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COMMUTATIVITY OF RINGS THROUGH A STREB’S RESULT

Moharram A. Khan, Jeddah

(Received April 27, 1998)

Abstract. In this paper we investigate commutativity of rings with unity satisfying any
one of the properties:

{1− g(yxm)} [yxm − xrf(yxm) xs, x]{1− h(yxm)} = 0,
{1− g(yxm)} [xmy − xrf(yxm)xs, x]{1− h(yxm)} = 0,
yt[x, yn] = g(x)[f(x), y]h(x) and [x, yn] yt = g(x)[f(x), y]h(x)

for some f(X) in X2�[X] and g(X), h(X) in �[X], where m � 0, r � 0, s � 0, n > 0,
t > 0 are non-negative integers. We also extend these results to the case when integral
exponents in the underlying conditions are no longer fixed, rather they depend on the pair
of ring elements x and y for their values. Further, under different appropriate constraints on
commutators, commutativity of rings has been studied. These results generalize a number
of commutativity theorems established recently.

Keywords: commutators, division rings, factorsubrings, polynomial identities, torsion-
free rings

MSC 2000 : 16U80

1. Introduction

Throughout the paper, R will represent an associative ring (maybe without unity),

N = N(R) the set of nilpotent elements of R, Z = Z(R) the center of R, C = C(R)
the commutator ideal of R, and U = U(R) the group of units of R. For any x, y in

R, [x, y] denotes the commutator xy−yx. As usual, �[X] is the set of polynomials in
X with coefficients in �, the ring of integers. Consider the following ring properties:
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(I) For all x, y in R there exist polynomials f(X) in X2�[X] and g(X), h(X) in

X�[X ] such that

{1− g(yxm)} [yxm − xrf(yxm)xs, x]{1− h(yxm)} = 0

where m � 0, r � 0, s � 0 are fixed integers.
(I)′ For all x, y in R there exist integers m � 0, r � 0, s � 0 and polynomials f(X)

in X2�[X ] and g(X), h(X) in X�[X] such that

{1− g(yxm)} [yxm − xrf(yxm)xs, x]{1− h(yxm)} = 0.

(II) For all x, y in R there exist polynomials f(X) in X2�[X] and g(X), h(X) in
X�[X ] such that

{1− g(yxm)} [xmy − xrf(yxm) xs, x]{1− h(yxm)} = 0

where m � 0, r � 0, s � 0 are fixed integers.
(II)′ For all x, y in R there exist integers m � 0, r � 0, s � 0 and polynomials f(X)

in X2�[X ] and g(X), h(X) in X�[X] such that

{1− g(yxm)} [xmy − xrf(yxm)xs, x] {1− h(yxm)} = 0.

(III) For every x in R there exist polynomials f(X) in X2�[X] and g(X), h(X) ∈
�[X] such that

yt[x, ym] = g(x)[f(x), y]h(x) and yt[x, yn] = g(x)[f(x), y] h(x)

for all y ∈ R, where t � 1, m � 1, n � 1 are fixed integers with (m, n) = 1.

(III)′ For every x, y ∈ R there exist integers t � 1, m � 1, n � 1 with (m, n) = 1 and
polynomials f(X) in X2�[X ] and g(X), h(X) ∈ �[X] such that

yt[x, ym] = g(x)[f(x), y]h(x) and yt[x, yn] = g(x)[f(x), y]h(x).

(IV) For every x in R there exist polynomials f(X) in X2�[X] and g(X), h(X) ∈
�[X] such that

[x, ym]yt = g(x)[f(x), y] h(x) and [x, yn]yt = g(x)[f(x), y]h(x)

for all y ∈ R, where t � 1, m � 1, n � 1 are fixed integers with (m, n) = 1.
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(IV)′ For all x, y in R there exist integers t � 1, m � 1, n � 1 with (m, n) = 1 and

polynomials f(X) ∈ X2�[X ] and g(X), h(X) ∈ �[X] such that

[x, ym]yt = g(x)[f(x), y]h(x) and [x, yn]yt = g(x)[f(x), y]h(x).

(V) For every x, y in R there exist f(T ), g(T ) in T 2�[T ] such that [x − f(x), y −
f(y)] = 0.

Searc̈oid and MacHale [8] proved the commutativity of any ring satisfying the
condition (xy)n(x,y) = xy with n(x, y) > 1. Tominaga and Yaqub [10, Theorem 2]
established that if R is a ring such that either xy = p(xy) or xy = p(yx), where

p(X) belongs to X2�[X], then R is commutative. The author jointly with Bell and
Quadri [1, Theorem 2] obtained the commutativity of the rings with unity 1 satisfying

polynomial identitites of the form [xy − p(xy), x] = 0 and [xy − q(xy), x] = 0, where
p(X), q(X) are inX2�[X]. Our first aim is to investigate commutativity of rings with

unity 1 satisfying either one of the properties (I) or (II). Further, we shall consider
the properties (I)′ and (II)′, where the integral exponents are allowed to vary with

the pair of rings elements x, y and the ring also satisfies Chacron’s condition (V).
Our second goal is to establish commutativity of rings with unity 1 satisfying any

one of the properties (III), (IV), (III)′ and (IV)′. There are several results in the
existing literature concerning commutativity of rings with unity 1 satisfying certain

special cases of these conditions (cf. [7, Theorems 1, 2]).

In the present note we will confine our attention mainly to the case when polynomi-
als in the underlying conditions are varying with the pair of ring’s elements x, y which

offer simultaneous extensions of these results to rings with unity 1. Lately, some re-
lated cases of conditions (III) and (IV) have been considered and commutativity of
rings has been investigated under appropriate torsion restrictions on commutators.

The idea of the proofs presented here is based on some iteration techniques developed
by Tong [11].

2. Preliminary results

In order to be able to prove our theorem, let us first consider the following types
of rings:

(i)l

(
GF (p) GF (p)

0 0

)
, p a prime, where

(
GF (p) GF (p)

0 0

)3
:=

(
a b

0 0

)
|a, b ∈

GF (p)};
(i)r

(
0 GF (p)
0 GF (p)

)
, p a prime;
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(i)

(
GF (p) GF (p)
0 GF (p)

)
, p a prime;

(ii) Mσ(F ) =

{(
a b

0 σ(a)

)
| a, b ∈ F

}
, where F is a finite field with a non-trivial

automorphism σ;
(iii) a non-commutative division ring;

(iv) S = 〈1〉+ T , T is a non-commutative radical subring of S;
(v) S = 〈1〉+T , T is a non-commutative subring of S such that T [T, T ] = [T, T ]T =

0.

In 1989, Streb [9] classified non-commutative rings, which has been used effectively
as a tool by several authors to prove a number of commutativity theorems (cf. [5],

[6] and [10]). From the proof of [9, Corollary 1], it is trivial to see that if R is a
non-commutative ring with unity 1, then there exists a factorsubring of R which is

of type (i), (ii), (iii), (iv) or (v). This gives us the following result of [9] that plays a
vital role in our subsequent discussion.

Meta Theorem. Let P be a ring property which is inherited by factorsubrings.

Suppose no rings of type (i), (ii), (iii), (iv) or (v) satisfy P . Then every ring with

unity 1 satisfying P is commutative.

The proofs of the following lemmas can be found in [4], [3], [6, Corollary 1] and

[11, Lemma 1].

Lemma 1. Let f be a polynomial in n non-commuting indeterminates x1, x2, . . . ,

xn with relatively prime integral coefficients. Then the following assertions are equiv-

alent.

(a) For any ring R satisfying the polynomial identity f = 0, C is a nil ideal.
(b) For every prime p, (GF (p))2 fails to satisfy f = 0.

(c) Every semiprime ring satisfying f = 0 is commutative.

Lemma 2. If R is a non-commutative ring satisfying (V), then there exists a

factorsubring of R which is of type (i) or (ii).

Lemma 3. Let R be a ring in which for all x, y in R, there exists a polynomial

f(X) in X2�[X] such that [x− f(x), y] = 0. Then R is commutative.

Lemma 4. Let R be a ring with unity 1, and put Ik
0 (x) = xk. If p � 1, let

Ik
p (x) = Ik

p−1(x + 1) − Ik
p−1(x) for all x in R. Then Ik

k−1(x) =
1
2 (k − 1)k! + k!x;

Ik
k = k! and Ik

j (x) = 0 for j > k.
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3. Main results

Theorem 1. Let R be a ring with unity 1 satisfying any one of the conditions (I)

and (II). Then R is commutative.

Theorem 2. Let R be a ring with unity 1 satisfying any one of the conditions
(III) and (IV). Then R is commutative.

We prove the assertion by a step-by-step reduction from division rings to the rings
considered above.

Step 1. Let R be a division ring satisfying any one of the properties (I) and (II).

Then R is commutative.

�����. Let R satisfy (I). If u is a unit in R, then for every y in R choose

polynomials f(X) in X2�[X] and g(X), h(X) in X�[X ] such that

{1− g(yu−mum)}[yu−mum − urf(yu−mum)us, u]{1− h(yu−mum)} = 0

or
{1− g(y)}[y − urf(y)us, u]{1− h(y)} = 0.

This shows that either 1 − g(y) = 0, or 1 − h(y) = 0, or [y − urf(y)us, u] = 0. In

the first two cases we get y − yg(y) = 0, y − yh(y) = 0, and R is commutative by
Lemma 3. So, we may assume that

(1) [y − urf(y)us, u] = 0, where f(X) ∈ X2�[X]

for a unit u in U and arbitrary y in R. Next, choose a polynomial f(X) in X2�[X]

such that [y− u−rf(y)u−s, u−1] = 0. This implies that [y− u−rf(y)u−s, u] = 0, and

(2) [u, f(y)] = ur[u, y]us.

Now in view of (1), one can choose a polynomial p(X) ∈ X2�[X] such that
[f(y)− urp(f(y))us, u] = 0, hence for q(X) = p(f(X)) ∈ X2�[X], we find that

(3) [u, f(y)] = ur [u, q(y)]us.

From (2) and (3) we obtain ur[u, y]us = ur[u, q(y)]us. However, u ∈ U , thus [y −
q(y), u] = 0 for q(X) ∈ X2�[X]. So, again by Lemma 3 R is commutative.
Suppose that R satisfies (II). Then let u be a unit in R, i.e. u ∈ U , and for an

arbitrary element y in R we obtain polynomials f(X) in X2�[X ] and g(X), h(X) ∈
X�[X] such that

{1− g(yu−mum)} [umyu−m − urf(yu−mum)us, u]{1− h(yu−mum)} = 0
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or

{1− g(y)}[umyu−m − urf(y)us, u]{1− h(y)} = 0.

This shows that either 1− g(y) = 0, or 1−h(y) = 0, or [umyu−m−urf(y)us, u] = 0.
In the first two cases R is commutative by Lemma 3. Next, we will assume the

remaining possiblity that [umyu−m − urf(y)us, u] = 0. Then

(4) um[u, y] = ur[u, f(y)]um+s

where f(X) ∈ X2�[X ]. Further, one can choose a polynomial f(X) ∈ X2�[X] such

that u−m[u−1, y] = u−r[u−1, f(y)]u−(m+s), which gives

(5) ur[u, y]um+s = um[u, f(y)].

By (4), one can get a polynomial p(X) ∈ X2�[X ] such that um[u, f(y)] =

ur[u, p(f(y))] um+s. Hence for q(X) = p(f(X)) in X2�[X ], (5) gives ur[u, y]um+s =
ur[u, q(y)]um+s. But, since u in U , we get [u, y − q(y)] = 0. So Lemma 3 yields the

required result. �

Step 2. Suppose that k � 1, t � 1 are fixed integers and R is a ring with unity 1

in which for every x in R there exist polynomials f(X) in X2�[X] and g(X), h(X)
in �[X ] such that either

yt[x, yk] = g(x) [f(x), y] h(x) or [x, yk]yt = g(x)[f(x), y]h(x)

for all y in R. Then C ⊆ N.

�����. Let R satisfy yt[x, yk] = g(x) [f(x), y]h(x). Set 1 + y for y in the given

condition, to obtain (1 + y)t[x, (1 + y)k] = yt[x, yk].

Now e22 =

(
0 0
0 1

)
and y = e12 =

(
0 1
0 0

)
fail to satisfy the above polynomial

identity in (GF (p))2, p a prime. Thus by Lemma 1, R has its commutator ideal nil,
i.e. C ⊆ N.

A similar argument can be used to obtain the result if R satisfies the condition
[x, yk]yt = g(x)[f(x), y]h(x). �

We are now well equipped to prove our theorems.

����� of Theorem 1. Suppose that R is a ring of the type (i). Let R satisfy (I).
Then in (GF (p))2, p a prime, we get

{1− g(e12em
22)} [e12em

22 − er
22f(e12e

m
22)e

s
22, e22]{1− h(e12em

22)} = e12 �= 0
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for all f(X) ∈ X2�[X] and g(X), h(X) ∈ X�[X]. If R satisfies (II), then by taking

x = e11 =

(
1 0
0 0

)
and y = e12 one gets

{1− g(e12em
11)} [em

11e12 − er
11f(e12e

m
11)e

s
11, e11] {1− h(e12em

11)} = e12 �= 0

for all f(X) ∈ X2�[X ] and g(X), h(X) ∈ X�[X].

Hence, in both the cases we get a contradiction and therefore, no rings of type (i)
satisfy (I) and (II).

Further, consider the ring Mσ(F ). Let R satisfy (I). Then take x =

(
α 0
0 σ(α)

)
,

(α �= σ(α)), and y = e12 such that

{1− g(yxm)} [yxm − xrf(yxm)xs, x]{1− h(yxm)} = (α − σ(α))σm(α)e12 �= 0

for all f(X) ∈ X2�[X ] and g(X), h(X) in X�[X].
Next, if R satisfies (II), then with the same choice of x and y we get

{1− g(yxm)} [xmy − xrf(yxm)xs, x]{1− h(yxm)} = αm(α − σ(α))e12 �= 0.

Thus in neither case R cannot be of type (ii). Also if R is of type (iii), then by

Step 1 we get a contradiction.
Let R be of type (iv). If R satisfies either of the properties (I) or (II), then a

careful scrutiny of the proof of Step 1 gives that there exist u in U and y in R such
that either y− yg(y) = 0, or y− yh(y) = 0 or [u, y− q(y)] = 0 for all q(X) ∈ X2�[X]

and g(X), h(X) ∈ X�[X]. Let t1, t2 ∈ T. Then u = 1 + t1 is a unit and there exist
q(X) ∈ X2�[X] and g(X), h(X) in X�[X ] such that either t2 − t2g(t2) = 0, or

t2 − t2h(t2) = 0 or [t2 − q(t2), 1 + t1] = 0. Thus, in every case T is commutative by
Lemma 3, a contradiction.
Further, let R be of type (v). Let t1, t2 ∈ T be such that [t1, t2] �= 0. Suppose

that R satisfies (I). Then there exist polynomials f(X) ∈ X2�[X ] and g(X), h(X) ∈
X�[X] such that

{1− g(t2(1 + t1)m)}[t2(1 + t1)m − (1 + t1)rf(t2(1 + t1)m)(1 + t1)s, 1 + t1]

×{1− h(t2(1 + t1)m)} = 0
{1− g(t2(1 + t1)

m)}[t2(1 + t1)
m, 1 + t1]{1− h(t2(1 + t1)

m)} = 0
{1− g(t2(1 + t1)m)}[t2, t1]{1− h(t2(1 + t1)m)} = 0

[t2, t1] = 0,

a contradiction.
In the same way we get a contradiction if R satisfies (II).

Hence we observe that no rings of type (i), (ii), (iii), (iv) or (v) satisfy (I) and (II),
and by Meta Theorem, R is commutative. �
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����� of Theorem 2. By virtue of Lemma 1 and Step 2, R cannot be of type

(iii) or (iv). Next, if R is assumed to be of type (i), then choosing x = e12 and
y = e11 in (GF (p))2, p a prime, we get

et
11[e12, e

n
11] = g(e12)[f(e12), e11] h(e12) = e12 �= 0

for all f(X) ∈ X2�[X] and g(X), h(X) ∈ �[X]. Hence in both cases we get a
contradiction.

Now, consider the ring Mσ(F ), a ring of type (ii). If R satisfies (III), then note
that N(Mσ(F )) = Fe12. Hence for any a ∈ N(Mσ(F )) and an arbitrary unit

u ∈ U there exist polynomials f(X) ∈ X2�[X] and g(X), h(X) ∈ �[X] such that
ut[a, un] = g(a)[f(a), u]h(a) = 0. Since a2 = 0 and u is a unit, thus [a, un] = 0.

Similarly we can obtain that [a, um] = 0. But (m, n) = 1, so we get [a, u] = 0. Thus
for a non-central element a = e12 and an arbitrary unit u one gets [e12, u] = 0 which

leads to a contradiction with the fact that e12 is central.
By a similar argument we obtain a contradiction if R satisfies (IV).

Finally, let R be a ring of type (v). Suppose R satisfies (III). Let t1, t2 ∈ T be such
that [t1, t2] �= 0. Then there exist polynomials f(X) ∈ X2�[X] and g(X), h(X) ∈
�[X ] such that

n[t2, t1] = (1 + t1)
t [t2, (1 + t1)

n] = g(t2) [f(t2), 1 + t1]h(t2) = 0.

One can similarly prove that m[t2, t1] = 0. This shows that [t2, t1] = 0 yields a

contradiction.
Analogously, we can obtain a contradiction if R satisfies (IV).

Hence no rings of type (i), (ii), (iii), (iv) or (v) satisfy (III) and (IV) and R is
commutative by Meta Theorem. �

From the proofs of Theorem 1 and Theorem 2 we conclude that if R satisfies any

one of the conditions (I)′, (II)′, (III)′ and (IV)′, then R has no factorsubrings of type
(i) or (ii). Thus combining this fact together with Lemma 2, we obtain

Theorem 3. Suppose that R is a ring with unity 1 satisfying (V). If R satisfies

any one of the properties (I)′ and (II)′, then R is commutative (and conversely).

Theorem 4. Let R be a ring with unity 1 satisfying (V). Suppose further that
R satisfies any one of the conditions (III)′ and (IV)′. Then R is commutative (and

conversely).

The following example demonstrates that in the hypothesis of Theorem 2, the

conditions in the properties (III) and (IV) are not superfluous (even if the ring R

has unity 1).
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Example 1. Consider R =

{


a b c

0 a d

0 0 a


 |a, b, c, d ∈ GF (2)

}
. Then R is a non-

commutative ring with unity satisfying the condition yt[x, ym] = xr[xn, y]xs for the

fixed polynomial f(x) = x4 and m = 4 where r, s, t, n maybe any non-negative
integers.

4. Commutativity of torsion-free rings

In view of Example 1, it is natural to look for additional conditions sufficient for

the commutativity of the ring R if we simply assume

yt[x, ym] = g(x)[f(x), y]h(x) and [x, ym] yt = g(x)[f(x), y]h(x)

in the properties (III) and (IV), respectively. Finally, it is tempting to conjecture
that an m-torsion free ring with unity 1 satisfying any one of the above properties

must be commutative (under certain appropriate constraints on the commutators
involved in the underlying conditions). We can prove some results in the interesting

cases of the conjecture. In fact, we shall consider the following ring properties:
(VI) For every y in R there exist polynomials f(X), g(X), h(X) in �[X] such that

[xn, yr] = g(x)[f(x), y]h(x) for all x in R where r > 1, n � 1 are fixed integers.
(VII) For every x in R there exist polynomials f(X), g(X), h(X) in �[X] such that

either

yr[xn, y] = g(x)[f(x), y]h(x) or [xn, y]yr = g(x)[f(x), y]h(x)

for all x in R where r � 1, n � 1 are fixed integers.
(VIII) For all y in R there exist polynomials f(X), g(X), h(X) in �[X] such that

either

xn[x, yr] = g(y)[x, f(y)]h(y) or [x, yr]xn = g(y)[x, f(y)]h(y)

for all x ∈ R, where r � 1, n � 1 are fixed integers.
To prove the commutativity of a ring R with the above properties we need some

extra conditions on commutators in R, such as the condition

Q(m) m[x, y] = 0 implies [x, y] = 0 for all x, y in R (m is a positive integer).

Our method of the proof uses some iteration techniques, which is based on the
Lemma 4 due to Tong [11].
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Theorem 5. Let R be a ring with unity 1 satisfying any one of the properties

(VI), (VII), (VIII). If R satisfies also Q((max{r, n})!), then R is commutative.

�����. Let R satisfy (VI). Then we shall first use induction on yr. From

Lemma 4 we have Ik(x) = Ir
k(x), for k � 0. Then condition (VI) can be written as

(1) [xn, I0(y)] = g(x)[f(x), y]h(x).

Replacing y by y + 1 in (1) and using Lemma 4, we get

[xn, I0(y) + I1(y)] = g(x)[f(x), y]h(x).

Again using (1) we get

(2) [xn, I1(y)] = 0 for all x, y in R.

Putting y + 1 instead of y and using Lemma 4, we get [xn, I1(y + 1)] = [xn, I1(y) +
I2(y)] = 0. Again by (2) we get [xn, I2(y)] = 0. Hence one can observe that replacing

y by y + 1 and iterating (r − 1)-times, we get [xn, Ir−1(y)] = 0, i.e. r![xn, y] = 0. At
last, replacing x by x+1 and using similar technique as above we obtain r!n![x, y] = 0.

The property Q ((max{r, n})!) yields the commutativity of R.

Let R satisfy (VII). Then using the same techniques we get that either

I0(y)[xn, y] = g(x)[f(x), y]h(x)

or

[xn, y]I0(y) = g(x)[f(x), y]h(x).

Replacing y by y+1 and using Lemma 4 we obtain that either I1(y)[xn, y] = 0 or

[xn, y]I1(y) = 0. Proceeding along the same line, we finally obtain Ir(y)[xn, y] = 0 or
[xn, y]Ir(y) = 0. Thus in both cases we get r![xn, y] = 0. Next, using the same way

of replacing x by x+1 and iterating (n− 1)-times we get that r!n![x, y] = 0, and the
property Q ((max{r, n})!) gives the commutativity of R.
Similarly we can prove that R is commutative if R satisfies (VIII). �

We close our discussion with the following

Conjecture. Let R be a ring with unity 1 in which for every y there exists a

polynomial f(λ) ∈ λ2�[λ] such that yr[xm, y] = xt[f(x), y]ys, where m � 1, r, s,

t are non-negative integers. If the commutators in R are m-torsion free, then R is

commutative.

Acknowledgement. The author would like to express our gratitude and indebt-
edness the referee for his helpful suggestions and valuable comments.
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