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Abstract. The paper discusses the asymptotic properties of solutions of the scalar func-
tional differential equation

y′(x) = ay(τ (x)) + by(x), x ∈ [x0,∞)

of the advanced type. We show that, given a specific asymptotic behaviour, there is a
(unique) solution y(x) which behaves in this way.
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1. Introduction and preliminaries

In this paper we consider the linear functional differential equation

(1.1) y′(x) = a y(τ(x)) + b y(x), x ∈ I = [x0,∞)

with an advanced argument τ(x) and nonzero real coefficients a, b.
The qualitative properties of solutions of equation (1.1) are usually studied under

the hypothesis that the function r(x) = τ(x) − x is constant or at least bounded
(for references see, e.g., [3] or [8]). For a discussion of the asymptotic properties of

solutions of advanced type equations (1.1) with an unbounded r(x) we refer to papers
[6] and [4], where the deviating arguments τ(x) = λx, λ > 1 and τ(x) = xα, α > 1,

The research was supported by the grant # A101/99/02 of the Grant Agency of the
Academy of Sciences of the Czech Republic.
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respectively, have been considered. We use the method of proof similar to [6], [4]

and the results of the theory of functional (nondifferential) equations to unify and
extend the results obtained in [6] and [4].
Some asymptotic results for equations (1.1) with an unbounded delayed argument

can be obtained by using the transformation approach developed by M.L. Heard
[5] and F. Neuman [9], [10]. These results relate the asymptotic behaviour of all

solutions of (1.1) to the behaviour of a solution of the functional (nondifferential)
equation

(1.2) aψ(τ(x)) + b ψ(x) = 0, x ∈ I

(see, e.g., [5] and also [1]). It is interesting that this resemblance between the be-

haviour of solutions of (1.1) and (1.2) remains preserved (with certain modifications)
also for advanced type equations.

Throughout the paper we assume that τ(x) is an increasing differentiable function
defined on I such that τ(x) > x for every x ∈ I. Nevertheless, our results are valid
also for equations (1.1) with τ(x0) = x0 (the proofs require only small modifications).
Let d � ∞. By a solution of (1.1) we understand a function y(x) differentiable on

[x0, d), satisfying (1.1) for each x ∈ [x0, d) and extended to the right as far as it is
possible. We note that if we are given a solution y(x) on a finite subinterval, we can

carry out this extension to all x � x0 only if y(x) and τ(x) satisfy certain conditions
of differentiability. Therefore instead of discussing the asymptotic behaviour of all

solutions (as has been done for delay equation (1.1)) we show that, being prescribed
a specific asymptotic behaviour by the use of (1.2), there is a (unique) solution y(x)

of (1.1) which exhibits this.
In the sequel, by the symbol τn, where n ∈ �, we mean the n-th iterate of τ (for

n > 0) or the −n-th iterate of the inverse function τ−1 (for n < 0) and put τ0 = id.

2. Main results

We introduce a parameter λ as

(2.1) λ = inf {τ ′(x) : x ∈ I}

and consider the Schröder functional equation

(2.2) ϕ(τ(x)) = λϕ(x), x ∈ I,

where τ(x) is known, λ is defined by (2.1), ϕ(x) is unknown. The survey of results

concerning this equation can be found in the monograph [7]. We state the following
result.
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Proposition 1. Let τ(x) ∈ Cr(I), r � 1, be such that τ ′(x) > 0 for every x ∈ I.
Further, let ϕ0(x) ∈ Cr(I0), where I0 = [x0, τ(x0)], be a positive function with a
positive derivative on I0 satisfying

(ϕ0 ◦ τ)(k)(x0) = λϕ(k)0 (x0), k = 1, . . . , r.

Then there exists a unique positive solution ϕ(x) ∈ Cr(I) of (2.2) such that ϕ′(x) is

positive and bounded and ϕ(x) = ϕ0(x) for every x ∈ I0. This solution is given by

(2.3) ϕ(x) = λnϕ0(τ−n(x)), τn(x0) � x � τn+1(x0), n = 0, 1, 2, . . . .

Moreover, if r, s are real constants, s > 0, then

(2.4)
∫ ∞

x

(
(ϕ(t))re−st

)
dt � 1

s

(
1 +

K

ϕ(x)

)
(ϕ(x))re−sx, x ∈ I,

where the constant K depends on ϕ(x), r, s.

�����. The existence and uniqueness of such a solution ϕ(x) with a positive
derivative ϕ′(x) is proved by the step method (cf. [9, Theorem 1]). We show that

ϕ′(x) is bounded. By differentiating (2.2) we obtain the equation

ϕ′(τ(x)) =
λ

τ ′(x)
ϕ′(x), x ∈ I.

Then the boundedness of ϕ′(x) can be proved inductively by virtue of the inequality
λ

τ ′(x) � 1.
Further, integrating by parts we have

∫ ∞

x

(
(ϕ(t))re−st

)
dt =

1
s
e−sx(ϕ(x))r +

r

s

∫ ∞

x

(
e−st(ϕ(t))r−1ϕ′(t)

)
dt

� 1
s
e−sx(ϕ(x))r +

rL

s

∫ ∞

x

(
e−st(ϕ(t))r−1

)
dt � 1

s

(
1 +

K

ϕ(x)

)
(ϕ(x))re−sx.

�

In the sequel we are going to discuss the existence and uniqueness of a solution

y(x) of (1.1) having a specific asymptotic behaviour. We start off with the case
a �= 0, b > 0.

Theorem 1. Let a �= 0, b > 0 be scalars and let τ(x) ∈ C1(I) be such that λ > 1.
Further, let g(x) be a periodic function of period logλ which is Hölder continuous
with exponent θ, 0 < θ � 1, let ϕ(x) be a solution of (2.2) given by (2.3), let α be
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such that a λα + b = 0 and put αr = Re α. Then there is a unique solution y(x) of

(1.1) satisfying the asymptotic relation

(2.5) y(x) = (ϕ(x))αg(logϕ(x)) +O
{
(ϕ(x))αr−θ

}
as x→∞.

Remark. Notice that the function (ϕ(x))αg(logϕ(x)) is a solution of (1.2).
Hence, Theorem 1 essentially says that there exists a solution of (1.1) which ap-
proaches a prescribed solution of (1.2).

�����. First we show the uniqueness. Suppose that y1(x), y2(x) are solutions
of (1.1) having asymptotic behaviour (2.5) with the same g(x). Then the function

y(x) = y1(x) − y2(x) is a solution of (1.1) such that

y(x) = O
{
(ϕ(x))αr−θ

}
as x→∞.

Integrating (1.1) we have

e−bxy(x) = −a
∫ ∞

x

(
e−bty(τ(t))

)
dt.

Choose u ∈ I and put w(u) = sup {v(x) : x � u}, where v(x) = (ϕ(x))−αr |y(x)|.
Due to our assumptions w(u) tends to zero as u → ∞. We wish to show that w(u)
is identically zero.

Using the previous relation and (2.4) (with r = αr and s = b) we obtain for each
x � u

e−bx|y(x)| = e−bx(ϕ(x))αr v(x) = |a|
∫ ∞

x

(
e−bt(ϕ(τ(t)))αr v(τ(t))

)
dt

� bw(τ(x))
∫ ∞

x

(
(ϕ(t))αr e−bt

)
dt � w(τ(u))(ϕ(x))αr e−bx

(
1 +

K

ϕ(u)

)
,

i.e.,

w(u) � w(τ(u))
(
1 +

K

ϕ(u)

)
.

Repetition leads to

w(u) � w(τn+1(u))
n∏

j=0

(
1 +

K

λjϕ(u)

)
.

Letting n → ∞ and taking into account the convergence of the infinite product we
can see that w(u) (and y(x) as well) is identically zero on I.
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To dispose with the existence of the required solution we define inductively

u1(x) = bebx
∫ ∞

x

(
e−bt(ϕ(t))αg(logϕ(t))

)
dt− (ϕ(x))αg(logϕ(x)),

un+1(x) = − aebx
∫ ∞

x

(
e−btun(τ(t))

)
dt, n = 1, 2, . . .

and put u(x) =
∞∑

n=1
un(x). Our aim is to prove that this series is absolutely and

uniformly convergent on I,

u(x) = O
{
(ϕ(x))αr−θ

}
as x→∞

and the function

y(x) = (ϕ(x))αg(logϕ(x)) + u(x), x ∈ I

defines a solution of (1.1).

We show by induction that the relation

(2.6) un(x) = O
{
λ−(n−1)θ(ϕ(x))αr−θe

λK
(λ−1)ϕ(x)

}
as x→∞

is true for n = 1, 2, . . ., where the O-term is uniform in n and K is the same as in

(2.4) with r = αr − θ and s = b. First we rewrite u1(x) as

u1(x) = bebx
∫ ∞

x

(
e−bt[(ϕ(t))αg(logϕ(t)) − (ϕ(x))αg(logϕ(x))]

)
dt(2.7)

= bebx
∫ ∞

x

(
e−bt[((ϕ(t))α − (ϕ(x))α)g(logϕ(x))

+ (ϕ(t))α(g(logϕ(t))− g(logϕ(x)))]
)
dt

= bg(logϕ(x))
∫ ∞

x

(
e−btebx[(ϕ(t))α − (ϕ(x))α]

)
dt

+ bebx
∫ ∞

x

(
e−bt(ϕ(t))α(g(logϕ(t)) − g(logϕ(x)))

)
dt.

Now we estimate both terms occuring in (2.7). Integrating by parts and using (2.4)

(with r = αr − 1 and s = b) we have
∣∣∣bg(logϕ(x))

∫ ∞

x

(
e−btebx[(ϕ(t))α − (ϕ(x))α]

)
dt

∣∣∣

= |αrg(logϕ(x))|ebx
∫ ∞

x

(
e−bt(ϕ(t))αr−1ϕ′(t)

)
dt

� L1e
bx

∫ ∞

x

(
e−bt(ϕ(t))αr−1

)
dt � L1

b

(
1 +

K

ϕ(x)

)
(ϕ(x))αr−1 � M1(ϕ(x))

αr−1,
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M1 > 0 being a suitable constant. Further,

∣∣∣bebx
∫ ∞

x

(
e−bt(ϕ(t))αr (g(logϕ(t)) − g(logϕ(x)))

)
dt

∣∣∣

� L2be
bx

∫ ∞

x

(
e−bt(ϕ(t))αr (logϕ(t) − logϕ(x))θ

)
dt

= L2bebx
∫ ∞

x

(
e−bt(ϕ(t))αr

(
log

(
1 +

ϕ(t)− ϕ(x)
ϕ(x)

))θ)
dt

� L2bebx
∫ ∞

x

(
e−bt(ϕ(t))αr

(ϕ(t)− ϕ(x)
ϕ(x)

)θ)
dt

� L2be
bx(ϕ(x))−θ

∫ ∞

x

(
e−bt(ϕ(t))αr (1 + ϕ(t)− ϕ(x)

)
dt.

The integration by parts and application of (2.4) yield

L2bebx(ϕ(x))−θ

∫ ∞

x

(
e−bt(ϕ(t))αr (1 + ϕ(t)− ϕ(x))

)
dt � M2(ϕ(x))αr−θ.

Substituting these estimates into (2.7) we obtain that (2.6) is true for n = 1. As-
suming that

|un(x)| � Mλ−(n−1)θ(ϕ(x))αr−θe
λK

(λ−1)ϕ(x)

for each x ∈ I, we obtain by virtue of (2.4)

|un+1(x)| � |a|
∫ ∞

x

(
e−b(t−x)|un(τ(t))|

)
dt

� M |a|λ−(n−1)θ
∫ ∞

x

(
e−b(t−x)(ϕ(τ(t)))αr−θe

λK
(λ−1)ϕ(τ(t))

)
dt

=M |a|λαrλ−nθ

∫ ∞

x

(
e−b(t−x)(ϕ(t))αr−θe

K
(λ−1)ϕ(t)

)
dt

� Mbλ−nθe
K

(λ−1)ϕ(x)

∫ ∞

x

(
e−b(t−x)(ϕ(t))αr−θ

)
dt

� Mλ−nθ(ϕ(x))αr−θe
K

(λ−1)ϕ(x)
(
1 +

K

ϕ(x)

)

� Mλ−nθ(ϕ(x))αr−θe
K

(λ−1)ϕ(x) e
K

ϕ(x)

=Mλ−nθ(ϕ(x))αr−θe
λK

(λ−1)ϕ(x) .

Relation (2.6) implies the absolute and uniform convergence of the series u(x) =
∞∑

n=1
un(x) and, moreover,

|u(x)| �
∞∑

n=1

|un(x)| �
M

1− λ−θ
(ϕ(x))αr−θe

λK
(λ−1)ϕ(x) ,
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i.e.,

u(x) = O
{
(ϕ(x))αr−θ

}
as x→∞.

Finally, noting that the function (ϕ(x))αg(logϕ(x)) is a solution of (1.2), it is not
difficult to verify that

y(x) = (ϕ(x))αg(logϕ(x)) + u(x)

satisfies (1.1). �

Now we consider the case a �= 0, b < 0. The asymptotic form of solutions as well
as the method of proof are almost identical (except the uniqueness property) with

those in the previous case. Therefore we point out only some modifications.
The analogue of Proposition 1 is

Proposition 2. Let τ(x) and ϕ(x) be the same as in Proposition 1. If r, s are
real constants, s > 0, then

(2.8)
∫ x

�

(
(ϕ(t))rest

)
dt � 1

s

(
1 +

K

ϕ(x)

)
(ϕ(x))resx, x � � � x0,

where K depends on ϕ(x), r, s, �.

�����. The proof is similar to that of Proposition 1 and is therefore omitted.
�

Lemma. Assume that a �= 0, b < 0, τ(x) ∈ C1(I) and λ > 1. Then there
exists a unique solution y∗(x) of (1.1) such that e−bxy∗(x) tends to unity as x→∞.
Further, let ϕ(x) be a solution of (2.2) given by (2.3) and let αr =

log | a
−b |

log λ−1 . If y(x) is

any solution of (1.1) such that

(2.9) y(x) = o{(ϕ(x))αr} as x→∞,

then y(x) = Ly∗(x) for a real constant L and all x � x0.

�����. We introduce the change of variables z(x) = e−bxy(x) in (1.1) to obtain

(2.10) z′(x) = p(x)z(τ(x)), x ∈ I,

where p(x) = a eb(τ(x)−x). It is known that if equation (2.10) is of advanced type,∫∞
x0
|p(s)|ds < ∞ and x1 > x0 is large enough, then there exists a unique solution

z∗(x) of (2.10) defined on [x1,∞) and fulfilling the terminal condition lim
x→∞

z∗(x) = 1
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(see, e.g., [11]). Since
∫∞

x0
|p(s)|ds obviously converges, we can define y∗(x) =

ebxz∗(x) for x � x1 and extend y∗(x) onto [x0,∞) to obtain the required solution of
(1.1). This proves the first part of the assertion.
Now let y(x) be any solution of (1.1) such that (2.9) holds. To show y(x) = Ly∗(x)

on I we first prove that there exists δ > 0 such that

(2.11) y(x) = O{e−δx} as x→∞.

Integrating (1.1) we obtain

(2.12) y(x) = y(�)eb(x−�) + a
∫ x

�

(
eb(x−t)y(τ(t))

)
dt, x � � � x0.

Set v(x) = (ϕ(x))−αr |y(x)| and w(u) = sup {v(x) : x � u}, x, u ∈ I. Then w(u)
decreases to zero as u→∞ and (2.12) gives

v(x)(ϕ(x))αr � w(�)(ϕ(�))αr eb(x−�)

+ |a|λαrw(τ(�))
∫ x

�

(
eb(x−t)(ϕ(t))αr

)
dt, x � � � x0,

i.e.,

v(x) � w(�)(ϕ(�))αr (ϕ(x))−αr eb(x−�) + w(τ(�))
(
1 +

K

ϕ(x)

)
, x � � � x0,

by virtue of Proposition 2. From here we get

v(x) � C1w(�)(ϕ(�))αr eb
′x−b� + w(τ(�))

(
1 +

K

ϕ(x)

)
, x � � � x0,

where C1 > 0 and b′ < 0, b′ > b may be chosen arbitrarily close to b (we can choose

b′ = b when αr � 0). Then take σ � � and sup for x � σ to obtain

w(σ) � C1w(�)(ϕ(�))αr eb
′σ−b� + w(τ(�))

(
1 +

K

ϕ(σ)

)
, σ � �.

Now put � = τ−
1
2 (σ). Let us remark that the u-th iteration τu of τ can be defined

for real u as τu(x) = ϕ−1(λuϕ(x)), x ∈ I (for definitions, results and references
concerning continuous iterations see [7]).

Then taking into account the boundedness of w we have

w(σ) � C2(ϕ(σ))
αr exp(b′σ − bτ−

1
2 (σ)) + w(τ

1
2 (σ))

(
1 +

K

ϕ(σ)

)
, σ � τ

1
2 (x0).
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Since b′ may be arbitrarily close to b, we get

b′σ − bτ−
1
2 (σ) < 0.

Then there exists δ > 0 such that

C2(ϕ(σ))αr exp(b′σ − bτ−
1
2 (σ)) � C3e−2δσ, σ � τ

1
2 (x0),

i.e.,

w(σ) � C3e−2δσ + w(τ
1
2 (σ))

(
1 +

K

ϕ(σ)

)
, σ � τ

1
2 (x0).

Repeated use of the last inequality gives

w(σ) � C3e
−2δσ + C3

N∑

n=1

(
exp(−2δτ n

2 (σ))
n−1∏

m=0

(
1 +

K

λ
m
2 ϕ(σ)

))

+ w(τ
N+1
2 (σ))

N∏

m=0

(
1 +

K

λ
m
2 ϕ(σ)

)
, σ � τ

1
2 (x0), N = 1, 2, . . . .

Letting N → ∞ we can see that the infinite products converge and w(τ
N+1
2 (σ))

decreases to zero. Hence,

w(σ) � C4

∞∑

n=0

exp(−2δτ n
2 (σ)), σ � τ

1
2 (x0),

which implies (2.11).

Now by (2.12) and (2.11) there exists M > 0 such that

|y(x)e−bx − y(�)e−b�| � M

∫ x

�

exp(−bt− δτ(t)) dt, x � � � x0.

Since the integral on the right converges as x→∞ it follows that

lim
x→∞

e−bxy(x) = L ∈ �.

Further, set y(x) = y(x)− Ly∗(x), x ∈ I. Then y(x) is a solution of (1.1) such that

y(x) = o{ebx} as x→∞.

Integrating (1.1) we obtain

e−bxy(x) = −a
∫ ∞

x

(
e−bty(τ(t))

)
dt.
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Let u ∈ I and put q(u) = sup {e−bx|y(x)| : x � u}. Then for each x � u,

e−bx|y(x)| � |a|
∫ ∞

x

(
eb(τ(t)−t)e−bτ(t)y(τ(t))

)
dt � |a|

−b(λ− 1)e
b(τ(x)−x)q(τ(u)),

i.e.,

q(u) � |a|
−b(λ− 1)e

b(τ(u)−u)q(τ(u)).

Repeated application of this inequality yields

q(u) � |a|n
(−b)n(λ− 1)n e

b(τn(u)−u)q(τn(u)).

If we let n→∞ we can deduce that q(u) is identically zero on I, i.e., y(x) = Ly∗(x)
for all x ∈ I. �

Theorem 2. Let a �= 0, b < 0 be scalars, let τ(x) ∈ C1(I) be such that
λ > 1 and let y∗(x) be given by Lemma. Further, let g(x), ϕ(x), α and αr be as in

Theorem 1. Then there exists a solution y(x) of (1.1) satisfying asymptotic relation

(2.5). Furthermore, y(x) is unique up to addition of a constant multiple of y∗(x).

�����. First we deal with the existence of a solution y(x) of (1.1) having the
prescribed asymptotic behaviour (2.5). Define inductively

u1(x) = −bebx
∫ x

�

(
e−bt(ϕ(t))αg(logϕ(t))

)
dt− (ϕ(x))αg(logϕ(x)),

un+1(x) = ae
bx

∫ x

�

(
e−btun(τ(t))

)
dt, n = 1, 2, . . . ,

where x � �, � ∈ I being a constant large enough.
We verify that the series u(x) =

∞∑
n=1

un(x) absolutely and uniformly converges

on I,
u(x) = O

{
(ϕ(x))αr−θ

}
as x→∞

and the function

y(x) = (ϕ(x))αg(logϕ(x)) + u(x), x ∈ I

satisfies (1.1). Similarly as in the proof of Theorem 1 (using (2.8) instead of (2.4))
we can estimate un(x) as

un(x) = O
{
λ−(n−1)θ(ϕ(x))αr−θ

(
1 +

K

�

)n−1}
as x→∞,
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where the O-term is uniform in n and K is the same as in (2.8) with r = αr − θ,

s = −b.
Once � has been chosen large enough, we obtain

|un(x)| � M(ϕ(x))αr−θLn−1,

where L = λ−θ(1 + K
� ) < 1.

Summarizing this we obtain that the series u(x) =
∞∑

n=1
un(x) is absolutely and

uniformly convergent on I. The remaining parts are easy to check.

Now let y1(x), y2(x) be solutions of (1.1) satisfying (2.5) with the same g(x). If
we put y(x) = y1(x)− y2(x) on I then y(x) fulfils (2.9) and Lemma yields

y1(x)− y2(x) = Ly
∗(x), x ∈ I.

�

3. Applications

Example 1. First we consider the equation

(3.1) y′(x) = a y(λx) + b y(x), x ∈ [0,∞),

where a, b, λ are constants, a, b �= 0, λ > 1. The asymptotic behaviour of solutions
of (3.1) has been deeply investigated in [6]. Applying our previous results to this
equation we note that the deviation τ(x) = λx fulfils all the required assumptions

except τ(x) > x for each x ∈ [0,∞). Nevertheless, using a small modification in
Proposition 1 and Proposition 2 we get that the results of the previous sections are

valid also for deviations τ(x) intersecting the identity function at the initial point.
Schröder equation (2.2) then becomes

ϕ(λx) = λϕ(x), x ∈ [0,∞)

and admits the identity ϕ(x) = x as the required solution. Substituting this ϕ(x) into
(2.5) we obtain the coincidence between our asymptotic results and the corresponding

results of [6].

Example 2. Now we discuss the asymptotic behaviour of solutions of the

equation

(3.2) y′(x) = ay(xγ) + by(x), x ∈ [1,∞),
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where a, b, γ are constants, a, b �= 0, γ > 1. Schröder equation (2.2) with τ(x) = xγ

has the form
ϕ(xγ) = γϕ(x), x ∈ [1,∞)

with ϕ(x) = log x as the required solution.
The asymptotic properties of solutions of equation (3.2) have been studied in

[4]. We note that our previous results with ϕ(x) = log x are just Theorem 3 and
Theorem 4 of the cited paper.

Example 3. We investigate the asymptotic properties of solutions of the equa-
tion

(3.3) y′(x) = a y(xlog x) + b y(x), x ∈ [e,∞),

where a, b �= 0. Since τ(x) = xlog x, we have

λ = inf{τ ′(x) : x � e} = inf
{
2xlog x−1 log x : x � e

}
= 2.

Substituting this into (2.2) we obtain the functional equation

(3.4) ϕ(xlog x) = 2ϕ(x), x ∈ [e,∞).

It is easy to check that the function ϕ(x) = log log x is a solution of (3.4) with a
positive and bounded derivative on [e,∞). We apply conclusions of Theorem 1 and
Theorem 2 to equation (3.4). Assume that we are given a periodic function g(x) of
period log 2 which is Hölder continuous with exponent θ, 0 < θ � 1. If b > 0, then
there exists a unique solution y(x) of (3.4) satisfying the asymptotic relation

(3.5) y(x) = (log log x)αg(log log log x) +O
{
(log log x)αr−θ

}
as x→∞,

where α is a root of the equation a 2α + b = 0 and αr = Reα.

If b < 0, then there exists a unique solution y∗(x) of (3.4) asymptotic to ebx and
a solution y(x) of (3.4) satisfying (3.5). Moreover, this solution y(x) is unique up to

the addition of a constant multiple of y∗(x).

Example 4. Consider the equation

(3.6) y′(x) = b(y(x)− y(τ(x))), x ∈ I,

where b is a nonzero constant and assume that λ = inf{τ ′(x) : x ∈ I} > 1. Since
obviously α = αr = 0 it is easy to reformulate relation (2.5) and the related results
into the corresponding simplified form.
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Let, e.g., b > 0. If g(x) is a periodic function of period log λ which is Hölder

continuous with exponent θ, 0 < θ � 1, then there is a unique solution y(x) of (3.6)
such that

y(x) = g(logϕ(x)) +O
{
(ϕ(x))−θ

}
as x→∞,

where ϕ(x) is a solution of (2.2) given by (2.3). The case b < 0 can be dealt with

quite similarly.
We note that the problem of asymptotic behaviour of solutions of (3.6) has been

studied, under special hypotheses, in many papers (for some results and references
see, e.g., [2]). As remarked above, most authors have preferably studied equations
with a delay or with a bounded function r(x) = τ(x)−x. Our previous results extend
the validity of some asymptotic formulas concerning equation (3.6) also to equations
(3.6) of the advanced type with an unbounded r(x).
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