known constructions.
To prove that M1(L) =M2(L), we need the following lemma.

Lemma 2.1. Let (L,+, ·, �) be an �-field and let S be a subfield of (L,+, ·) such
that for all 0 < a ∈ L, aS is a totally ordered subgroup of (L,+, �). If s ∈ S is such

that 0 < ps for some 0 < p ∈ L, then s ∈ P (L).

�����. Note that by hypothesis, for all 0 < a ∈ L and all 0 �= t ∈ S, either

at > 0 or at < 0. If as−1 < 0 for some 0 < a ∈ L, then pa = psas−1 < 0, a
contradiction. So as−1 > 0 for all 0 < a ∈ L. But if as < 0 for some 0 < a ∈ L,

then −as > 0, and thus −a2 = (−as)as−1 > 0, a contradiction. So 0 < as for all
0 < a ∈ L, i.e., s ∈ P (L). �

Proposition 2.2. Suppose that (L,+, ·, �) is an �-field. Then for any S ⊆ L,

the following statements are equivalent:

(i) S is an o-subfield of (L,+, ·, �);
(ii) S is a subfield of (L,+, ·) such that for all 0 < a ∈ L, aS is a totally ordered

subgroup of (L,+, �).

�����. Suppose that S is an o-subfield of (L,+, ·, �). Then S is a subfield of
(L,+, ·). Let 0 < a ∈ L and let s, t ∈ S. Without loss of generality, we may assume
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that s � t. Then s− t ∈ P (L) and hence 0 � a(s− t) = as− at, i.e., as � at. Since

aS is obviously a subgroup of (L,+), it follows that aS is a totally ordered subgroup
of (L,+, �).
Conversely, suppose that S is a subfield of (L,+, ·) such that for all 0 < a ∈ L,

aS is a totally ordered subgroup of (L,+, �). Pick 0 < p ∈ L. If 0 �= s ∈ S is such
that 0 < ps, then by Lemma 2.1, s ∈ P (L). Otherwise, 0 < −ps and by Lemma 2.1,

−s ∈ P (L). It follows that S is an o-subfield of (L,+, ·, �). �

Corollary 2.3. For any �-field (L,+, ·, �), M1(L) =M2(L).

�����. By Proposition 2.2, the set S1(L) of o-subfields of (L,+, ·, �) is the
same as the set S2(L) of subfields K of (L,+, ·) such that for all 0 < a ∈ L, aK is a

totally ordered subgroup of (L,+, �). Therefore, since M1(L) is the set of maximal
elements of S1(L) andM2(L) is the set of maximal elements of S2(L),M1(L) must

equalM2(L). �

Corollary 2.4. For any �-field (L,+, ·, �) in which 1 > 0,

M1(L) =M2(L) = {M3(L)} = {M(L)}.

�����. Corollary 2.4 follows from Corollary 2.3 and the observation above that
if 1 > 0, then M1(L) = {M(L)} = {M3(L)}. �

3. Totally ordered subfields and polar preserving multiplication

The object of this section is to show that every subfield inM1(L) is contained in
M3(L) and to derive some of the elementary properties of the elements of M3(L).

Lemma 3.1. Let (L,+, ·, �) be an �-field and let S be a subfield of (L,+, ·) such
that for all 0 < a ∈ L, aS is a totally ordered subgroup of (L,+, �). If s ∈ S is such

that 0 < ps < p for some 0 < p ∈ L, then 0 < as < a for all 0 < a ∈ L.

�����. Let 0 < a ∈ L. By Lemma 2.1, 0 < as. Since aS is totally ordered,

as < a or as = a or as > a. If as = a, then s = 1 and hence ps = p, a contradiction.
If as > a, then pas > pa, and since a > 0 and p > ps, pa > psa. But then

pas > pa > psa = pas, a contradiction. We conclude that as < a. �

Lemma 3.2. Let (L,+, ·, �) be an �-field and let S be a subfield of (L,+, ·) such
that for all 0 < a ∈ L, aS is a totally ordered subgroup of (L,+, �). If s ∈ S is such

that 0 < ps for some 0 < p ∈ L, then s−1 ∈ P (L).
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�����. Let 0 < a ∈ L, and note that by Lemma 2.1, 0 < as. Since S is a

subfield, s−1 ∈ S and hence by hypothesis either 0 < as−1 or 0 > as−1. If 0 > as−1,
then a2 = (as−1)(as) < 0(as) = 0, a contradiction, and hence 0 < as−1. It follows
that s−1 ∈ P (L). �

Proposition 3.3. Let (L,+, ·, �) be an �-field and let S be a subfield of (L,+, ·)
such that for all 0 < a ∈ L, aS is a totally ordered subgroup of (L,+, �). If s ∈ S

is such that 0 < ps for some 0 < p ∈ L, then s ∈ P3(L).

�����. Suppose that a∧ b = 0 in L, and note that by hypothesis either as � a

or as > a. If as � a, then since as > 0 by Lemma 2.1, 0 � as ∧ b � a ∧ b = 0, i.e.,
as ∧ b = 0. So suppose that as > a, and by way of contradiction that as ∧ b > 0 as

well. Since S is a subfield, s−1 ∈ S and 0 < as−1 by Lemma 3.2. Furthermore, by
hypothesis, as−1 > a or as−1 = a or as−1 < a. If as−1 > a, then a2 = (as)(as−1) >

a(as−1) > a2, a contradiction. If as−1 = a, then a = as, also a contradiction. So
as−1 < a. But then by Lemma 3.1, (as ∧ b)s−1 < as ∧ b � b, and by Lemma 3.2,

0 < (as ∧ b)s−1 � (as)s−1 = a. Then 0 < (as ∧ b)s−1 � a ∧ b, a contradiction. We
conclude that as ∧ b = 0, and hence that s ∈ P3(L). �

Corollary 3.4. If (L,+, ·, �) is an �-field and T ∈ M2(L), then T ⊆ M3(L).

�����. By Corollary 2.3, T ∈ M1(L). So T is an o-subfield of (L,+, ·, �), and
thus T = {x− y | x, y ∈ T �}. But by Proposition 3.3, T � ⊆ P3(L). It follows that
T ⊆ M3(L). �

4. Properties of polar preserving multiplication

By Corollaries 2.3 and 3.4, if (L,+, ·, �) is an �-field and if P3(L) is the positive
cone of an o-subfield of (L,+, ·, �), then M1(L) = M2(L) = {M3(L)} and hence
(L,+, ·, �) contains a unique subfield with properties (1), (2) and (3) given in the
introduction. The object of this section is to find conditions under which P3(L) is

the positive cone of such an o-subfield.

It is easy to see that P3(L) already possesses several of the properties which de-
termine such a cone. Specifically, we have the following.

Proposition 4.1. If (L,+, ·, �) is an �-field, then M3(L) is a partially ordered

subring of (L,+, ·, �) whose positive cone is P3(L).

�����. It is easy to see that M3(L) is a subring of L, and since P3(L) ⊆ P (L),
P3(L) ∩ (−P3(L)) = {0}. Suppose that x, y ∈ P3(L) and that a ∧ b = 0. Then

152



ax ∧ b = 0 and hence axy ∧ b = 0 so that xy ∈ P3(L). So P3(L)P3(L) ⊆ P3(L).

Furthermore, ax ∧ b = 0 = ay ∧ b in L, and thus (see [2, p. 70]), (a(x + y)) ∧ b =
(ax+ ay)∧ b = 0 so that x+ y ∈ P3(L). Then P3(L)+P3(L) ⊆ P3(L), and therefore
M3(L) is a partially ordered subring of (L,+, ·, �) whose positive cone is P3(L). �

So to show that M3(L) is an o-subfield of (L,+, ·, �), it is only necessary to
show that it is totally ordered in (L,+, ·, �) and that its nonzero elements possess
multiplicative inverses that are also in M3(L). We will show that nonzero elements

of P3(L) possess multiplicative inverses in P3(L), and hence the only condition that
remains to be checked is that M3(L) is totally ordered.

Lemma 4.2. Suppose that (L,+, ·, �) is an �-field and e ∈ P3(L). Then for all
a, b ∈ L, e(a ∧ b) = ea ∧ eb and e(a ∨ b) = ea ∨ eb.

�����. Since e ∈ P3(L), we have

(a− (a ∧ b)) ∧ (b− (a ∧ b)) = (a ∧ b)− (a ∧ b) = 0

=⇒ (ea− e(a ∧ b)) ∧ (b − (a ∧ b)) = 0

=⇒ (ea− e(a ∧ b)) ∧ (eb− e(a ∧ b)) = 0

=⇒ (ea ∧ eb)− e(a ∧ b) = 0

=⇒ ea ∧ eb = e(a ∧ b).

As well,

e(a ∨ b) = −e((−a) ∧ (−b)) = −((−ea) ∧ (−eb)) = ea ∨ eb.

�

Proposition 4.3. If (L,+, ·, �) is an �-field and 0 �= e ∈ P3(L), then e−1 ∈
P3(L).

�����. By Lemma 4.2, for all a, b ∈ L,

e−1(a ∧ b) = e−1((ee−1a) ∧ (ee−1b))
= e−1e((e−1a) ∧ (e−1b)) = (e−1a) ∧ (e−1b).

So if a ∧ b = 0, then a ∧ eb = 0 because e ∈ P3(L) and hence

(e−1a) ∧ b = (e−1a) ∧ (e−1eb) = e−1(a ∧ eb) = 0.

It follows that e−1 ∈ P3(L). �
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We are now in a position to use our previous work to determine when M3(L) is

an o-subfield.

Theorem 4.4. For any �-field (L,+, ·, �), the following statements are equiva-
lent:

(i) P3(L) is a totally ordered subset of (L, �);
(ii) M3(L) is an o-subfield of (L,+, ·, �);
(iii) M3(L) is the unique maximal o-subfield of (L,+, ·, �);
(iv) M3(L) is a subfield of (L,+, ·) such that for all 0 < a ∈ L, aM3(L) is a totally

ordered subgroup of (L,+, �);
(v) M3(L) is the unique maximal subfieldK of (L,+, ·) such that for all 0 < a ∈ L,

aK is a totally ordered subgroup of (L,+, �);
(vi) M1(L) =M2(L) = {M3(L)}.

�����. It suffices to show that (i) =⇒ (ii) =⇒ (iv) =⇒ (vi) =⇒ (v) =⇒ (iii) =⇒
(i), and of these implications, (iii) =⇒ (i) is obvious, (v) =⇒ (iii) follows immediately
from Corollary 2.3, (vi) =⇒ (v) follows from the definition of M2(L), and (ii) =⇒
(iv) follows immediately from Proposition 2.2. Thus it remains to show merely that

(i) =⇒ (ii) and (iv) =⇒ (vi).
(i) =⇒ (ii): By Proposition 4.1,M3(L) is a partially ordered subring of (L,+, ·, �)
whose positive cone is P3(L). Suppose x − y ∈ M3(L), where x, y ∈ P3(L). Since

P3(L) is totally ordered in (L,+, �), x is comparable to y in (L,+, �) and hence
x − y is comparable to 0, i.e., x − y ∈ P3(L) ∪ (−P3(L)). It follows that M3(L) =

P3(L) ∪ (−P3(L)) and that M3(L) is a totally ordered subring of (L,+, ·, �). But
by Proposition 4.3, if 0 �= e ∈ P3(L) ∪ (−P3(L)), then e−1 ∈ P3(L) ∪ (−P3(L)), and

hence M3(L) is an o-subfield of (L,+, ·, �).
(iv) =⇒ (vi): Zorn’s Lemma implies that there exists T ∈ M2(L) such that T ⊇

M3(L); so by Corollary 3.4,M3(L) = T ∈ M2(L). If S ∈ M2(L), then S ⊆ M3(L) by

Corollary 3.4. But by Corollary 2.3,M2(L) =M1(L), and hence S, M3(L) ∈ M1(L).
Then S is a maximal o-subfield of (L,+, ·, �) andM3(L) is an o-subfield of (L,+, ·, �)
containing S; so S =M3(L). We conclude that M1(L) =M2(L) = {M3(L)}. �
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5. Lattice-ordered fields with Wilson orders

This section is concerned with a particular method of constructing �-fields in which
1 �> 0. Specifically we will be concerned with �-fields of the following sort.

Let L be an extension field of a totally ordered field (T,+, ·, �); let B be a

v-basis for L over T ; suppose that for all c, d ∈ B, if cd = β1b1 + . . .+ βnbn

for b1, . . . , bn ∈ B, then βi � 0 for all i; and let �B be the binary relation:

α1b1 + . . .+ αnbn �B 0 ⇐⇒ αi � 0 for all i.

In [9], Wilson observed that (L,+, ·, �B) is an �-field. We will refer to �B as the

Wilson order on L determined by B.

We first note that in many cases, �-fields with Wilson orders have 1 �B 0. To

prove this and for use in the sequel, we begin with the following lemma.

Lemma 5.1. Let (L,+, ·, �B) be the �-field described above.

(i) If 0 < α, γ ∈ T and a, c ∈ B are such that αa �B γc, then a = c.

(ii) If v >B 0, then there exist 0 < β ∈ T and b ∈ B such that v �B βb.

(iii) If b ∈ B and 0 < β ∈ T , then βb is an �-basic element of (L,+, �B).

(iv) If 0 <B v ∈ L and v = β1b1+ . . .+ βnbn, where βi ∈ T and the bi are distinct

elements of B, then the βibi are pairwise disjoint and v = β1b1 ∨ . . . ∨ βnbn.

�����. (i) If a �= c, then since αa + (−γ)c �B 0, the definition of �B implies
that −γ � 0, a contradiction.
(ii) We have v = β1b1+ . . .+βnbn, where βi � 0 for all i, and since v �= 0, we may
assume that β1 > 0. Then v − β1b1 = β2b2 + . . .+ βnbn �B 0 and hence v �B β1b1.

(iii) Suppose by way of contradiction that βb is not �-basic. Then there exist

v, w ∈ L such that βb �B v >B 0, βb �B w >B 0, and v∧w = 0. By (ii), there must
exist 0 < γ ∈ T , c ∈ B, 0 < δ ∈ T , and d ∈ B such that v �B γc and w �B δd. Then

βb �B γc, βb �B δd, and γc ∧ δd = 0. Now by (i), c = b = d, and since T is totally
ordered, we may assume that γ � δ. Then γb �B δb and hence 0 = γb ∧ δb = δb.

Since neither b nor δ is 0, this is a contradiction. We conclude that βb is �-basic.

(iv) Since v >B 0, we may assume that each βi > 0. So by (iii), each βibi is
�-basic. Since the bi are distinct, this observation, together with (i), implies that the

βibi are pairwise incomparable, and thus, since the βibi are �-basic, that they are in
fact pairwise disjoint. It follows from [2, p. 70] that v = β1b1 ∨ . . . ∨ βnbn. �

155



Proposition 5.2. For the �-field (L,+, ·, �B) described above, 1 �B 0 if and

only if B ∩ T �= ∅.

�����. Suppose first that 1 �B 0. Then 1 may be written as a linear combina-

tion of elements of B, and hence by Lemma 5.1 (iv), 1 may be written as the disjoint
join 1 = ω1b1∨ . . .∨ωnbn for 0 < ωi ∈ T and bi ∈ B. But by [4, Proposition 1.4], 1 is

�-basic, and hence n = 1, i.e., 1 = ω1b1. Then b1 = ω1
−1 ∈ T , and thus B ∩ T �= ∅.

Conversely suppose that b ∈ B ∩ T . Then since b ∈ B, b >B 0 and hence b2 >B 0.

But if b < 0 in T , then −b > 0 in T and hence −b2 = (−b)b >B 0 by definition of
�B. This is a contradiction and thus b > 0 in T . But then b−1 > 0 in T and hence
1 = (b−1)b �B 0. �

So there are many �-fields with Wilson orders �B for which 1 �B 0. For instance,

the following v-bases of �(
√
3) determine Wilson orders on �(

√
3) for which 1 �B 0:

B = {1−
√
3, 3−

√
3}, B = {1 + 2

√
3, 1 +

√
3};

and the following v-bases of �( 3
√
3) determine Wilson orders on �( 3

√
3) for which

1 �B 0:

B = {1 + 3
√
3 + 3

√
9, 2 + 2 3

√
3 + 3

√
9, 3 + 3

√
3 + 3

√
9},

B = {1 + 3
√
3 + 3

√
9, 3 + 2 3

√
3 + 3

√
9, 2 + 3

√
3 + 3

√
9}.

We want to show that, for any �-field L whose order is a Wilson order, P3(L) is
totally ordered. It then follows from Theorem 4.4 that L contains a unique maximal

subfield, viz. M3(L), having the properties (1), (2) and (3) given in the introduction.
In fact, in this case, as we will show, M3(L) = T . We first prove two lemmas which

are true for �-fields in general.

Lemma 5.3. Let (L,+, ·, �) be any �-field. If e ∈ P3(L) and b is an �-basic

element of L, then eb is also an �-basic element of L and either eb � b or eb � b.

�����. Suppose that x, y � eb and let z = x ∧ y. Then (x − z) ∧ (y − z) = 0,
and thus since b is �-basic, either b ∧ (x − z) = 0 or b ∧ (y − z) = 0. But then since

e ∈ P3(L), either x − z = eb ∧ (x − z) = 0 or y − z = eb ∧ (y − z) = 0. It follows
that either x ∧ y = z = x or x ∧ y = z = y, i.e., that either x � y or x � y, and

therefore, eb is �-basic. If eb is not comparable to b, then, since both elements are
�-basic, eb ∧ b = 0. But by Proposition 4.3, e−1 ∈ P3(L) and hence by definition of

P3(L), b∧b = ((e−1)(eb))∧b = 0, a contradiction. We conclude that eb is comparable
to b. �

Lemma 5.4. Let (L,+, ·, �) be any �-field. If e ∈ P3(L), then either for all
�-basic elements b of L, eb � b or for all �-basic elements b of L, eb � b.

156



�����. Suppose that b and c are �-basic elements of L. By Lemma 5.3, eb is

comparable to b and ec is comparable to c. If eb � b, then ebc � bc. But if also
ec < c, then ecb < cb, a contradiction. So ec � c as well. Similarly, if eb � b,
ec � c. �

Proposition 5.5. For the �-field (L,+, ·, �B) described above, P3(L) is a totally
ordered subset of (L, �B), and therefore

(i) M3(L) is the unique maximal o-subfield of (L,+, ·, �B);

(ii) M3(L) is the unique maximal subfieldK of (L,+, ·) such that for all 0 < a ∈ L,

aK is a totally ordered subgroup of (L,+, �B);

(iii) M1(L) =M2(L) = {M3(L)}.

�����. Suppose that d, e ∈ P3(L) and let r = de−1. Note that by Propositions
4.3 and 4.1, r ∈ P3(L). We will show that r is comparable to 1 in (L, �B), and hence

that d is comparable to e in (L, �B). Note that by Lemma 5.4, either rb �B b for
all �-basic b, or rb �B b for all �-basic b. Suppose first that rb �B b for all �-basic b,

and suppose that 0 <B a ∈ L. Then by Lemma 5.1 (iv), a = a1∨ . . .∨an for disjoint
�-basic elements a1, . . . , an, and by Lemma 4.2,

ar = a1r ∨ . . . ∨ anr � a1 ∨ . . . ∨ an = a = a · 1

so that a(r − 1) �B 0. It follows that r − 1 ∈ P (L), i.e., that r − 1 �B 0. A similar

argument shows that in the other case, when rb �B b for all �-basic b, 1 − r �B 0,
and hence that r is comparable to 1. We conclude that d is comparable to e and

hence that P3(L) is totally ordered. That (i), (ii) and (iii) hold then follows from
Theorem 4.4. �

To conclude this section, we show that for any �-field L with a Wilson order �B,

M3(L) = T .

Proposition 5.6. For the �-field (L,+, ·, �B) described above, T � = P3(L) and
hence M3(L) = T .

�����. Suppose 0 < τ ∈ T and 0 <B a ∈ L. Then a = α1a1+ . . .+αnan, where
0 < αi ∈ T and the ai are distinct elements of B, and τa = τα1a1 + . . . + ταnan.

Since 0 < ταi ∈ T for all i, τa >B 0. So τ ∈ P3(L), and hence, since clearly
0 ∈ P3(L), T � ⊆ P3(L). Conversely suppose that 0 �= e ∈ P3(L) and let b ∈ B.

Then eb >B 0 and hence eb = β1b1 + . . . + βnbn, where 0 < βi ∈ T and the bi are
distinct elements of B. By Lemma 5.3, eb is �-basic, and by Lemma 5.1, the βibi are

pairwise disjoint �-basic elements. So eb = β1b1. Since (T,+, ·, �) is totally ordered,
β1− 1 � 0 or 1− β1 � 0. In the former case, (β1− 1)b1 �B 0, and in the latter case,
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(β1 − 1)b1 �B 0; so in both cases, β1b1 is comparable to b1. But by Lemma 5.3, eb

is comparable to b. So since eb, β1b1, b, and b1 are all �-basic, b is comparable to b1,
and hence by Lemma 5.1, b1 = b. But then e = β1b1b

−1 = β1 ∈ T �. Thus, since
0 ∈ T �, T � ⊇ P3(L), so that in fact T � = P3(L). Then

M3(L) = {x− y | x, y ∈ P3(L)} = {x− y | x, y ∈ T �} = T.

�

6. Changing the multiplication

In section 5, we noted that Wilson orders can be used to construct �-fields with

1 �> 0. In this section, we consider another way of constructing such �-fields, viz., by
changing the definition of the multiplication. We will show that in this case as well,

when 1 > 0 in the original �-field, M3(L) is a subfield, and hence that such �-fields
also have a unique maximal subfield satisfying conditions (1), (2) and (3).

Specifically suppose that (L,+, ·, �) is an �-field and that u ∈ L is such that
L�L� ⊆ uL�. Then, as observed in [3], (L,+,⊗u, �) is an �-field, where ⊗u is

defined by letting x⊗u y = xyu−1. It is easy to see that the multiplicative identity
of (L,+,⊗u, �) is u and hence we have the following

Proposition 6.1. Suppose that (L,+, ·, �) is an �-field and that u ∈ L is such

that L�L� ⊆ uL�, and form the �-field (L,+,⊗u, �). Then the multiplicative
identity of (L,+,⊗u) is positive if and only if u > 0.

We first show that changing the multiplication translates one set P3(L) into an-

other.

Proposition 6.2. Suppose that (L,+, ·, �) is an �-field and that u ∈ L is such

that L�L� ⊆ uL�, and form the �-field (L,+,⊗u, �). Then P3(L,+,⊗u, �) =
uP3(L,+, ·, �).
�����. Suppose that e ∈ P3(L,+, ·, �) and that a ∧ b = 0 in (L, �). Then

(ue⊗u a) ∧ b = (ueau−1) ∧ b = ea ∧ b = 0,

and hence ue ∈ P3(L,+,⊗u, �). So P3(L,+,⊗u, �) ⊇ uP3(L,+, ·, �). Conversely
suppose that z ∈ P3(L,+,⊗u, �) and again that a ∧ b = 0 in (L, �). Then

((u−1z)(a)) ∧ b = (z ⊗u a) ∧ b = 0,

and hence u−1z ∈ P3(L,+, ·, �). So P3(L,+,⊗u, �) ⊆ uP3(L,+, ·, �). �
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Note that if 1 > 0 in (L,+, ·, �), then by the remarks at the beginning of section 2,
Proposition 6.2 says that P3(L,+,⊗u, �) is a translation of the positive cone of the
totally ordered field M(L,+, ·, �).
We next show that if (L,+,⊗u, �) is derived from an �-field which has a unique

maximal subfield with properties (1), (2) and (3), then (L,+,⊗u, �) also contains
such a subfield, and hence in particular, that if 1 > 0 in (L,+, ·, �), then (L,+,⊗u, �)
always contains such a subfield.

Proposition 6.3. Suppose that (L,+, ·, �) is an �-field and that u ∈ L is

such that L�L� ⊆ uL�, and form the �-field (L,+,⊗u, �). If P3(L,+, ·, �) is
totally ordered with respect to the partial order determined by P (L,+, ·, �), then
P3(L,+,⊗u, �) is totally ordered with respect to the partial order determined by
P (L,+,⊗u, �). And therefore

(i) M3(L,+,⊗u, �) is the unique maximal subfield of the field (L,+,⊗u) that is

totally ordered with respect to the order determined by P (L,+,⊗u, �);
(ii) M3(L,+,⊗u, �) is the unique maximal subfield K of the field (L,+,⊗u) such

that for all 0 < a ∈ L, a⊗u K is a totally ordered subgroup of (L,+, �);
(iii) M1(L,+,⊗u, �) =M2(L,+,⊗u, �) = {M3(L,+,⊗u, �)}.

�����. Let s, t ∈ P3(L,+,⊗u, �). We must show that s is comparable to t

with respect to the partial order determined by P (L,+,⊗u, �). By Proposition 6.2,
u−1s, u−1t ∈ P3(L,+, ·, �), and by Theorem 4.4, M3(L,+, ·, �) is an o-subfield of
(L,+, ·) with respect to the partial order on L determined by P (L,+, ·, �). And
therefore

M3(L,+, ·, �) = P3(L,+, ·, �) ∪ (−P3(L,+, ·, �)).

So either u−1s−u−1t or u−1t−u−1s is in P3(L,+, ·, �), and thus either s− t or t−s

is in uP3(L,+, ·, �) = P3(L,+,⊗u, �). So since P3(L,+,⊗u, �) ⊆ P (L,+,⊗u, �),
either s − t or t − s is in P (L,+,⊗u, �). It follows that s is comparable to t with
respect to the partial order on L determined by P (L,+,⊗u, �). That (i), (ii) and
(i) hold then follows from Theorem 4.4. �

Corollary 6.4. Suppose that (L,+, ·, �) is an �-field in which 1 > 0 and that u ∈
L is such that L�L� ⊆ uL� and form the �-field (L,+,⊗u, �). Then P3(L,+,⊗u, �)
is totally ordered with respect to the order on L determined by P (L,+,⊗u, �), and
hence M3(L,+,⊗u, �) is a subfield of (L,+,⊗u) having properties (i) and (ii) of
Proposition 6.3. As well, M3(L,+,⊗u, �) = uM(L,+, ·, �).
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�����. As noted in the introduction and at the beginning of section 2, if 1 > 0

in (L,+, ·, �), then

P3(L,+, ·, �) =M(L,+, ·, �)�,

M(L,+, ·, �) is an o-subfield of (L,+, ·, �), and
P (L,+, ·, �) = (L,+, ·, �)�.

So P3(L,+, ·, �) is totally ordered with respect to the order on L determined by

P (L,+, ·, �) and hence by Proposition 6.3, P3(L,+,⊗u, �) is totally ordered with re-
spect to the partial order on L with positive cone P (L,+,⊗u, �) andM3(L,+,⊗u, �)
is a subfield of (L,+,⊗u) having properties (i) and (ii) of Proposition 6.3. As well,
since P3(L,+, ·, �) = M(L,+, ·, �)�, M(L,+, ·, �) = M3(L,+, ·, �), and thus by
Proposition 6.2,

M3(L,+,⊗u, �) = uM3(L,+, ·, �) = uM(L,+, ·, �).

�

We note finally that the technique described above may be used to construct an

�-field which does not have a Wilson order.

Example 6.5. Consider the field X

∏
�
� with pointwise order; this is an �-field

in which 1 > 0 and for which M(X
∏
�
�) = {f | fn = 0 if n �= 0} (cf. [5]). If the

order on X

∏
�
� were a Wilson order determined by a v-basis B and a subfield T ,

then according to Proposition 5.6, T would have to be M(X
∏
�
�), and according

to Lemma 5.1 (iii), each element of B would have to �-basic. However, it is easy to

see that the subspace of X

∏
�
� over M(X

∏
�
�) generated by the �-basic elements

consists of the vectors with finite support and hence cannot be all of X

∏
�
�. So

we conclude that the pointwise order on X

∏
�
� is not a Wilson order. Nonetheless,

the �-field X

∏
�
� still has a unique maximal subfield satisfying conditions (1), (2)

and (3) given in the introduction. And by Corollary 6.4, so does any �-field that is
created by changing the multiplication on X

∏
�
� by the method described in this

section.
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7. Questions

All known examples of �-fields have orders derived from Wilson orders or from

orders that are constructed by changing the multiplication on an �-field in which
1 > 0. In general, the answer to the following question is unknown.

Question 7.1. Is there an �-field whose order is not a Wilson order and which
cannot be constructed from an �-field in which 1 > 0 by a change of multiplication?

As well, all �-fields with Wilson orders have a v-basis of �-basic elements, and all

known �-fields with 1 > 0 have the property that every positive element exceeds an
�-basic element. Thus the following question also remains unanswered.

Question 7.2. Does there exist an �-field with a positive element which does not
exceed an �-basic element?
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