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Abstract. We study properties of variational measures associated with certain condition-
ally convergent integrals in �m . In particular we give a full descriptive characterization of
these integrals.
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1. Introduction

It is known (see for example [15]) that on the real line � a continuous function
F of bounded variation is absolutely continuous if and only if the Lebesgue-Stieltjes

measure generated by F is absolutely continuous with respect to the Lebesgue mea-
sure µ. Then on � the class of all Lebesgue primitives coincides with the class of

all functions whose Lebesgue-Stieltjes measure is absolutely continuous with respect
to µ.

An extension of this result to the Henstock-Kurzweil integral in � was proved in

[4], by using a variational measure associated to this integral.

In the present paper we consider certain conditionally convergent integrals in �m

and we associate to each of them a variational measure constructed by means of the

derivation base used to define the integral. We study the properties of these mea-
sures (see Theorems 1, 2, 3 and 7) and we apply them to characterize the primitives

of the integrals constructed by means of Kurzweil’s and Kempisty’s bases; we also
characterize the primitives of Mawhin’s integral (see Theorems 4, 5, 6). Moreover in
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Theorem 5, in Theorem 7 and in Corollary 4 we improve the descriptive character-

ization of the conditionally convergent integrals considered by Kurzweil and Jarník
in [6] and in [7].

2. Preliminaries

We recall some definitions and notations. Our ambient space is �m , where m

is a fixed positive integer. In �m we shall use the norm ‖x‖ = max
1�i�m

|xi|, where
x = (x1, x2, . . . , xm). Then the δ-neighbourhood of x, denoted by U(x, δ), is an

open cube centered at x with side equal to 2δ. For a set E ⊂ �
m we denote

by E0, ∂E, and |E| the interior, the boundary and the m-dimensional Lebesgue
measure of E, respectively. Moreover for x ∈ �

m , d(x, E) denotes the distance of
x from the set E. A set E with |E| = 0 is called negligible. The words “almost
everywhere” (shortly a.e.) and “absolutely continuous” are always refered to m-
dimensional Lebesgue measure. An interval is always a nondegenerate compact

subinterval of �m . Throughout this paper ∆ denotes a fixed interval and I the
family of all subintervals of ∆. For I ∈ I, I = [a1, b1]× [a2, b2]× . . .× [am, bm] with

ai < bi, i = 1, 2, . . . , m, we put d(I) = max
i
(bi−ai) and r(I) = min

i
(bi−ai)/d(I). The

numbers d(I) and r(I) are called the diameter and the regularity of I respectively.
Let α ∈ (0, 1); if r(I) > α we say that the interval I is α-regular.

A derivation base (or simply a base) on ∆ is, by definition, a nonempty subset B
of I ×∆. Given a base B, an interval I is called a B-interval if (I, x) ∈ B, for some
x ∈ ∆. For a set E ⊂ ∆ we write

(1) B(E) = {(I, x) ∈ B : I ⊂ E} and B[E] = {(I, x) ∈ B : x ∈ E}.

If δ(x) is a positive function defined on ∆ we denote

(2) Bδ = {(I, x) ∈ B : I ⊂ U(x, δ(x))}.

Note that Bδ is also a base on ∆. So the meaning of Bδ(E) and Bδ[E] is clear from
(1) and (2).

All functions in this paper are real valued. A function F defined on I is said to
be additive if F (I ∪ J) = F (I) + F (J), for each nonoverlapping intervals I and J in

I, with I ∪ J ∈ I.
Let B be a base such that for any δ > 0 and for any x ∈ ∆ the set Bδ[{x}] is

nonempty. The lower derivate of F at a point x ∈ ∆ with respect to B is defined as

DBF (x) = supδinf

{
F (I)
|I| : (I, x) ∈ Bδ[{x}]

}
.
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The upper derivate of F at a point x ∈ ∆ with respect to B is defined as

DBF (x) = infδsup

{
F (I)
|I| : (I, x) ∈ Bδ[{x}]

}
.

IfDBF (x) = DBF (x) �=∞ we say that F is B-derivable at x and we setDBF (x) =

DBF (x) = DBF (x); DBF (x) is called the B-derivate of F at x.

A B-partition is a finite collection π = {(I1, x1), . . . , (Ip, xp)} where Ii are nonover-

lapping B-intervals and xi ∈ ∆, for i = 1, . . . , p.

Given E ⊂ ∆, a positive function δ on E is said to be a gauge on E. We say that
a partition π is

• anchored in E if {x1, . . . , xp} ⊂ E,

• a partition in E if
p⋃

i=1
Ii ⊂ E,

• a partition of E if
p⋃

i=1
Ii = E,

• δ-fine if Ii ⊂ U(xi, δ(xi)), for i = 1, . . . , p.

We say that a base B is:
• a fine base on a set E ⊂ ∆, if for any x ∈ E and for any δ > 0 the set Bδ[{x}]
is nonempty;

• a Perron base if, for any couple (I, x) of B, x ∈ I.

We say that a base B fulfils:
property i): if, for any I ∈ I and for any gauge δ on ∆, there exists a δ-fine

B-partition of I (partitioning property);
property ii): if for any B∗ ⊂ B, fine on a set E ⊂ ∆, there exists a disjoint sequence

B1, B2, . . . of sets from B∗ such that |E \
(⋃

i

Bi

)
| = 0 (Vitali property);

property iii): if for each B-interval J and for each x ∈ J we have (J, x) ∈ B;
property iv): if, for each additive function F on I, DBF (x) = DBF (x) �= ∞

(DBF (x) = DBF (x) �= ∞) holds at almost all points x at which DBF (x) > −∞,
(DBF (x) < +∞) (Ward property).

3. Variational measure associated with a function Henstock
integrable with respect to a given base B.

Let B be a base on ∆ satisfying the partitioning property.

Definition 1. A function f on ∆ is called Henstock integrable with respect to

B (br. BH-integrable) whenever there exists an additive function F on I satisfying
the following condition:

97



given ε > 0, we can find a gauge δ(x) so that

(3)
∑

(x,I)∈π

|f(x)|I| − F (I)| < ε

for any δ-fine B-partition π in ∆.

The equivalence of Definition 1 and the definition given in [10] follows immedi-
ately from Henstock’s Lemma (see [10], Theorem 1.6.1). The function F is uniquely

determined by f and we call it the indefinite B-integral of f in ∆.
In order to study the differentiation properties of an interval function F and

to investigate whether F is an indefinite BH-integral, we introduce the notion of
variation of F associated with the BH-integral. It is the multidimensional extension
of the notion of the fine variational measure given in [16] in the case of an interval

function defined on the real line.
Let F be an additive function on I and let E ⊂ ∆ be an arbitrary set. For a fixed

gauge δ on E we set

(4) VB(F, δ, E) = supπ

∑

i

|F (Ii)| ,

where π = {(I1, x1), . . . , (Ip, xp)} is a δ-fine B-partition anchored in E.

The B-variation of F on E is defined as follows

(5) VBF (E) = inf VB(F, δ, E),

where the “inf” is taken over all gauges δ on E.

By an argument similar to that used in [16, Theorem 3.7], it is easy to see that the
set function VBF (·) is a Borel metric outer measure in ∆, called the BH-variational

measure generated by F .
In case the base B is the family L = I × ∆, the corresponding integral is the

McShane integral that it is known to be equivalent to the Lebesgue integral (see [9]
and [11]). Note that if (I, x) ∈ L, the point x does not need belong to I. The following

proposition is, in a certain sense, a multidimensional extension of a consequence of
De La Vallée Poussin’s Decomposition Theorem (see [15, p. 128]). A similar result

was obtained in [5] by using a variation defined by means of Perron figures partitions.
We recall that an additive function F on I is said to be absolutely continuous (br.
AC ) if given ε > 0, there is η > 0 such that

(6)
∑

I∈P

|F (I)| < ε

for any collection P of nonoverlapping intervals in I with ∑
I∈P

|I| < η.
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Proposition 1. An additive function F on I is AC if and only if E → VLF (E)

is absolutely continuous.

�����. Let F be AC and let N be a negligible subset of ∆. Fix ε > 0 and
choose η > 0 so that (6) is fulfilled. Take an open set O with O ⊃ N and |O| < η.

For each x ∈ N define δ(x) < d(x, ∂O). Therefore
∑
i

|F (Ii)| < ε for each δ-fine

L-partition {(Ii, xi) : i = 1, . . . , p} anchored in N . Then VLF (N) � VL(F, δ, N) � ε

and, by the arbitrariness of ε, VLF (N) = 0.
Conversely, suppose that the variational measure VLF is absolutely continuous.

As VLF ({x}) = 0 for each x ∈ ∆, we can find a positive constant γ(x) on ∆ such
that

∑
i

|F (Bi)| < 1 for each γ-fine L-partition {(Bi, x)} anchored on {x}. Since ∆

is compact, there exist y1, . . . , yn on ∆ such that
n⋃

i=1
U(yi, γ(yi)) ⊃ ∆. Now let δ

be a gauge such that for each x ∈ ∆ there exists an index i = 1, . . . , n such that
U(x, δ(x)) ⊂ U(yi, γ(yi)).

For each δ-fine L-partition {(A1, x1), . . . , (Ap, xp)} we obtain

p∑

j=1

|F (Aj)| =
n∑

i=1

∑

(Aj ,yi)∈πi

|F (Aj)| < n,

where πi is the γ-fine L-partition {(Aj , yi) : Aj ⊂ U(yi, γ(yi))}. Therefore VLF (∆) <

+∞. Now fix ε > 0. By [14, Theorem 6.11] there exists η > 0 such that VLF (E) < ε

for each Borelian set E ⊂ ∆ with |E| < η. Let {Ii : i = 1, . . . , p} be a collection
of nonoverlapping intervals in I with

p∑
i=1

|Ii| < η. Then there exists a gauge σ(x)

on
p⋃

i=1
Ii such that VL

(
F, σ,

p⋃
i=1

Ii

)
< ε. Since the base L satisfies the partitioning

property (see for example [11, Cousin’s Lemma]), for each index i there exists a
σ-fine L-partition {(Ci

j , z
i
j)} of Ii, i = 1, . . . , p. Find one; then by the additivity of

F , it follows that

∑

i

|F (Ii)| �
∑

i

∑

j

|F (Ci
j)| � VL

(
F, σ,

⋃

i

Ii

)
< ε.

Thus the function F is AC. �

Corollary 1. An additive function F on I is the indefinite Lebesgue integral of
a given function f on ∆ if and only if the measure VLF is absolutely continuous.

Now we use the B-variational measures introduced above to find similar charac-
terizations for the BH-integrals.

99



Proposition 2. Let f be BH-integrable on ∆ and let F be its indefinite BH-

integral. Then the measure VBF is absolutely continuous.

�����. Let N be a negligible set in ∆. For each n = 1, 2, . . . , put Nn = {x ∈
N : n− 1 < |f(x)| � n}.
Choose an ε > 0 and find an open set On such that Nn ⊂ On and |On| < ε2−nn−1.

Let δ0 be a gauge on ∆ such that

p∑

i=1

|f(xi)|Ii| − F (Ii)| < ε,

for each δ0-fine B-partition {(Ii, xi) : i = 1, . . . , p} in ∆.
Define a gauge δ on N by setting δ(x) = min(δ0(x), d(x, ∂On)) if x ∈ Nn and

choose an arbitrary δ-fine B-partition {(Ji, yi) : i = 1, . . . , s} anchored in N . Then
we have

s∑

i=1

|F (Ji)| �
s∑

i=1

∣∣F (Ji)− f(yi)|Ji|
∣∣+

s∑

i=1

|f(yi)‖Ji|

< ε+
∑

n

∑

yi∈Nn

|f(yi)||Ji| < ε+ ε
∞∑

n=1

2−n = 2ε.

Since ε is arbitrary, we infer VBF (N) = 0. �

Proposition 3. Let F be an additive function on I. If VBF is absolutely con-

tinuous and if F is a.e. B-derivable on ∆, then F is the indefinite BH-integral of

DBF (x).

�����. Let us denote by N the negligible set of all x ∈ ∆ at which F is not
B-derivable and define f(x) = DBF (x) if x ∈ ∆ \N , f(x) = 0 if x ∈ N .

We are proving that F is the indefinite BH-integral of f . Fix ε > 0 and find a gauge

δ1 on N so that
p∑

i=1
|F (Ii)| < ε for each δ1-fine B-partition {(Ii, xi) : i = 1, . . . , p}

anchored in N . For each x ∈ ∆ \N there is a positive number δ2(x) such that

|f(x)|J | − F (J)| < ε|J |
|∆| ,

for each B-interval J with (J, x) ∈ B and J ⊂ U(x, δ2(x)). Now define a gauge δ on
∆ in the following way: δ(x) = δ1(x) if x ∈ N , δ(x) = δ2(x) if x ∈ ∆ \N .

Then, for each δ-fine B-partition {(Ii, xi) : i = 1, . . . , p} we have
p∑

i=1

|f(xi)|Ii| − F (Ii)| <
∑

xi∈N

|F (Ii)|+
ε

|∆|
∑

xi /∈N

|Ii| < 2ε.

Thus f is BH-integrable and F is its indefinite BH-integral. �
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The following result was proved in [4, Theorems 1 and 5] in the case of a vari-

ational measure associated with the Henstock-Kurzweil integral in � (see also [12,
Proposition 11]).

Theorem 1. Let F be an additive function on I and assume that B is a Perron
base possessing property iii). If VBF is absolutely continuous, then it is σ-finite.

�����. Suppose that VBF is not σ-finite. Let U be the union of all open sets

O such that VBF (∆ ∩ O) < +∞. By the Lindelöf Theorem, the measure VBF is
σ-finite on ∆ ∩ U . Define P = ∆ \ U . The set P is compact, nonempty and

(7) VBF (P ∩O)) = +∞,

for each open set O with P ∩ O �= ∅. Moreover, as VBF is absolutely continuous,

VBF ({x}) = 0 for each x ∈ ∆. Thus P is perfect.
Let us denote by P̂ the set of all points z ∈ P possessing the following property:

there exists at least one I-interval J such that z ∈ ∂J and J0 ∩ P = ∅. For each
z ∈ P̂ select an I-interval J(z) with the above property. Put A =

⋃
z∈P̂

(J(z))0. A is

an open set disjoint with P and P̂ ⊂ ∂A. Since ∂A is negligible, also P̂ is negligible.
Therefore, as VBF is absolutely continuous, from (7) we obtain

VBF (O ∩ (P \ P̂ )) = +∞

for each open set O with P ∩O �= ∅.
Now we will construct a set N ⊂ P with |N | = 0 and VB(F, N) � 1, thus obtaining

a contradiction to the assumption of absolute continuity of VBF .

Let I0 be an interval whose interior meets P . Choose a gauge δ on (I0)0 such that
δ(x) < d(x, ∂I0) for each x ∈ (I0)0. As VBF ((I0)0 ∩ (P \ P̂ )) = +∞, we can find a
δ-fine B-partition π = {(I(1)i , y

(1)
i ) : i = 1, . . . , p} anchored on (I0)0 ∩ (P \ P̂ ) such

that ∑

i

|F (I(1)i )| > 1 and
∑

i

|I(1)i | < 21.

Since B is a Perron base and y
(1)
i ∈ P \ P̂ , we have (I(1)i )

0 ∩ P �= ∅. Moreover, as
P is perfect we can assume p > 1.

We proceed by induction. If {I(k−1)i }, k � 2, is a finite collection of nonoverlap-
ping B-intervals with (I(k−1)i )0 ∩ P �= ∅, we can construct a new finite collection of
nonoverlapping B-intervals {I(k)i }, such that:
1) P ∩ (I(k)i )

0 �= ∅;
2) each I

(k)
i is contained in the interior of some I

(k−1)
j ;
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3) each I
(k−1)
i contains at least two intervals I

(k)
j ;

4)
∑
i

|I(k)i | < k−1;

5)
∑

i : I
(k)
i ⊂I

(k−1)
j

|F (I(k)i )| > 1 for each j.

Put N =
⋂
k

⋃
i

I
(k)
i . By conditions 1) − 4) it follows that the set N is a perfect

subset of ∆ and |N | = 0.
Choose a gauge δ(x) on N and, let

Nn = {x ∈ N : δ(x) > n−1} for n = 1, 2, . . . .

By Baire Category Theorem, there exists an index n such that Nn is dense in

N ∩J , for some open interval J . There exist l and i such that I
(l)
i ⊂ J , |I(l)i | < n−1.

By property iii) the family {(I(l+1)j , zj)} with zj ∈ I
(l+1)
j ∩ Nn, I

(l+1)
j ⊂ I

(l)
i is a

δ-fine B-partition anchored in N . Thus, by condition 5) we infer:

VB(F, δ, N) �
∑

j : I
(l+1)
j ⊂I

(l)
i

|F (I(l+1)j )| > 1.

Therefore VF (N) � 1, giving the desired contradiction. �

4. Essential variation and derivates

Let E ⊂ ∆. An essential gauge on E is a non-negative function δ defined on E

and positive a.e. The definition of δ-fine partition in the case of an essential gauge
instead of a gauge coincides with the definition given in Section 2. For the δ-variation

defined by this kind of partitions we keep the notation given by formula (4). If in
the definition given by formula (5) “inf” is taken over all essential gauges on E we

denote by V essB F the resulting essential variational measure generated by F . The
inequality

(8) V essB F (E) � VBF (E) for each E ⊂ ∆

follows from the definition.

A more general version of the next theorem was proved in [1] in the case of an

abstract measure space with finite measure and a derivation base satisfying the Vitali
property.
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Theorem 2. Let B be a fine base on ∆ possessing property ii) and let F be an

additive function on I. Then for any measurable set E ⊂ ∆, we have

(9) V essB F (E) =
∫

E

DB|F |(x) dx,

where the integral is the usual Lebesgue integral in �m .

Remark 1. If B is only a fine base, instead of the equality (9) we have (see [1])

V essB F (E) �
∫

E

DB|F |(x) dx.

Theorem 3. Let B be a fine base on ∆ and let F be an additive function on I
such that VBF is absolutely continuous. Then

V essB F (E) = VBF (E)

for any E ⊂ ∆.

�����. By (8) it is enough to prove V essB F (E) � VBF (E). Suppose, by contra-

diction, V essB F (E) < VBF (E). Then there exists an essential gauge δ1 and a positive
number η such that V essB (F, δ1, E) + η < VBF (E). Put Nδ1 = {x ∈ ∆: δ1(x) = 0}.
Since VBF is absolutely continuous, then there exists a gauge δ2 on Nδ1 such that
VB(F, δ2, Nδ1) < η. Define:

δ(x) =

{
δ1(x), if x ∈ E \Nδ1 ,

δ2(x), if x ∈ Nδ1 .

Thus we have

VB(F, δ, E) � V essB (F, δ1, E) + VB(F, δ2, Nδ1)

< V essB (F, δ1, E) + η < VBF (E),

which gives the required contradiction. �

Corollary 2. Let B be a fine base on ∆ with properties ii) and iv) and let F be

an additive function on I such that VBF is absolutely continuous. Then F is a.e.

B-derivable on ∆ if and only if VBF is σ-finite.

�����. It follows immediately from Theorems 2 and 3. �
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Corollary 3. Let B be a fine Perron base possessing properties ii)–iv), and let F

be an additive function on I such that VBF is absolutely continuous. Then F is a.e.

B-derivable on ∆ and |DBF | is the Radon-Nikodym derivate of VBF with respect to

Lebesgue measure.

�����. It follows immediately from Theorem 1 and Corollary 2. �

5. Applications

We apply the previous results to some non absolutely convergent integrals.

Definition 2. (see [10]) A derivation base is called the Kurzweil base and is
denoted by B1, if (I, x) ∈ B1 for each interval I ∈ I and for each x ∈ I.

Definition 3. (see [10]) Let α ∈ (0, 1). A derivation base is called the Kempisty
α-base and is denoted by Bα

2 , if (I, x) ∈ Bα
2 for each interval I ∈ I, with r(I) > α,

and for each x ∈ I.

The bases B1 and Bα
2 are fine Perron bases possessing properties i) and iii).

The B1H-integral is known as the classical Henstock integral. Generally the indef-
inite B1H-integral is not B1-differentiable (see [10]). Moreover, as the B1-base does
not satisfy Vitali property, Theorem 2 fails. By Propositions 2 and 3 we deduce the

following partial descriptive characterization of the B1-integral

Theorem 4. Let F be an additive function on I a.e. B1-derivable on ∆. Then F

is the indefinite B1H-integral of DB1F if and only if VB1F is absolutely continuous.

For each α ∈ (0, 1), the Bα
2 base possesses properties ii) and iv) (see [15]). Then,

by Propositions 2 and 3, by Theorem 1 and by Corollary 2 we infer the following full
descriptive characterization of the Bα

2H-integral.

Theorem 5. Let α ∈ (0, 1) and let F be an additive function on I. Then DBα
2
F

exists a.e. on ∆ and F is its indefinite Bα
2H-integral if and only if VBα

2
F is absolutely

continuous.

Remark 2. The previous Theorem improves the descriptive characterization
given by Kurzweil and Jarník (see [7, Theorem 3]) in which the a.e. existence ofDBα

2
F

is required as an additional condition. In [7] the statement “F is α-variationally

normal on I” is used instead of “VBα
2
F is absolutely continuous on I”.

Now we consider the integral introduced in [8] by Mawhin (see also [15]).
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Definition 4. Let f : ∆ → �. We say that f is integrable in the sense of

Mawhin (shortly M -integrable) on ∆ whenever there is an additive function F on I
satisfying the following condition:
for every ε > 0 and every α ∈ (0, 1) we can find a gauge δ(x) such that

∑

(x,I)∈π

|f(x)|I| − F (I)| < ε

for any δ-fine Bα
2 -partition π in ∆.

The function F is uniquely determined and is called the indefinite M -integral

of f in ∆. The equivalence of the previous definition and the original definition of

Mawhin follows immediately from [10, Theorem 1.6.1]. If f is M -integrable then
it is Bα

2H-integrable for each α ∈ (0, 1) and both the indefinite integrals are equal.
Concerning the above definition Kurzweil and Jarník proved in [7, Theorem 1 and
Theorem 2] that, while the value of α is irrelevant in the definition of Bα

2 -derivate

(i.e. if an additive function F is Bα
2 -derivable at a point x, then, for any β ∈ (0, 1), it

is Bβ
2 -derivable at x), the value of α is essential in the definition of the Bα

2H-integral.

Let F be an additive function on I and let E ⊂ A be an arbitrary set. We define
theM-variation of F on E as follows:

VMF (E) = supα∈(0,1)VBα
2
F (E).

As each VBα
2
F is an outer metric measure, it is easy to show that also VMF is an

outer metric measure in ∆. The notion of derivate associated with the M -integral
is the classical notion of ordinary derivate (see [15]). According to [7, Theorem 1],

we say that the function F is derivable in the ordinary sense at x ∈ ∆ if DBα
2
F (x)

exists for some α ∈ (0, 1). Then we put F ′(x) = DBα
2
F (x) and call it the ordinary

derivate of F at x.

Theorem 6. Let F be an additive function on I. Then F ′ exists a.e. on ∆ and

F is its indefinite M -integral if and only if VMF is absolutely continuous.

�����. Suppose VMF to be absolutely continuous. Since for any α ∈ (0, 1)
VBα

2
F � VMF , then also VBα

2
F is absolutely continuous. Hence, by Theorem 5,

DBα
2
F exists a.e. on ∆. Thus F ′ exists a.e. on ∆ and F is its indefinite M -integral.
Conversely, assume F is the indefinite-M-integral of F ′. Therefore F is the in-

definite Bα
2 -integral of F ′ for any α ∈ (0, 1). Thus, by Theorem 5, we obtain the

absolute continuity of each variational measure VBα
2
, α ∈ (0, 1). Then also VMF is

absolutely continuous. �
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6. The 
-integral of Jarník-Kurzweil

We recall the definition of the 
-integral introduced in [6].

Let 
 be a fixed real function 
 : ∆ × (0,+∞) → [0, 1] satisfying the following
conditions:


1) 
(x, t) < 1 for x ∈ ∆, t > 0;

2) lim supt→0+
(x, t) < 1 for x ∈ ∆;

3) lim inft→0+
(x, t) > 0 for x ∈ ∆.

A 
-partition is a B1-partition {(I1, x1), . . . , (Ip, xp)} with the property r(Ii) >


(xi, d(Ii)) for i = 1, . . . , p.

Definition 5. A function f on ∆ is called 
-integrable on ∆ whenever there is
an additive function F on I satisfying the following condition:
given ε > 0, we can find a gauge δ(x) such that

∑

(x,I)∈π

|f(x)|I| − F (I)| < ε

for any δ-fine 
-partition π in ∆.

Therefore the 
-integral is the BH-integral with respect to the base B� = {(I, x) :
x ∈ I ∈ I and r(I) > 
(x, d(I))}. We note that by [6, Lemma 1.8] the above
definition is equivalent to that given in [6].
For simplicity in the following we write respectively V�(F, δ, E) and V�F (E), in-

stead of VB�(F, 
, E) and VB�F (E), for the B�-variation of a function F on a set E.
We observe that, without any other hypotheses on 
, the base B� generally does

not verify property iii). Moreover, even the Vitali property is not satisfied in the
standard way. So we cannot apply Theorem 1 and Theorem 2 to B�F .

Nonetheless, by using the previous conditions concerning 
, it is not difficult to
prove a B�-version of Theorem 2 (see [3, Theorem 1]).

In [6], on the hypotheses 
1)− 
3), the indefinite 
-integrals are characterized as
additive interval functions which are derivable in the ordinary sense a.e. in ∆ and

whose associated 
-variations are absolutely continuous on the set of all points of
nonderivability.

It is easy to prove, by using condition 
3), that if an additive function F is derivable
in the ordinary sense a each point of a set E, then V�F is absolutely continuous on

E. Therefore the next theorem improves the descriptive characterization of the 
-
integral given in [6, Theorem 3.2]. For simplicity, we will write DαF instead of

DBα
2
F .

Theorem 7. Let F be an additive function on I. If V�F is absolutely continuous,

then F ′ exists a.e. on ∆.
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For the proof we need the following Lemma, proved in [2, Lemma 1].

Lemma 8. Let P ⊂ ∆ be a measurable set with 0 < |P | and let B be a fine
Perron base on ∆ possessing the Vitali property. Then, for every 0 < τ < 1 and

every 0 < λ < σ < 1, there are finitely many disjoint B-intervals C1, . . . , Cp such

that:

(a) |P ∩ Cj | > τ |Cj | for j = 1, . . . , p;

(b) λ|P | <
∣∣∣

p⋃
j=1

Cj

∣∣∣ < σ|P |.

����� of Theorem 7. Assume, by contradiction, that F ′ does not exists a.e. on

∆. Let αk, k = 0, 1, . . . , be an increasing sequence of positive numbers converging
to 1. For each k = 0, 1, . . . put Ak = {x ∈ ∆: Dαk

F (x) = +∞} and B =
⋂
k

Ak. The

set B is measurable and, by [15, Theorem 11.15 of Chapter IV] and [7, Theorem 1],

it results |B| > 0.
For k = 0, 1, . . . choose ηk > 1 such that

(10)
∞∏

k=0

η3k < 2.

Choose also a decreasing sequence dk, k = 0, 1, . . . , of real numbers converging to 0.

By induction we can construct a sequence of Σk ⊂ �
k+1 of indices and a family

{Jσ}, σ ∈ Σk, of disjoint I-intervals such that
1k) Σk is finite for each k ∈ �;
2k) each interval Jσ, σ ∈ Σk is αk-regular;

3k) for each τ ∈ Σk+1 there are σ ∈ Σk and j = 1, . . . , pσ such that τ = (σ, j) and
Jτ ⊂ Jσ;

4k) d(Jσ) < dk and |Jσ,j | < 2−2η2k|B ∩ Jσ| for σ ∈ Σk and k ∈ �;

5k) |Jσ ∩B| > η−2k |Jσ| for each σ ∈ Σk and k = 1, 2, . . .;

6k) 2−1η2k|B ∩ Jσ| <
∣∣∣
⋃
j

Jσ,j

∣∣∣ < 2−1η3k|B ∩ Jσ| for σ ∈ Σk and k ∈ �;

7k) F (Jσ) > 22k|Jσ| for σ ∈ Σk and k = 1, 2, . . .

For k = 0 choose an α0-regular I-interval J0 with d(J0) < d0 and 0 < |J0 ∩ B|.
Define Σ0 = {0}. For each x ∈ B ∩ J0 there exists a sequence {Cn(x)} of α1-regular
I-intervals such that d(Ck(x))→ 0 as k →∞ and F (Ck(x)) > 22|Ck(x)|.
The base Bα1

2 has the Vitali property. So we apply Lemma 8 to J0 ∩ B and find
a finite family {J0,1, . . . , J0,p0} of disjoint α1-regular I-subintervals of J0 such that,
if Σ1 ≡ {(0, 1), . . . , (0, p0)}, conditions 51), 60) and 71) and the second part of 40)
hold true. Moreover, 10), 21) 30) and the first part of 40) obviously hold.
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Assume Σk and Jσ, σ ∈ Σk, have been defined. By condition 5k) we have |Jσ ∩
B| > 0. So we can apply Lemma 8 to each set Jσ ∩ B and find disjoint αk+1-
regular intervals Jσ,j ⊂ Jσ, j = 1, . . . , pσ, such that d(Jσ,j) < dk+1 and conditions
5k+1), 6k), 7k+1) and the second part of 4k) hold true. Define Σk+1 as the set of all

indices (σ,j) ∈ �k+2 with σ ∈ Σk and j = 1, . . . , pσ.

Clearly N =
∞⋂

k=0

⋃
σ∈Σk

Jσ is a compact set. Since by 4k) and 6k) we deduce pσ > 1

for each σ ∈ Σk, the set N is also perfect. Moreover, by 6k) and by (10) we have

∣∣∣∣
⋃

σ∈Σk+1

Jσ

∣∣∣∣ =
∣∣∣∣

⋃

σ∈Σk

⋃

j

Jσ,j

∣∣∣∣

< 2−1 η3k

∣∣∣∣
⋃

σ∈Σk

Jσ

∣∣∣∣

< 2−k−1 η3k . . . η30 |J0 ∩B| < 2−k|J0 ∩B|.

Thus |N | = 0. We will prove V�F (N) = +∞, which gives a contradiction to the
assumption of absolute continuity of V�F .

By condition 
2), for each x ∈ N choose 0 < ν(x) < 1 and 0 < t0(x) such that

(11) 
(x, t) < ν(x) for each 0 < t < t0(x).

Take any gauge δ(x) defined on N and for n, s, q positive integers, put

Nn,s,q =

{
x ∈ N : δ(x) >

1
n

, t0(x) >
1
s
and ν(x) < 1− 1

q

}
.

Obviously N =
⋃
n

⋃
s

⋃
q

Nn,s,q. By the Baire Category Theorem, Nn,s,q is dense in

some portion of N , defined by an interval J , for some n, s, q. We may select k ∈ �

and σ ∈ Σk such that Jσ ⊂ J , dk < min( 1n , 1s ) and αk > 1− 1
q .

For l � 1 define Σ∗k+l = {σ′ ∈ Σk+l : σ′ = (σ, σ′′)}. For each σ′ ∈ Σ∗k+l let

xσ′ ∈ Jσ′ ∩Nn,s,q. By (11), by 2k+l) and by the definition of Nn,s,q we infer


(xσ′ , d(Jσ′)) < ν(xσ′ ) < 1−
1
q

< αk < αk+l < r(Jσ′ ).

Therefore {(Jσ′ , xσ′ ) : σ′ ∈ Σ∗k+l} is a δ-fine 
-partition anchored in N .
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Then by applying subsequently 7k), 6k)and5k) we obtain

V�(F, δ, N) �
∑

σ′∈Σ∗
k+l

F (Jσ′ )

> 22(k+l)

∣∣∣∣
⋃

σ′∈Σ∗
k+l

Jσ′

∣∣∣∣

= 22(k+l)
∑

σ,j1∈Σ∗
k+1

. . .
∑

σ,j1,...,jl−1∈Σ∗
k+l−1

∣∣∣∣
⋃

jl

Jσ,j1,...,jl

∣∣∣∣

> 22(k+l)2−1η2k+l−1
∑

σ,j1∈Σ∗
k+1

. . .
∑

σ,j1,...,jl−1∈Σ∗
k+l−1

|B ∩ Jσ,j1,...,jl−1 |

> 22(k+l)2−1
∑

σ,j1∈Σ∗
k+1

. . .
∑

σ,j1,...,jl−1∈Σ∗
k+l−1

|Jσ,j1,...,jl−1 | > . . .

> 22(k+l)2−l|Jσ| = 2k2l|Jσ|.

Since k and Jσ are fixed and l is arbitrary we conclude V�(F, δ, N) = +∞. Hence
V�F (N) = +∞. �

Corollary 4. Let F be an additive function on I. Then F ′ exists a.e. on ∆ and
F is its indefinite 
-integral if and only if V�F is absolutely continuous.

�����. The proof follows immediately from [6, Theorem 3.2], and from Theo-

rem 7. �

Note that Corollary 4 holds also in the case of the strong 
-integral introduced in

[6], if we use the corresponding variation.
All the integrals considered here are defined by means of interval partitions asso-

ciated with a gauge δ. But if the integrals are defined by means of figures partitions
associated with a non negative function δ, which is null on a set of σ-finite (m− 1)-
dimensional Hausdorff measures, then it is necessary to use different ideas. The
related results have been obtained independently and by different methods in [2] and

in [5].
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