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ON VECTOR VALUED MEASURE SPACES OF BOUNDED

Φ-VARIATION CONTAINING COPIES OF �∞

María J. Rivera*, Valencia

(Received May 5, 1997)

Abstract. Given a Young function Φ, we study the existence of copies of c0 and �∞
in cabvΦ(µ, X) and in cabsvΦ(µ, X), the countably additive, µ-continuous, and X-valued
measure spaces of bounded Φ-variation and bounded Φ-semivariation, respectively.

1. Introduction

The interest in Lebesgue’s and Bochner’s integration theory in Analysis has been a
powerful incentive in the study of the Young functions and the Orlicz spaces. In fact

the Orlicz theory of measurable functions and measures appears in literature as a
natural attempt to generalize the classical theory of vector measures and integration

which was restricted to the Lp spaces, and also because of the characterization of
the uniformly integrable sets in L1(µ) given by de la Vallée Poussin in 1915 [1] in

terms of Orlicz spaces. Again the classical Banach sequence spaces, especially the
non reflexive ones, play a central role in the study of the Banach spaces. In this

way, we present some results related to the existence of copies of c0 and �∞ in Orlicz
spaces of vector valued measures. This problem has been studied

(a) in [2] for cabv(µ, X), the space of the countably additive, µ-continuous and
X-valued measures of bounded variation endowed with the topology of the

variation norm,

(b) in [4] for ba(Σ, X), the space of bounded X-valued vector measures and for

ca(Σ, X), the space of countably additive and X-valued vector measures, both
equipped with the semivariation norm.

Clearly this paper is a natural continuation of the results of a) and b).

*Partially supported by DGICYT, project PB94-0541.
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2. Definitions, notation and basic facts

The notation is standard, see [6] and [8] for details.

A Young function is a convex function Φ: � → �
+ such that Φ(−x) = Φ(x),

Φ(0) = 0 and lim
x→∞

Φ(x) =∞.
From now on, (Ω,Σ, µ) will denote an atomless abstract finite measure space,

where Σ is a σ-algebra on which µ is a σ-additive and nonnegative measure.
For every Banach space X , LΦ(µ, X) is the space of classes of µ-measurable and

X-valued functions f : Ω → X , such that there is a real constant H > 0 such that∫
Ω Φ(H‖f(x)‖) dµ < ∞ (with the identification of functions that coincide a.e.),

which is a Banach space with the norm

NVΦ(f) := inf

{
K > 0:

∫

Ω
Φ(‖f(x)‖/K) dµ � 1

}
.

For every convex function Φ on A, we say that y = ax + b is a support line of Φ if

Φ(x) � ax+ b, ∀x ∈ A. The properties of the Young functions imply the existence of
support lines with a > 0 and b � 0. This fact can be used to prove that LΦ(µ, X) is

continuously embedded in L1(µ, X). We denote by χ(µ, X) the set of step functions
of L1(µ, X).

Let F be a countably additive, X-valued and µ-continuous measure on (Ω,Σ, X).
The Φ-variation of F , denoted by IΦ(F ), is defined by

IΦ(F ) := sup
�

{∑

n

Φ
(‖F (An)‖

µ(An)

)
µ(An)

}

where the supremum is taken over all partitions � = {An} of Ω in Σ. If IΦ(F ) < ∞,
F is said to be of bounded Φ-variation.
We denote by cabvΦ(µ, X) the space of µ-continuous countably additive and

X-valued measures F such that there is a K > 0 with IΦ(F/K) � 1, which is a
Banach space with the norm

NVΦ(F ) := inf{K > 0: IΦ(F/K) � 1}.

The space LΦ(µ, X) is an isometric subspace of cabvΦ(µ, X) by the map G :
LΦ(µ, X) → cabvΦ(µ, X) such that G(f)(E) =

∫
E

f dµ, ∀f ∈ LΦ(µ, X) and for

every E ∈ Σ, see [8].
If x′ ∈ X ′ and F is an X-valued measure, we denote by x′F the scalar measure

such that x′F (E) = 〈x′, F (E)〉. The Φ-semivariation of F is

ISΦ(F ) := sup{IΦ(x′F ) : x′ ∈ X ′, ‖x′‖ � 1}.
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If ISΦ(F ) < ∞, then F is said to be of bounded Φ-semivariation. We denote by

cabsvΦ(µ, X) the Banach space of countably additive and µ-continuous X-valued
measures F such that there is a K > 0 with ISΦ(F/K) � 1, endowed with the norm

NSΦ(F ) := inf{K > 0: ISΦ(F/K) � 1}.

It is clear that cabvΦ(µ, X) ⊂ cabsvΦ(µ, X), with NSΦ(F ) � NVΦ(F ) for every
F ∈ cabvΦ(µ, X). We denote by J the canonical injection of cabvΦ(µ, X) into

cabsvΦ(µ, X).

Finally, we need the following result of Rosenthal:

Lemma 1 ([7] Proposition 1.2 and Remark 1). Let T : �∞ → X be a linear and

continuous map such that {‖T (en)‖} does not converge to zero, where (en) is the
unit vector sequence in �∞. Then there is an infinite subset D of � such that T

∣∣
�∞(D)

is an isomorphism.

3. Main results

Theorem 1. Let {fn} be a σ
(
L1(µ), χ(µ)

)
-null sequence in L1(µ) with the fol-

lowing properties:

(1) ∃M > 0 such that µ({ω ∈ Ω: |fn(ω)| > M}) = 0, ∀n ∈ �.

(2) ∃B > 0 and ∃S > 0 such that ∀n ∈ �, ∃An ∈ Σ with µ(An) � S and fn(ω) � B,

∀ω ∈ An.

Let Φ be a Young function such that 0 < Φ(x) < ∞ if 0 < x < ∞ and ∃x0 > 0:
Φ(x0) � 1/µ(Ω), and let X be a Banach space containing a copy of c0. Then

cabvΦ(µ, X) and cabsvΦ(µ, X) contain the respective subspaces S and S′ isomorphic

to �∞. Moreover, S ∩ LΦ(µ, X) contains a subspace isomorphic to c0.

�����. It is enough to prove the theorem if X = c0. For every n ∈ �, let Λn

be the scalar measure

Λn(E) = 〈fn, χE〉

for every E ∈ Σ. We define G : �∞ → cabvΦ(µ, X) such that G((ξi)) = F(ξi), where

F(ξi)(E) = (ξiΛi(E)). If (ξi) �= 0, it is clear that (ξiΛi(E)) ∈ c0 for every E ∈ Σ,
and F(ξi) is a countably additive and µ-continuous c0-valued measure. For every

partition {En} of Ω contained in Σ and for every K > 0, we have

∑

n∈�
Φ
(‖F(ξi)(En)‖c0

Kµ(En)

)
µ(En) � Φ(M‖(ξi)‖�∞/K)µ(Ω) < ∞.
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Consequently, F(ξi) has bounded Φ-variation and

NVΦ(F(ξi)) � inf{K > 0: Φ(M‖(ξi)‖�∞/K)µ(Ω) � 1}.

If we take K0 > 0 such that ∀ε > 0, Φ(M‖(ξi)‖�∞/K0)µ(Ω) � 1 then

Φ
(
M‖(ξi)‖�∞/(K0 − ε)

)
µ(Ω) > 1 � Φ(x0)µ(Ω),

M‖(ξi)‖�∞/(K0 − ε) � x0 and NVΦ(F(ξi)) − ε � K0 − ε � M‖(ξi)‖�∞/x0, which

implies that NVΦ(F(ξi)) � M‖(ξi)‖�∞/x0 and hence G and JG are continuous. If
(ξi) = 0, the conclusion follows directly.

If (en) is the unit basis in c0, then Fen ∈ LΦ(µ, X) with Radon-Nikodym deriv-
ative (0, . . . , 0, fn(.), 0, . . .) for every n ∈ �. Moreover, fix n, take the partition

{Ek}2k=1 : E1 = An, E2 = Ω \An. For every x = (xi) ∈ �1 we have | 〈x, Fen(E1)〉 | =
|xnΛn(E1)| � |xn|Bµ(E1), and then

2∑

k=1

Φ
( | 〈x, Fen(Ek)〉 |

Kµ(Ek)

)
µ(Ek) � Φ(|xn|B/K)µ(E1) � Φ(|xn|B/K)S.

Hence IΦ(xFen/K) � Φ(|xn|B/K)S, therefore

NVΦ(xFen) � inf{K > 0: Φ(|xn|B/K)S � 1}.

For every support line y = ax+ b of Φ with a > 0, b � 0, taking x = en, we obtain

NSΦ(Fen) � inf{K > 0: Φ(B/K)S � 1}
� inf{K > 0: (aB/K + b)S � 1} = aBS/(1− bS) > 0.

Hence

inf{NVΦ(Fen), n ∈ �} � inf{NSΦ(Fen), n ∈ �} � aBS/(1− bS) > 0.

Then we use Lemma 1 to conclude that there are infinite subsets DV and DS of

� such that G
∣∣�∞(DV ) and JG

∣∣�∞(DS) are isomorphisms. �

Remarks.
1) Every Rademacherlike sequence in Ω, i.e., every orthogonal sequence {rn} such

that µ({ω ∈ Ω: rn(ω) = 1}) = µ({ω ∈ Ω: rn(ω) = −1}) = 1/2 verifies the required
condition. If µ is the Lebesgue measure in [0, 1], we also can take fn(ω) = sin(n�ω).

2) Every continuous Young function such that 0 < Φ(x) < ∞ if 0 < x < ∞ verifies
the hypothesis of Theorem 1 for all finite measure spaces (Ω,Σ, µ).
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3) A Young function satisfies Φ ∈ ∆2 if ∃H > 0: ∀x > 0, Φ(2x) � HΦ(x). Many

properties of the space LΦ(µ, X) and cabvΦ(µ, X) with Φ(x) = ‖x‖p, 1 � p < ∞,
are fulfilled for Φ ∈ ∆2 and the corresponding proofs are also valid in this setting.
This happens mainly because if Φ ∈ ∆2, the simple functions are dense in LΦ(µ, X).

Moreover, if (Ω,Σ, µ) is separable, then LΦ(µ) is separable, [6]. For example, if
(Ω,Σ, µ) is separable and Φ ∈ ∆2 then
a) LΦ(µ, X) contains a copy of �∞ if and only if X does, Mendoza [5];

b) if X contains a copy of c0, then LΦ(µ, X) contains a complemented copy of c0,
see Emmanuelle [3]. If moreover X contains no copies of �∞, a consequence of
Theorem 1 is that LΦ(µ, X) is an uncomplemented subspace of cabvΦ(µ, X),

see Drewnowski and Emmanuelle [2].

Theorem 2. Let Φ be a continuous Young function such that Φ(x) = 0 iff x = 0.

Then for every separable finite measure space (Ω,Σ, µ), the space cabvΦ(µ, X) (or
cabsvΦ(µ, X)) contains a copy of c0 iff it contains a copy of �∞.

�����. We only prove the theorem for cabvΦ(µ, X) (the proof in the case of

cabsvΦ(µ, X) is analogous). By virtue of Theorem 1 and the above remarks, it is
enough to prove the statement ifX contains no copies of c0 and cabvΦ(µ, X) contains

a copy of c0. Let J : c0 → cabvΦ(µ, X) be an isomorphism. First of all we will see

that
∞∑

i=1
ξiJ(ei)(E) ∈ X for every (ξi) ∈ �∞ and for every E ∈ Σ. We know that the

formal series
∞∑

i=1
J(ei) is weakly unconditionally Cauchy in cabvΦ(µ, X). For every

E ∈ Σ, we consider the map HE : cabvΦ(µ, X) → X such that HE(F ) = F (E) for
every F ∈ cabvΦ(µ, X). If y = ax + b is a support line of Φ with a > 0, b � 0, for
every K > 0 we have

IΦ(F/K) � Φ
(‖F (E)‖

Kµ(E)

)
µ(E) � a‖F (E)‖/K + bµ(E).

Then

NΦ(F ) � inf{K > 0: a‖F (E)‖/K + bµ(E) � 1} = a

1− bµ(E)
‖F (E)‖

thereforeHE is both continuous and weakly continuous. Hence the series
∞∑

i=1
J(ei)(E)

is a weakly unconditionally Cauchy series in X , and as X does not contain copies
of c0, by virtue of a classical result of Bessaga and Pelczynski, the series is uncondi-

tionally convergent in X , and then
∞∑

i=1
ξiJ(ei)(E) ∈ X . For every u = (ξi) ∈ �∞, we
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define the measure

Fu : Σ→ X : Fu(E) =
∞∑

i=1

ξiJ(ei)(E) ∀E ∈ Σ.

Let (Fun)n∈� be a sequence in cabvΦ(µ, X) with Fun(E) =
n∑

i=1
ξiJ(ei)(E), ∀E ∈ Σ. It

is clear that Fu(E) = lim
n

Fun(E) ∀E ∈ Σ, and then by the Vitali-Hahn-Saks theorem
Fu is µ-continuous and countably additive. Moreover, NVΦ(Fun) � ‖J‖‖u‖, ∀n ∈ �.
Given a partition P of Ω by elements of Σ and a ε > 0, there is nP,ε ∈ � such that

∑

E∈P
Φ
( ‖Fu(E)‖
‖J‖‖u‖µ(E)

)
µ(E) �

∑

E∈P
Φ

(nP ,ε∑
i=1

‖Fun(E)‖+ ε

‖J‖‖u‖µ(E)

)
µ(E).

Thus IΦ
(

Fu

‖J‖‖u‖
)

� sup
n∈�

IΦ
( Fun

‖J‖‖u‖
)

� 1, and Fu ∈ cabvΦ(µ, X) with NVΦ(Fu) �

‖J‖‖u‖. This implies that G : �∞ → cabvΦ(µ, X) such that G(u) = Fu is a well

defined, linear and continuous map. As G
∣∣c0 = J and inf

n∈�
NVΦG(en) > 0, we can

use Lemma 1 to conclude that cabvΦ(µ, X) contains a subspace isomorphic to �∞.
�
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