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Czechoslovak Mathematical Journal, 50 (125) (2000), 681–698

DR-IRREDUCIBILITY OF CONNECTED MONOUNARY ALGEBRAS

WITH A CYCLE

Danica Jakubíková-Studenovská, Košice

(Received January 1, 1997)

For a monounary algebra A let R(A) be the class of all monounary algebras which
are isomorphic to a retract of A.

In [4] the notion of irreducibility of a monounary algebra in a given class K was

defined. The corresponding definition is as follows. Let K be a class of monounary
algebras. A monounary algebra A is said to be retract irreducible in K if, whenever

A ∈ R
(∏

i∈I

Bi

)
and Bi ∈ K for each i ∈ I, then there is j ∈ I such that A ∈ R(Bj).

An analogous definition can be applied also for other classes of algebraic structures.

Let A be a connected monounary algebra. Irreducibility of A in the class of all
connected monounary algebras Uc was dealt with in [2], [3], and in the class of all

monounary algebras U it was investigated in [4]. The case when A is not connected
and K = U was studied in [5].

Duffus and Rival [1] solved some problems concerning retract irreduciblity of a

poset P ; they considered retract irreducibility in the class R(P ).

The aim of this paper is to describe all connected monounary algebras A with a
cycle which are retract irreducible in the class R(A) (Theorem 2.9). Such algebras

will be called retract irreducible in the sense of Duffus and Rival, or, more shortly,
DR-irreducible.

1. Auxiliary results

We will use the notion of the degree of an element x ∈ B, where (B, f) is a
monounary algebra; for this notion cf. e.g. [7], [6] and [2]. The degree of x is an

ordinal or the symbol ∞ and is denoted by sf (x).
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According to [2], 1.3 we obtain

(Thm) Let n ∈ � and let (B, f) be a monounary algebra such that if a connected
component (B, f) contains a cycle C, then cardC = n. Suppose that (M, f) is a
subalgebra of (B, f) such that (M, f) contains a cycle. ThenM is a retract of (B, f)

if and only if the following condition is satisfied:

(1) if y ∈ f−1(M), then there is z ∈M such that f(y) = f(z) and sf (y) � sf (z).

In what follows let A be a connected monounary algebra with a cycle C,

cardC = n.
For a connected monounary algebra D possessing a cycle let V0(D) be the set of

all elements of the cycle of D; further, if k ∈ �, then put

Vk(D) = {x ∈ D : x /∈ Vl(D) for l ∈ � ∪ {0}, l < k, f(x) ∈ Vk−1(D)}.

1.1. Lemma. Suppose that cardC = 1, cardV1(A) > 1. Then A is DR-

reducible.

�����. By [2], A is retract reducible in the class Uc. There exist connected
monounary algebras Bi, i ∈ I, such that

A ∈ R
(∏

i∈I

Bi

)
,

A /∈ R(Bi) for each i ∈ I.

The algebras Bi (for each i ∈ I) used in this construction (cf. the proof of 3.7, [2])
are such that Bi ∈ R(A), hence A is DR-reducible. �

1.2. Lemma. Suppose that cardC = n > 1 and cardV1(A) > 1. Then A is

DR-reducible.

�����. Let C = {c1, . . . , cn}, f(c1) = c2, . . . , f(cn) = c1. Further let
V1(A) = {ai : i ∈ I};
the assumption yields that card I > 1. If i ∈ I, then denote
Ai = {x ∈ A : (∃k ∈ � ∪ {0})(fk(x) = ai)},
Bi = C ∪Ai.
Then Bi is a subalgebra of A and it is obvious that

(1) Bi ∈ R(A) for each i ∈ I,
(2) A /∈ R(Bi) for each i ∈ I.

Put

B =
∏

i∈I

Bi.
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Let c1, . . . , cn ∈ B be such that c1(i) = c1, . . . , cn(i) = cn for each i ∈ I. We can

suppose that 0 /∈ I. Denote
T0 = {c1, . . . , cn}.

If i ∈ I, f(ai) = cl, l ∈ {1, . . . , n}, then let Ti be the set of all elements b ∈ B such

that

(a) b(i) ∈ Ai, i.e., b(i) ∈ f−m(ai) for m ∈ � ∪ {0},
(b) if j ∈ I −{i}, then b(j) = ck, where k ∈ {1, . . . , n} is such that k ≡ l−m− 1
(mod n).

Put

T =
⋃

i∈I∪{0}
Ti.

Notice that Ti ∩ Tj = ∅ for each i, j ∈ I ∪ {0}, i �= j. Define a mapping ν : T → A

as follows: if x ∈ Ti for some i ∈ I ∪ {0}, then ν(x) = x(i). It can be verified that ν
is an isomorphism, thus

(3) A ∼= T .
To complete the proof we have to show that T is a retract of B. By (Thm), it

suffices to prove

(4) if y ∈ f−1(T ), then there is z ∈ T with f(y) = f(z) and sf (y) � sf (z).

Let y ∈ f−1(T ), y /∈ T , f(y) = b. If b ∈ T0, then b = cj for some j ∈ {1, . . . , n} and
there is z ∈ T0 with f(z) = b. Since sf (z) =∞, we have sf(y) � sf (z).

Now suppose that b ∈ Ti for some i ∈ I. Then (a) and (b) are valid. Let
k′ ∈ {1, . . . , n} be such that k′ ≡ k − 1 (mod n). There exists z ∈ B such that
(a’) z(i) = y(i),
(b’) z(j) = ck′ for each j ∈ I − {i}.

We have

f(z(i)) = f(y(i)) = b(i) ∈ Ai,

thus, by (a),

(a”) z(i) ∈ Ai, z(i) ∈ f−m−1(ai), m ∈ � ∪ {0}.
Further, (b) implies that if j ∈ I − {i}, then

k′ ≡ k − 1 ≡ (l −m− 1)− 1 ≡ l −m− 2,

hence z ∈ Ti. The relation f(z) = b = f(y) is valid since, if j ∈ I − {i},

(f(z))(j) = f(ck′) = ck = b(j).
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By the definition of z we have sf (z(j)) =∞ for each j ∈ I − {i}, thus

sf (y) � sf (y(i)) = sf (z(i)) = sf (z),

which completes the proof. �

1.3. Corollary. If cardV1(A) > 1, then A is DR-reducible.

1.4. Notation. For k ∈ � denote

Mk(A) = {x ∈ Vk(A) : card f−1(x) > 2}.

If Mk(A) �= ∅, then let

Sk(A) = {x ∈Mk(A) : max{sf(y) : y ∈ f−1} exists}.

1.5. Lemma. Let k ∈ � and suppose that Mk(A) �= ∅, Sk(A) �= ∅. Then A is
DR-reducible.

�����. For each x ∈ Sk(A) take a fixed yx ∈ f−1(x) with sf (yx) = max{sf (y) :

y ∈ f−1(x)}. Denote

{ai : i ∈ I} = {y ∈ f−1(x)− {yx} : x ∈ Sk(A)},
Ai =

⋃

m∈�∪{0}
f−m(ai) for each i ∈ I,

E = A−
⋃

i∈I

Ai.

If i ∈ I, then let a∗i be such that a∗i = yx, where f(a∗i ) = x. Since sf(a∗i ) � sf (ai),
there exists an endomorphism ψi of A such that ψi(ai) = a∗i and ψi(z) = z for each

z ∈ A−Ai. Put

Bi = E ∪Ai.

Then Bi is a subalgebra of A and, by (Thm),

(1) Bi is a retract of A for each i ∈ I.
LetMk(Bi) and Sk(Bi) be defined analogously toMk(A) and Sk(A). If x ∈Mk(Bi),
then card f−1(x) > 2 in Bi, thus the construction of Bi implies that max{sf (y) :

y ∈ f−1(x)} does not exist, thus Sk(Bi) = ∅. Hence A is not isomorphic to any
subalgebra of Bi, therefore

(2) A /∈ R(Bi) for each i ∈ I.
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Let

B =
∏

i∈I

Bi.

If e ∈ E, then denote e ∈ B such that e(i) = e for each i ∈ I. Put

T0 = {e : e ∈ E}.

If i ∈ I, then let

Ti = {b ∈ B : b(i) ∈ Ai, b(j) = ψi(b(i)) for each j ∈ I − {i}}.

Further denote
T =

⋃

i∈I∪{0}
Ti.

We obtain

(3) A ∼= T .
Let us show that T is a retract of B. We will apply (Thm); it suffices to prove

(4) if y ∈ f−1(T ), then there is z ∈ T with f(y) = f(z) and sf (y) � sf (z).

The case y ∈ T is trivial. Let y ∈ f−1(T )− T . We have

sf (y) � min{sf (y(i)) : i ∈ I}

and there is i0 ∈ I with min{sf (y(i)) : i ∈ I} = sf (y(i0)). If y(i0) ∈ E, then there

is y(i0) ∈ T and we have
(5.1) sf(y) � sf (y(i0)), y(i0) ∈ T , f(y(i0)) = f(y).
If y(i0) /∈ E, take z ∈ B with

z(j) =

{
y(i0) if j = i0,

ψi0(y(i0)) if j ∈ I − {i0}.

Then z ∈ Ti0 and we have

sf (z) = min{sf(y(i0)), sf (ψi0(y(i0)))}.

The mapping ψi is a homomorphism, thus

sf (y(i0)) � sf(ψi0 (y(i0))),

hence

(5.2) sf(y) � sf (z), z ∈ T, f(y) = f(z).
Therefore T is a retract of B and (1)–(3) imply that A is DR-reducible. �

685



1.6. Lemma. Let k ∈ � and suppose that Mk(A) �= ∅, Sk(A) = ∅. Then A is
DR-reducible.

�����. Let the assumption hold. There exists a system {αi : i ∈ I} �= ∅ of
ordinals such that

(1) if i, j ∈ I, i �= j, then αi �= αj ,

(2) {αi : i ∈ I} = {sf(y) : y ∈ f−1(x), x ∈Mk(A)}.
We have

(3) if x ∈Mk(A), then max{sf (y) : y ∈ f−1(x)} does not exist.
For i ∈ I let Ui be the set of all z ∈

⋃
j∈�∪{0}

f−j(y), where y ∈ f−1(Mk(A)) and

sf (y) = αi. Further put
Bi = A− Ui

and let

B =
∏

i∈I

Bi.

According to (Thm), the definition of Bi implies

(4) Bi ∈ R(A).
Further, if i ∈ I, then

{y ∈ f−1(Mn(Bi)) : sf (y) = αi} = ∅,
{y ∈ f−1(Mn(A)) : sf (y) = αi} �= ∅,

thus A is not isomorphic to any subalgebra of Bi, hence

(5) A /∈ R(Bi) for each i ∈ I.
For each y ∈ f−1(Mk(A)) with sf (y) = αi take a fixed y′ ∈ f−1(f(y)) and α′i > αi

such that sf (y′) = α′i (it exists by (3)). Then there exists an endomorphism ψy of
A such that ψy(y) = y′ and ψy(z) = z for each z ∈ A−

⋃
j∈�∪{0}

f−j(y).

Now let us define a mapping ν : A→ B as follows. Let a ∈ A. If a ∈ A − ⋃
i∈I

Ui,

then put ν(a) = a, where a(i) = a for each i ∈ I. If a ∈ Ui for some i ∈ I, then

a ∈ f−m(y), y ∈ f−1(M), m ∈ � ∪ {0}, sf (y) = αi; we set ν(a) = b, where

b(j) =

{
a if j ∈ I − {i},
ψy(a) if j = i.

Denote T = ν(A). It is a formal matter to prove that ν is an isomorphism,

(6) T ∼= A.
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To complete the proof, it suffices to show

(7) if b ∈ f−1(T ), then there is d ∈ T with f(d) = f(b) and sf (b) � sf (d).

Let b ∈ f−1(T ). Then there is a ∈ A such that either
(a) a ∈ A− ⋃

i∈I

Ui, f(b) = a,

or

(b) a ∈ f−m(y), y ∈ f−1(Mk(A)), m ∈ � ∪ {0}, sf (y) = αi and

(f(b))(j) =

{
a if j ∈ I − {i},
ψy(a) if j = i.

We have sf (b) = min{sf(b(i)) : i ∈ I}, thus there is i0 ∈ I with
(8) sf(b) = sf (b(i0)).

Let (a) hold. Take d ∈ B such that d(j) = b(i0) for each j ∈ I. We have

b(i0) ∈ f−1(a(i0)) = f−1(a),

thus (a) implies

b(i0) ∈ A−
⋃

i∈I

Ui,

hence

(9) d = b(i0) ∈ T .
If j ∈ I, then we obtain

f(b(j)) = a = f(b(i0)) = f(d(j)),

i.e.,

(10) f(b) = f(d).

According to (8),

sf (b) = sf (b(i0)) = sf (d),

hence (9) and (10) yield that if (a) is valid, then (7) holds.

Suppose that (b) is valid. There is i1 ∈ I − {i} such that

min{sf (b(j)) : j ∈ J − {i}} = sf (b(i1)).

Then

(11) sf(b) = min{sf(b(j)) : j ∈ J} � sf (b(i1)).
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We have f(b(i1)) = a, hence b(i1) ∈ Ui. Let d ∈ B be such that

d(j) =

{
b(i1) if j ∈ I − {i},
ψy(b(i1)) if j = i.

Then d ∈ T and if j ∈ I − {i},

f(d(j)) = f(b(i1)) = a = f(b(j)),

f(d(i)) = f(ψy(b(i1)) = ψy(f(b(i1))) = ψy(a) = f(b(i)).

Thus

(12) f(d) = f(b), d ∈ T .
Further, according to (11),

sf (b) � sf (b(i1)) � min{sf(b(i1)), sf (ψy(b(i1)))} = sf (d),

which implies that (7) is valid, which completes the proof. �

1.7. Corollary. If A is DR-irreducible, k ∈ �, x ∈ Vk(A), then card f−1(x) � 2.

1.8. Corollary. If A is DR-irreducible and x ∈ A, then card f−1(x) � 2.

�����. The assertion follows from 1.7 and 1.3. �

2. Chains

In 2.1–2.8 we suppose that cardV1(A) � 1 and that card f−1(x) � 2 for each
x ∈ A.
2.1.1. Definition. Let a ∈ A. An indexed system {ai : i ∈ �} of elements of A

will be called an infinite a-chain, if

(1) ai /∈ C for each i ∈ �,
(2) a1 ∈ f−1(a) and sf (a1) � sf (x) for each x ∈ f−1(a),
(3) if i ∈ �, i > 1, then ai ∈ f−1(ai−1) and sf (ai) � sf (x) for each x ∈

f−1(ai−1).

2.1.2. Definition. Let a ∈ A, m ∈ �. An indexed system {a1, a2, . . . , am} of
elements of A will be called an m-element a-chain, if (1), (2) of 2.1.1 are valid and

(4) if i ∈ {1, . . . ,m}, i > 1, then a1 ∈ f−1(ai−1) and sf (ai) � sf (x) for each
x ∈ f−1(ai−1),

(5) f−1(am) = ∅.

688



2.1.3. Definition. Let a ∈ A. By an a-chain we will understand either an

infinite a-chain or an m-element a-chain for m ∈ �. The set of all a-chains will be
denoted by Ch(a).

2.2. Lemma. (a) Ch(a) �= ∅ for each a ∈ A− C.

(b) If A �= C, then there exists exactly one element c0 ∈ C such that Ch(c0) �= ∅.

�����. The relations cardV1(A) � 1 and card f−1(x) � 2 for each x ∈ A imply
the required assertions. �

2.3. Lemma. Suppose that A �= C and that D is a c0-chain, c0 ∈ C. Let

card(f−1(D)−D) � 2. Then A is DR-reducible.

�����. Let the assumption hold. Then

f−1(D)−D = {vi : i ∈ I}, card I � 2.

For i ∈ I let

Ai =
⋃

k∈�∪{0}
f−k(vi),

Bi = C ∪D ∪Ai.

Obviously, Bi is a subalgebra of A and Bi is a retract of A for each i ∈ I.
Let i ∈ I. There is j ∈ I − {i}. Denote u = f(vj). If f(vi) = u, then

card f−1(u) � 3 in A,

card f−1(u) = 2 in Bi.
(1.1)

If f(vi) �= u, then

card f−1(u) � 2 in A,

card f−1(u) = 1 in Bi.
(1.2)

Therefore A is not isomorphic to any subalgebra of Bi, hence

(2) A /∈ R(Bi) for each i ∈ I.
Denote

B =
∏

i∈I

Bi.
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If i ∈ I, then there is an endomorphism γi of A such that γi(Ai) ⊆ D, γi(x) = x for

each x ∈ A − Ai. If y ∈ C ∪ D, then we denote by y the element of B such that
y(i) = y for each i ∈ I. We set

T0 = {y : y ∈ C ∪D}.

If i ∈ I, then put

Ti = {b ∈ B : b(i) ∈ Ai, b(k) = γi(b(i)) for each k ∈ I − {i}}.

Let

T =
⋃

i∈I∪{0}
Ti.

We define a mapping ν : T → A as follows. If p ∈ T0, p = y, where y ∈ C ∪D, then
we put ν(p) = y. If p ∈ Ti, i ∈ I, then we put ν(p) = p(i). It can be easily shown
that ν is an isomorphism, thus

(3) A ∼= T .
Let us show that T is a retract of B. Let b ∈ f−1(T ). Then f(b) = t, where either
(a) there is y ∈ C ∪D with t(i) = y for each i ∈ I,

or

(b) there is i ∈ I, y ∈ Ai with

t(k) =

{
y if k = i,

γi(y) if k ∈ I − {i}.

First suppose that (a) is valid. Since f(b(i)) = t(i) = y for i ∈ I, we have

f−1(y) �= ∅, thus there is y1 ∈ f−1(y) ∩D. Denote z = y1. If i ∈ I, then

f(b(i)) = t(i) = y = f(y1) = f(z(i)),

i.e., f(b) = f(z). Further, if i ∈ I, then

sf(b(i)) � sf (z(i)),

hence sf (b) � sf (z). Therefore

(4) z ∈ T , f(z) = f(b), sf (b) � sf(z).
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Now let (b) hold. Take z ∈ B such that

z(k) =

{
b(i) if k = i,

γi(b(i)) if k ∈ I − {i}.

Then z ∈ Ti ⊆ T . We have
f(z(i)) = f(b(i))

and, if k ∈ I − {i}, then

f(z(k)) = f(γi(b(i)) = γi(f(b(i)) = γi(t(i)) =

= γi(y) = t(k) = f(b(k)).

Hence f(z) = f(b). Further, since γi is a homomorphism, we get

sf (b) � sf (b(i)) � min{sf(b(i)), sf (γi(b(i)))} = sf (z).

Thus if (b) is valid, then (1) is valid as well. According to (Thm), T is a retract

of B, therefore A is DR-reducible. �

In the following notation assume that distinct symbols denote distinct elements.

2.4. Notation. Let δ ∈ �, m ∈ �, τ1, τ2, . . . , τm ∈ � ∪ {ℵ0}, k1, . . . , km−1 ∈ �,

kl � τl for each l ∈ {1, 2, . . . ,m− 1}. Let

D0 = {d01, d02, . . . , d0,δ}.

If l ∈ {1, . . . ,m} and τl ∈ �, then denote Il = {1, 2, . . . , τl}, and if l ∈ {1, . . . ,m}
and τl = ℵ0, then Il = �. Further put

Dl = {dlj : j ∈ Il}

and let
D = D0 ∪D1 ∪ . . . Dm.

Now let us define a unary operation f on D as follows:

f(dlj) =





dl,j−1 if l ∈ {1, . . . ,m}, j ∈ Il − {1},
dl−1,kl−1 if l ∈ {2, . . . ,m}, j = 1,
d01 if (l, j) ∈ {(1, 1), (0, δ)},
d0,j+1 if l = 0, j ∈ {1, . . . , δ − 1}.

The monounary algebra (D, f) defined above will be denoted by the symbol

D(δ;m; τ1, k1; τ2, k2; . . . ; τm).

(For the case D = D(2; 4; 3, 2; 5, 1; 3, 2; 1) cf. Fig. 1.)
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d32 d33

d41�
Fig. 1

2.5. Lemma. Suppose that A �= C and that A is DR-irreducible. Then
(i) there are δ,m, τ1, . . . , τm, k1, . . . , km−1 such that

A ∼= D(δ;m; τ1, k1; . . . ; τm−1, km−1; τm),

(ii) τl−1 � τl + kl−1 for each l ∈ {2, . . . ,m}.

�����. Let A �= C, A be DR-irreducible. We denote elements of A by the

symbols dlj . The algebraA contains the cycle C with cardC = n; put δ = n, D0 = C.
By 2.2 there is exactly one element c0 of C with Ch(c0) �= ∅; denote it by d01 and
let D1 ∈ Ch(c0), τ1 = cardD1. Further denote d02 = f(d01), . . . , d0δ = f(d0,δ−1).

Under an appropriate notation we have

D1 = {d1j : j ∈ I1}, card I1 = τ1,

f(d1j) =

{
d1,j−1 for j ∈ I1 − {1},
d01 if j = 1.

By 2.3, card(f−1(D1)−D1) � 1.
Let us construct the sets Dm by induction. Let m ∈ �, m > 1 and suppose that

for each m1 ∈ �, m1 < m

(2) Dm1 = {dm1j : j ∈ Im1} is defined, cardDm1 = τm1 ,
(3) f(dm1j) = dm1,j−1 for each j ∈ Im1 − {1},

f(dm1,1) = dm1−1,km1−1 for some km1−1 ∈ Im1−1,
(4) card(f−1(Dm1)−Dm1) � 1.

If f−1(Dm−1)−Dm−1 = ∅, then

A = D(δ;m− 1; τ1, k1; . . . ; τm−2, km−2; τm−1).
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Thus suppose that

card(f−1(Dm−1)−Dm−1) = 1;

denote {dm1} = f−1(Dm−1) − Dm−1. Then there is km−1 ∈ Im−1 with f(dm1) =
dm−1,km−1 . If f

−1(dm1) = ∅, then put Im = {1} and then

A = D(δ;m; τ1, k1; . . . ; τm−1, km−1; 1).

If f−1(dm1) �= ∅, then there exists a dm1-chain, we can denote it by

Dm = {dmj : j ∈ Im}, card Im = τm,

thus (2) and (3) are valid for m. By way of contradiction, suppose

(5) card(f−1(Dm)−Dm) � 2.
Let

f−1(Dm)−Dm = {al : l ∈ L}, cardL � 2

and denote

E =
m⋃

j=0

Dm.

For l ∈ L let

Al =
⋃

j∈�∪{0}
f−j(al),

Bl = E ∪Al.

Then Bl is a retract of A for each l ∈ L, and A /∈ R(Bl) for each l ∈ L. It can be

proved analogously as in 2.3 that

A ∈ R
(∏

l∈L

Bl

)

and that A is DR-reducible, which is a contradiction, thus (5) fails to hold.

Let l ∈ �, l > 1. If card Il−1 = ℵ0, then obviously

card Il−1 � card Il + kl−1.

Suppose that card Il−1 = α < ℵ0. Then

Dl−1 = {dl−1,1, dl−1,2, . . . , dl−1,α},
f−1(dl−1,α) = ∅.
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Since Dl−1 is a dl−1,1-chain, we obtain

(6) sf(dl−1,1) = α− 1,
(7) sf(dl−1,kl−1−1) = α− (kl−1 + 1).

Further, we have

f(dl1) = dl−1,kl−1 = f(dl−1,kl−1+1), sf (dl1) � sf (dl−1,kl−1+1),

hence

(8) sf(dl1) � α− (kl−1 + 1).

This relation yields that the set Il is finite and that

(9) sf(dl1) = card Il − 1.
By (8) and (9) we get

card Il + kl−1 = sf (dl1) + 1 + kl−1 � α = card Il−1.

Thus we have proved that the relation (ii) is valid.
According to (ii) we obtain

(10) τ1 > τ2 > τ3 > . . .,

therefore the chain (10) is finite. Thus there is m ∈ � such that

A = D(δ;m; τ1, k1; . . . ; τm−1, km−1; τm).

�

2.6. Lemma. Let
A = D(δ;m; τ1, k1; . . . ; τm)

and let (ii) of 2.5 hold. Suppose that m � 3 and that there is l ∈ {2, . . . ,m − 1}
with τl−1 = τl + kl−1. Then A is DR-reducible.

�����. Let the assumption hold. Denote

B1 = A−Dl−1,

B2 = A− (Dl+1 ∪ . . . ∪Dm).

The assumption yields

(1) sf(dl1) = τl − 1 = τl−1 + kl−1 − 1 = sf (dl−1,kl−1+1),

hence (Thm) implies

(2) B1 ∈ R(A).
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Obviously,

(3) B2 ∈ R(A).
Since A is not isomorphic to any subalgebra of B1 or B2, we get

(4) A /∈ R(B1), A /∈ R(B2).
The proof that

A ∈ R(B1 × B2)

is analogous to that of 2.3. Therefore A is DR-reducible. �

2.7. Lemma. Let
A = D(δ;m; τ1, k1; . . . ; τm)

and let (ii) of 2.5 hold. Suppose that m � 2 and
(1) τm−1 = τm + km−1.

Then A is DR-reducible.

�����. Let the assumption hold. By 2.5 and 2.6 it suffices to assume

(2) τl−1 > τl + kl−1 for each l ∈ {2, . . . ,m− 1}.
Denote

B1 = D0 ∪D1,
B2 = A−Dm,

B = B1 ×B2.

Then

(3) B1 ∈ R(A), B2 ∈ R(A),
(4) A /∈ R(B1), A /∈ R(B2).

There is an endomorphism ψ of A such that ψ(A) ⊆ D0 and ψ(dm−1,km−1) = d01.

Define a mapping ν : A → B as follows. If x ∈ A −Dn, then put ν(x) = (ψ(x), x).
If x = dmj ∈ Dm, j ∈ {1, . . . , τm}, then put

ν(x) = (d1j , dm−1,km−1+j).

We obtain ν(dm1) = (d11, dm−1,km−1+1), . . . , ν(dmτm) = (d1τm , dm−1,km−1+τm) =

= (d1τm , dm−1,τm−1) by (1), thus ν is correctly defined. Obviously, ν is injective.
Put T = ν(A). Then ν is an isomorphism, since

(a) if x ∈ A−Dn, then f(x) ∈ A−Dn and ν(f(x)) = (ψ(f(x)), f(x)) =
= (f(ψ(x)), f(x)) = f(ν(x)),
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(b) ν(f(dm1)) = ν(dm−1,km−1) = (ψ(dm−1,km−1), dm−1,km−1) =

= (d01, dm−1,km−1) = f((d11, dm−1,km−1+1)) = f(ν(dm1)),
(c) if j ∈ {2, . . . , τm}, then ν(f(dmj)) = ν(dm,j−1) =

= (d1,j−1, dm−1,km−1+j−1) = f((d1j , dm−1,km−1+j)) = f(ν(dmj)).

Let us show that T is a retract of B. Let b ∈ f−1(T ). Denote f(b) = t. Then either
(5.1) t = (ψ(x), x) for some x ∈ A−Dn,

or

(5.2) t = (dij , dm−1,km−1+j) for some j ∈ {1, . . . , τm}.
Let (5.1) hold. Put z = (ψ(b(2)), b(2)). Then z ∈ T ,

sf (z) = min{sf(z(1)), sf (z(2))} = sf (b(2)) � sf (b).

Further,

f(z) = (f(ψ(b(2))), f(b(2))) = (ψ(f(b(2)), f(b(2))) = (ψ(x), x) = t = f(b).

Suppose that (5.2) is valid. Then b(1) ∈ f−1 (d1j) �= ∅, i.e., j < τ1, d1,j+1 ∈ f−1(d1j).
Similarly, b(2) ∈ f−1(dm−1,km−1+j) = {dm−1,km−1+j+1}. Denote

z = (d1,j+1, dm−1,km−1+j+1).

Then z ∈ T ,

f(z) = (f(d1,j+1), f(dm−1,km−1+j+1)) = (d1j , dm−1,km−1+j) = t = f(b),

sf (z) = min{sf(z(1)), sf (z(2))} = sf (z(2)) = sf (b(2)) � sf (b).

Therefore T is a retract of B and A is DR-reducible. �

2.8. Corollary. Suppose that A �= C and that A is DR-irreducible. Then there
are δ,m, τ1, . . . , τm, k1, . . . , km−1 such that the following conditions are valid:

(a) A ∼= D (δ;m; τ1, k1; . . . ; τm−1, km−1; τm);
(b) either (i) m = 1, or (ii) m > 1 and

(1) τl−1 > τl + kl−1 for each l ∈ {2, . . . ,m}.

Remark. Notice that if m > 1, then τ1 > τ2, thus τ2 �= ℵ0. Further, (1) implies
τl > kl for each l ∈ {1, . . . ,m− 1}.
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2.9. Theorem. Let A be a connected monounary algebra possessing a cycle C.
The following conditions are equivalent:

(i) A is DR-irreducible;
(ii) either A = C or there are δ ∈ �, m ∈ �, τ1 ∈ � ∪ {ℵ0}, τ2, . . . , τm,

k1, . . . , km−1 ∈ � such that A ∼= D(δ;m; τ1, k1; . . . ; τm−1, km−1; τm),

where either

(1) m = 1

or

(2) m > 1 and τl−1 > τl + kl−1 for each l ∈ {2, . . . ,m}.

�����. Let (i) hold. By 1.8, card f−1(x) � 2 for each x ∈ A. Then 2.8 implies
that (ii) is valid.

Suppose that (ii) holds. If A = C, then obviously A is DR-irreducible. Let A �= C,
m = 1. If M is a retract of A, M �= A, then M = C. By multiplying of cycles we

cannot get an algebra with a subalgebra isomorphic to A, hence A is DR-irreducible.

Let (2) hold. By way of contradiction, assume that A is retract reducible. There
are monounary algebras Bλ, λ ∈ L such that
(3) A ∈ R

( ∏
λ∈L

Bλ

)
,

(4) Bλ ∈ R(A) for each λ ∈ L,
(5) A /∈ R(Bλ) for each λ ∈ L.

Without loss of generality we can suppose that Bλ is a retract of A for each λ ∈ L
and that ∼= in (ii) is equality. By (3) there is an isomorphism ν of A onto some

retract M of
∏

λ∈L

Bλ. Denote b ∈ ν(dmτm). Since f
−1(dmτm) = ∅, there is λ1 ∈ L

such that f−1(b(λ1)) = ∅. Hence
(6) b(λ1) ∈ {d1τ1 , . . . , dmτm}.

Let β = τm + km−1 + . . .+ k1. Then

fβ(dmτm) ∈ C,

thus fβ(b) belongs to a cycle of M , i.e., fβ(b(λ)) belongs to a cycle of Bλ for each
λ ∈ L. We have according to (2) that
(7) fβ(djτj ) /∈ C for each j ∈ {1, . . . ,m− 1},

therefore

(8) b(λ1) = dmτm .
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Since each retract of A which contains dmτm coincides with A, we obtain that

Bλ1 = A,

a contradiction to (5). �

2.10. Example. The algebra

A = D(2; 4; 10, 1; 8, 2; 5, 2; 2)

is retract irreducible, because we have m = 4 > 1, 10 > 8 + 1, 8 > 5 + 2, 5 > 2 + 2.

�
Fig. 2
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