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METHODS OF OSCILLATION THEORY OF HALF-LINEAR

SECOND ORDER DIFFERENTIAL EQUATIONS

Ondřej Došlý*, Brno

(Received November 18, 1998)

Abstract. In this paper we investigate oscillatory properties of the second order half-linear
equation

(∗) (r(t)Φ(y′))′ + c(t)Φ(y) = 0, Φ(s) := |s|p−2s.

Using the Riccati technique, the variational method and the reciprocity principle we estab-
lish new oscillation and nonoscillation criteria for (*). We also offer alternative methods of
proofs of some recent oscillation results.

Keywords: half-linear equation, Riccati technique, variational principle, reciprocity prin-
ciple, principal solution, oscillation and nonoscillation criteria
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1. Introduction

The aim of this paper is to discuss the application of various methods in the

oscillation theory of half-linear second order differential equations

(1) (r(t)Φp(y′))′ + c(t)Φp(y) = 0, Φp(s) = |s|p−2s, p > 1,

where the functions r, c are continuous and r(t) > 0.

It is known, see Elbert, Mirzov [8, 20], that the oscillation theory of (1) is very
similar to that of the Sturm-Liouville linear equation

(2) (r(t)y′)′ + c(t)y = 0

*Author was supported by grants no. 201/96/0410 and 201/98/0677 of the Czech Grant
Agency.
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which is the special case p = 2 of (1). In particular, the Sturmian separation and

comparison theory extends in a natural way to (1).
In the last decade, considerable effort has been made to generalize the linear

oscillation and nonoscillation criteria to (1), see e.g. [3, 4, 7, 9, 14, 15, 16, 18] and

the reference given therein. These investigations were mostly based on the so-called
Riccati technique consisting in the fact that if y is a nonzero solution of (1) then

w(t) = r(t)Φ(y′)
Φ(y) solves the Riccati type differential equation

(3) w′ + c(t) + (p− 1)r1−q(t)|w|q = 0, q =
p

p− 1 .

Another method in the oscillation theory of (1), established only recently, see

[13, 17, 19], consists in the relationship between the disconjugacy of (1) (i.e. the
nonexistence of a nontrivial solution with two or more zeros in an interval under

consideration) and the positivity of the functional

(4) F(y; a, b) =
∫ b

a

[r(t)|y′|p − c(t)|y|p] dt.

More precisely, equation (1) is disconjugate in [a, b] if and only if F(y; a, b) > 0 for
every nontrivial y ∈ W 1,p(a, b) with y(a) = 0 = y(b).

Finally, the third method we are going to discuss in the paper is the so-called
reciprocity principle (this terminology comes from the linear case). If we denote

u := r(t)Φp(y′), where y is a solution of (1) and c(t) > 0 in (1), then by a direct
computation one can verify that u solves the so-called reciprocal equation

(5)
(
c1−q(t)Φq(u′)

)′
+ r1−q(t)Φq(u) = 0, Φq(s) := |s|q−2s.

Conversely, if y = c1−q(t)Φq(u′), then this function satisfies the original equation (1).
We will show by an elementary argument that (1) is oscillatory if and only if (5) has

this property and then we will use this fact in order to offer alternative proofs of
some known oscillation and nonoscillation criteria for (1).

2. Riccati technique

In this section we extend the linear Wintner nonoscillation criterion to (1). This

criterion claims that if
∫∞

r−1(t) dt = ∞ and
∫∞

c(t) dt converges, then the linear
Sturm-Liouville equation (2) is nonoscillatory provided

lim sup
t→∞

(∫ t

r−1(s) ds

)( ∫ ∞

t

c(s) ds

)
<
1
4
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and

lim inf
t→∞

( ∫ t

r−1(s) ds

)( ∫ ∞

t

c(s) ds

)
> −3
4
.

Similar sufficient conditions for nonoscillation of (2) can be formulated also in the
case when

∫∞
r−1(t) dt < ∞.

Theorem 1. Suppose that
∫∞

r1−q(t) dt = ∞ and
∫∞

c(t) dt = lim
b→∞

∫ b
c(t) dt

converges. If

lim sup
t→∞

( ∫ t

r1−q(s) ds

)p−1( ∫ ∞

t

c(s) ds

)
<
1
p

(p− 1
p

)p−1
,(6)

lim inf
t→∞

( ∫ t

r1−q(s) ds

)p−1( ∫ ∞

t

c(s) ds

)
> −2p− 1

p

(p− 1
p

)p−1
(7)

then (1) is nonoscillatory.

�����. We will find a solution of the Riccati type inequality

(8) v′ � −c(t)− (p− 1)r1−q(t)|v|q

which is extensible up to ∞, i.e. it exists on some interval [T,∞). Then, if w is the
solution of (3) given by the initial condition w(T ) = v(T ), this solution satisfies the
inequality w(t) � v(t) for t � T . Hence it also exists on [T,∞) and this means that
(1) is nonoscillatory.
To find the solution v of (8) we show that there exists an extensible up to ∞

solution of the differential inequality

(9) �′ � (1− p)r1−q(t)|�+ C(t)|q, C(t) :=
∫ ∞

t

c(s) ds

related to (8) by the substitution � = v − C. This solution � is

�(t) = β

( ∫ t

r1−q(s) ds

)1−p

, β :=
(p− 1

p

)p

.

Indeed, �′ = (1− p)βr1−q(t)
( ∫ t

r1−q(s) ds
)−p
and the right-hand side of (9) is

(1− p)r1−q(t)|�+ C(t)|q = (1− p)r1−q(t)

∣∣∣∣β
(∫ t

r1−q

)1−p

+ C(t)

∣∣∣∣
q

= (1− p)r1−q(t)

∣∣∣∣β +
(∫ t

r1−q

)p−1
C(t)

∣∣∣∣
q(∫ t

r1−q

)(1−p)q

= (1− p)r1−q(t)

∣∣∣∣β +
(∫ t

r1−q

)p−1
C(t)

∣∣∣∣
q(∫ t

r1−q

)−p

.
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Consequently, (9) is equivalent to the inequality

(10) β �
∣∣∣∣β +

( ∫ t

r1−q

)p−1
C(t)

∣∣∣∣
q

.

However, since (6) and (7) hold, there exists ε > 0 such that

−2p− 1
p

(p− 1
p

)p−1
+ ε <

( ∫ t

r1−q

)p−1
C(t) <

1
p

(p− 1
p

)p−1
− ε

for large t and by a direct computation it is not difficult to verify that (10) really
holds. �

The following theorem completes the previous statement and deals with the “com-
plementary” case

∫∞
r1−q(t) dt < ∞.

Theorem 2. Suppose that
∫∞

r1−q(t) dt < ∞. If

lim sup
t→∞

( ∫ ∞

t

r1−q(s) ds

)p−1( ∫ t

c(s) ds

)
<
1
p

(p− 1
p

)p−1

and

lim inf
t→∞

( ∫ ∞

t

r1−q(s) ds

)p−1( ∫ t

c(s) ds

)
> −2p− 1

p

(p− 1
p

)p−1
,

then (1) is nonoscillatory.

�����. One can show in the same way as in the previous proof that the function

�(t) = −β

( ∫ ∞

t

r1−q(s) ds

)1−p

, β =
(p− 1

p

)p

satisfies the inequality

�′ � (1− p)r1−q(t)
∣∣�− C̃(t)

∣∣q, C̃(t) =
∫ t

c(s) ds,

which implies that v = �− C̃ satisfies the Riccati inequality (8). �

660



3. Variational principle

The relationship between the disconjugacy of (1) in [a, b] and the positivity of the

functional F(y; a, b) over W 1,p
0 (a, b) given in the first section shows that to prove

oscillation of (1), it suffices to construct, for any T ∈ � sufficiently large, a nontrivial
function y ∈ W 1,p(T,∞) with compact support in (T,∞), such that F(y;T,∞) � 0.
On the other hand, (1) is nonoscillatory provided we show that there exists T ∈ �

such that F(y;T,∞) > 0 for every y ∈ W 1,p(T,∞) with supp ⊂ [T,∞).
The variational approach was used e.g. in [4], where we proved, among other,

that (1) is nonoscillatory provided
∫∞

r1−q(t) dt =∞ and

(11) lim sup
t→∞

(∫ t

r1−q(s) ds

)p−1( ∫ ∞

t

c+(s) ds

)
<
1
p

(
p− 1

p

)p−1
,

where c+(t) = max{0, c(t)}. Clearly, (11) is a particular case of the criterion (6), (7)
since the nonoscillation of

(r(t)Φ(y)′)′ + c+(t)Φ(y) = 0

implies by the Sturmian comparison theorem the nonoscillation of (1). The proof of

this statement is based on the Wirtinger-type inequality

(12)
∫ ∞

T

|M ′(t)||y|p dt � pp

∫ ∞

T

Mp(t)
|M ′(t)|p−1 |y

′|p dt,

where M is a differentiable function with M ′ �= 0 on [T,∞), which holds for every
y ∈ W 1,p(T,∞), supp y ⊂ (T,∞). Note also that the nonoscillation criterion (11)
is not actually new and was proved for the first time in [15] by using the Riccati
technique.

As a first statement of this section we prove via the variational technique the
following variant of Theorem 3.5 of [14] which is in [14] proved using the Riccati

technique.

Theorem 3. Suppose that
∫∞

r1−q(t) dt < ∞, denote R(t) =
∫∞

t
r1−q(s) ds and

suppose that ∫ ∞
c(t)Rp(t) dt

converges. If

(13) lim inf
t→∞

1
R(t)

∫ ∞

t

c(s)Rp(s) ds > 1
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then (1) is oscillatory. Moreover, if c(t) � 0 for large t then the statement remains

valid if lim inf in (13) is replaced by lim sup.

�����. Let T ∈ � be arbitrary and T < t0 < t1 < t2 < t3 (these points
will be specified later). Here and also in the remaining part of the paper we do

not sometimes write explicitly the integration variable in an integral if no ambiguity
may arise, i.e. we write e.g.

∫ t

t0
r1−q instead of

∫ t

t0
r1−q(s) ds. Define a function

y ∈ W 1,p(T,∞) as follows:

y(t) =





0, T � t � t0,

f(t), t0 � t � t1,

h(t), t1 � t � t2,

g(t), t2 � t � t3,

0, t3 � t < ∞,

where h(t) =
∫∞

t r1−q(s) ds = R(t),

f(t) =

( ∫ t

t0

r1−q(s) ds

)
R(t1)∫ t1
t0

r1−q
, g(t) =

( ∫ t3

t

r1−q(s) ds

)
R(t2)∫ t3
t2

r1−q
.

Then using the fact that f , g, h are solutions of the equation (rΦ(y′))′ = 0 satisfying

f(t0) = 0, f(t1) = h(t1), g(t2) = h(t2), g(t3) = 0, we have

∫ t3

t0

r(t)|y′|p dt = r(t)f(t)Φ(f ′(t))|t1t0 + r(t)h(t)Φ(h′(t))|t2t1 + r(t)g(t)Φ(g′(t))|t3t2

= R(t1)

[
Rp−1(t1)(∫ t1
t0

r1−q
)p−1 + 1

]
+R(t2)

[
−1 + Rp−1(t2)(∫ t3

t2
r1−q

)p−1

]
.

Since the functions f/h, g/h are monotone in (t0, t1) and (t2, t3), respectively (this

can be verified directly or using the same argument as in [5]), by the second mean
value theorem of the integral calculus there exist ξ1 ∈ (t0, t1), ξ2 ∈ (t2, t3) such that

∫ t1

t0

c(t)fp(t) dt =
∫ t1

t0

c(t)hp(t)
(f(t)

h(t)

)p

dt =
∫ t1

ξ1

c(t)hp(t) dt

and ∫ t3

t2

c(t)gp(t) dt =
∫ ξ2

t2

c(t)hp(t) dt.
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Consequently,
∫ t3

t0
c(t)yp(t) dt =

∫ ξ2
ξ1

c(t)hp(t) dt. Combining the above given compu-
tations, we get

F(y; t0, t3) = R(t1)

{
Rp−1(t1)(∫ t1
t0

r1−q
)p−1 + 1 +

R(t2)
R(t1)

[
−1 + Rp−1(t2)(∫ t3

t2
r1−q

)p−1

]

− 1
R(t1)

∫ ξ2

ξ1

chp dt

}

� R(t1)

{
Rp−1(t1)(∫ t1
t0

r1−q
)p−1 + 1 +

Rp−1(t2)(∫ t3
t2

r1−q
)p−1 +

1
R(ξ1)

∫ ξ2

ξ1

c(t)hp(t) dt

}

since
∫ ξ2

ξ1
c(t)hp(t) dt > 0 according to (8) if ξ1, ξ2 are sufficiently large.

Now, let ε > 0 be such that

lim inf
t→∞

1
R(t)

∫ ∞

t

c(s)hp(s) ds > 1 + 4ε.

This implies that t0 can be chosen in such a way that

(14) R−1(ξ)
∫ ∞

ξ

c(t)hp(t) dt > 1 + 3ε

whenever ξ > t0. The number t1 > t0 is taken such that

( ∫ ∞

t1

r1−q

)p−1( ∫ t1

t0

r1−q

)1−p

< ε.

The relation (14) implies that there exists t2 > t1 such that

R−1(ξ)
∫ t

ξ

c(s)hp(s) ds > 1 + 2ε

whenever t > t2. Finally, we fix t3 > t2 in such a way that

Rp−1(t2)

( ∫ t3

t2

r1−q

)1−p

< 1 + ε.

Summarizing all the estimates, we have

F(y; t0, t3) � R(t1){ε+ 1 + ε− (1 + 2ε)} � 0,
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which means that (1) is oscillatory. If c(t) � 0 for large t, then

∫ t3

t0

c(t)yp(t) dt =
∫ t1

t0

c(t)fp(t) dt+
∫ t2

t1

c(t)hp(t) dt+
∫ t3

t2

c(t)gp(t) dt

�
∫ t2

t1

c(t)hp(t) dt

and it is easy to see that ξ1, ξ2 do not come into play in this case and hence the

same proof as above can be realized if lim inf in (13) is replaced by lim sup. �

Using a slight modification of the method applied in the previous proof we have

the following statement.

Theorem 4. If
∫∞

r1−q(t) dt < ∞, then (1) is oscillatory provided

(15) lim inf
t→∞

( ∫ ∞

t

r1−q(s) ds

)p−1( ∫ t

c(s) ds

)
> 1.

Moreover, if c(t) � 0 then lim inf in (15) may be replaced by lim sup.

�����. Define the test function y by

y(t) =





0, T � t � t0,∫ t

t0
r1−q

( ∫ t1
t0

r1−q
)−1

, t0 � t � t1,

1, t1 � t � t2,∫ t3
t r1−q

( ∫ t3
t2

r1−q
)−1

, t2 � t � t3,

0, t3 � t < ∞.

Then in the case c(t) � 0 for large t we have similarly to the previous proof

F(y; t0, t3) �
(∫ t1

t0

r1−q

)1−p

+

(∫ t3

t2

r1−q

)1−p

+
∫ t2

t1

c(t) dt

=

(∫ t3

t2

r1−q

)1−p{(∫ t2
t1

r1−q

∫ t3
t2

r1−q

)p−1
+ 1 +

(∫ t3

t2

r1−q

)p−1[∫ t2

T

c(t) dt−
∫ t1

T

c(t) dt

]}

and taking t0 < t1 < t2 < t3 appropriately, we have F(y; t0, t3) < 0 provided (15)

holds with lim sup instead of lim inf. If the assumption c(t) � 0 for large t is not
satisfied, we use the second mean value theorem of integral calculus in computing∫ t1

t0
c(t)fp(t) dt and

∫ t3
t2

c(t)gp(t) dt and then we apply the same idea as in the proof
of Theorem 3. �
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Remark 1. (i) Comparing the Riccati and the variational method, a typical
feature is that the application of the variational principle gives “worse” oscillation
constant in the oscillation and nonoscillation criteria, but generally under less re-
strictive assumptions on the coefficient c in (1). For example, Kusano et al. [15]

proved that if
∫∞

r1−q(s) ds < ∞ and c(t) � 0 eventually, then (1) is oscillatory
provided

lim inf
t→∞

1
R(t)

∫ ∞

t

c(s)Rp(s) ds >
1
p

(p− 1
p

)p−1
=: Kp.

In Theorem 3 we have a bigger constant than Kp (this constant equals 1), but under
no sign restriction on the function c.

(ii) In our recent paper [7] we have proved that if
∫∞

r1−q(t) dt =∞, c(t) � 0 for
large t and there exists a function c̃ such that the equation

(16) (r(t)Φ(y′))′ + c̃(t)Φ(y) = 0

possesses an eventually positive solution h satisfying h′(t) > 0 for large t,

lim
t→∞

r(t)h(t)Φ(h′(t)) = L < ∞

exists and ∫ ∞
r(t)(h′(t))p dt =∞,

then (1) is oscillatory provided

(17) lim inf
t→∞

( ∫ t ds
r(s)h2(s)(h′(s))p−2

) ∫ ∞

t

(c(s)− c̃(s))hp(s) ds >
1
2q

.

In particular, if

c̃(t) =
γ

tp
, γ =

(p− 1
p

)p−1
, h(t) = t

p−1
p

then equation (1) with r ≡ 1 is oscillatory if

(18) lim inf
t→∞

lg t

∫ ∞

t

(
c(s)− γ

sp

)
sp−1 ds > K̃p :=

1
2

(p− 1
p

)p−1
.

This criterion was proved using the Riccati technique. In [4] it was proved, using the

variational principle, that (1) with r ≡ 1 (and without any sign restriction on the
function c) is oscillatory if (18) holds with the bigger constant 4K̃p. This is a partial

confirmation of the statement from the beginning of this remark that the Riccati
technique provides a better oscillation constant then the variational method.
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Using the variational method we can also prove the following modification of the

oscillation criterion (17). In this criterion, (1) is viewed as a perturbation of the
nonoscillatory equation (16). First let us recall the concept of the principal solution
of a nonoscillatory half-linear equation (1) introduced in [21] and rediscovered in the

recent paper [5] (an alternative approach based on the generalized Prüfer transfor-
mation can be found in [11]). If (1) is nonoscillatory, then among all solutions of the

associated Riccati equation (3) one can find a solution which is less than any other
extensible up to infinity solution and this solution is called (by the analogue with

linear case) a distinguished solution of (3). Now, having defined the distinguished
solution w of (3), the principal solution of (1) is defined as the solution which de-

termines this “Riccati” distinguished solution, i.e. as a solution of the first order
equation

y′ = rq−1(t)|w|q−1 sgnw y.

In the next theorem we use the following notation. Let h be the principal solu-
tion of (16) and let f , g be the solutions of this equation satisfying the boundary

conditions f(t0) = 0, f(t1) = h(t1), g(t2) = h(t2), g(t3) = 0 (we suppose that
t0 < t1 < t2 < t3 are sufficiently large so that the solutions f , g exist). Denote by

w(t, t0), wh(t) and w(t, t3) the solutions of the Riccati equation associated with (16)
corresponding to f , h, g, respectively, i.e.

(19) w(·, t0) =
rΦ(f ′)
Φ(f)

, wh(·) =
rΦ(h′)
Φ(h)

, w(·, t3) =
rΦ(g′)
Φ(g)

.

Theorem 5. Suppose that (16) is nonoscillatory and w(·, t0), wh are defined as

above. If

(20) lim inf
t0→∞

{
lim inf
t→∞

1
hp(t) [w(t, t0)− wh(t)]

∫ ∞

t

(c(s) − c̃(s))hp(s) ds

}
> 1

then (1) is oscillatory. Moreover, if c(t) � c̃(t) for large t, then lim inf in braces of
(20) can be replaced by lim sup.

�����. We proceed similarly as in the previous two theorems of this section.

We sketch the proof in the case c(t) � c̃(t) for large t. If this assumption is not
satisfied, we use again the second mean value theorem of integral calculus.
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Let T ∈ � be arbitrary and let T < t0 < t1 < t2 < t3 (these points will be again

specified later). Define the test function y by

y(t) =





0, T � t � t0,

f(t), t0 � t � t1,

h(t), t1 � t � t2,

g(t), t2 � t � t3,

0, t3 � t < ∞,

where the functions f , g, h are defined above. Then using the same computation as

in the proofs of Theorems 3 and 4 we have

F(y; t0, t3) =
∫ t3

t0

[r(t)|y′|p − c(t)|y|p] dt

= hp(t1) [w(t1, t0)− wh(t1)] + hp(t2) [wh(t2)− w(t2, t3)]

+
∫ t2

t1

(c(s)− c̃(s))hp(s) ds.

Denote further

G̃(t, t0) := hp(t)[w(t, t0)− wh(t)], H(t, t3) = hp(t)[wh(t)− w(t, t3)].

Then

F(y; t0, t3) = G̃(t1, t0)

{
1 +

H(t2, t3)

G̃(t1, t0)
+

1

G̃(t1, t0)

∫ t2

t1

(c(s)− c̃(s)) hp(s) ds

}

and (20) together with the fact that h is the principal solution of (16) (compare
[5, Theorem 1]) imply that t0 < t1 < t2 < t3 can be chosen in such a way that

F(y; t0, t3) < 0, which means that (1) is oscillatory. �

Remark 2. (i) Let p = 2, i.e. (16) reduces to the usual Sturm-Liouville linear

equation

(21) (r(t)y′)′ + c̃(t)y = 0.

Then, if this equation is nonoscillatory, t0, t̄0 are sufficiently large and G̃ is the same

as in the previous proof (with p = 2), we have

lim
t→∞

G̃(t, t0)

G̃(t, t̄0)
= 1, G̃(t, t0) ∼

y(t)
h(t)

as t →∞,

where y is any nonprincipal solution of (21). Consequently, in the linear case the

“lim inf
t0→∞

” operation can be omitted in (20) and the linear version of Theorem 5 reads

as follows:
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Corollary 1. Equation (2) is oscillatory provided

lim inf
t→∞

y(t)
h(t)

∫ ∞

t

(c(s)− c̃(s))h2(s) ds > 1,

where h, y are the principal and nonprincipal solutions of (21), respectively.

(ii) In the linear case the above ratio y(t)
h(t) can be expressed in the form

y(t)
h(t)

=
∫ t 1

r(s)h2(s)
ds.

If we compare this expression with (17), we see that the Riccati technique and the
variational method give the same factor

G(t) =
∫ t 1

r(s)h2(s)
ds

in oscillation (and also nonoscillation) criteria. It is an open problem whether in the
half-linear case we have the same situation. The only known (nontrivial) result along

this line is the case when r(t) ≡ 1 and c̃(t) = γ0
tp with γ0 =

(
p−1

p

)p−1
, i.e. (16) is

the generalized Euler equation with the critical coefficient γ0. Then both the Riccati

technique and the variational method give the same factor G(t) = lg t, see [4, 7].

4. Reciprocity principle

In this final short section we discuss the application of the reciprocity principle

mentioned in the introductory section in the oscillation theory of half-linear equa-
tions. This section actually contains no new results (comparing with the parts de-

voted to Riccati technique and variational principle), but shows how the reciprocity
principle can be used to “transfer” the oscillation/nonoscillation criteria for (1) as-
suming the divergence of the integral

∫∞
r1−q(t) dt to the case when this integral

converges. Throughout this section we suppose that c(t) > 0 for large t.
The statement that (1) is nonoscillatory if and only if the reciprocal equation

(22)
(
c1−q(t)Φq(u′)

)′
+ r1−q(t)Φq(u) = 0

is nonoscillatory is a simple consequence of the Rolle theorem of differential calculus.
Indeed, if y is an oscillatory solution of (1) then its derivative and hence also u =

rΦp(y′) oscillates. Conversely, if u oscillates then c1−q(t)Φq(u′) = −y oscillates as
well. This relationship between the oscillation of (1) and (22) can be viewed also
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from the following “Riccati point of view”. Equation (1) is nonoscillatory if and

only if there exists a solution w of Riccati-type equation (3) which is defined on
some interval [T,∞). The fact that r(t) > 0, c(t) > 0 for large t implies that w is
eventually monotone, i.e. eventually of one sign. Now, by a direct computation one

can verify that the function v = − 1
Φq(w)

satisfies the equation

v′ + r1−q(t) + (q − 1)c(t)|v|p = 0,

which is just the Riccati-type equation associated with (22), i.e. (1) is really nonoscil-
latory if and only if (22) has the same property.

Recall that if
∫∞

r1−q(t) dt =∞ and
∫∞

c(t) dt < ∞ then (1) is oscillatory if

(23) lim inf
t→∞

(∫ t

r1−q(s) ds

)p−1(∫ ∞

t

c(s) ds

)
> Kp :=

1
p

(p− 1
p

)p−1

and it is nonoscillatory if

(24) lim sup
t→∞

(∫ t

r1−q(s) ds

)p−1(∫ ∞

t

c(s) ds

)
< Kp,

see [14]. Now we will show how this statement can be reformulated via the reciprocity

principle for the case when
∫∞

r1−q(t) dt < ∞.

Theorem 6. Suppose that
∫∞

r1−q(t) dt < ∞. If

(25) lim inf
t→∞

(∫ ∞

t

r1−q(s) ds

)p−1(∫ t

c(s) ds

)
> Kp

then (1) is oscillatory and if

(26) lim sup
t→∞

(∫ ∞

t

r1−q(s) ds

)p−1(∫ t

c(s) ds

)
< Kp

then this equation is nonoscillatory.

�����. Let us apply (23) to the reciprocal equation (22). First observe that

(25) implies that
∫∞

c = ∞. Taking into account that p, q are mutually conjugate
numbers, i.e. (p− 1)(q − 1) = 1, we have

∫∞
c(1−q)(1−p) =

∫∞
c =∞, hence by (23)

equation (22) is oscillatory if

(27) lim inf
t→∞

(∫ t

c(s) ds

)q−1(∫ ∞

t

r1−q(s) ds

)
> Kq :=

1
q

(q − 1
q

)q−1
.
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Now, taking the (p−1)-th power of both sides of the last inequality, we see that (27)
is equivalent to

lim inf
t→∞

(∫ ∞

t

r1−q(s) ds

)p−1(∫ t

c(s) ds

)
> Kp−1

q = Kp

which we needed to prove.

Concerning the proof of the “nonoscillatory” part of the theorem, first consider the

case
∫∞

c(s) ds < ∞. If this happens, then we use the transformation of independent
variable

(28) s =
∫ t

r1−q(τ) dτ, x(s) = y(t)

which transforms (1) into the equation

(29)
d
ds

(
Φp

( d
ds

x
))
+ rq−1(t(s))c(t(s))Φp(x) = 0,

where t = t(s) is the inverse function of s = s(t) given by (28). The convergence of∫∞
r1−q(t) dt implies that the new variable s runs through a bounded interval where

(29) has no singularity, hence any solution of this equation has only a finite number
of zeros in this interval, which means that (1) is nonoscillatory. If

∫∞
c(t) dt = ∞

we proceed in the same way as in the first part of the proof and use (24) instead
of (23). �

At the end of this section let us discuss one open problem concerning the reciprocity
principle and the principal solutions of half-linear equations. In the linear case p = 2

it is known that if
∫∞

r−1(t) dt =∞ and equation (2) is nonoscillatory then the fact
that y is the principal solution of this equation implies that u = ry′ is the principal

solution of the reciprocal equation

( 1
c(t)

u′
)′
+
1

r(t)
u = 0;

for a more comprehensive treatment of this problem see [1, 2, 6].

We conjecture here that a similar statement holds also for half-linear equations,

namely, if
∫∞

r1−q(s) ds =∞ and y is the principal solution of (1) then u = rΦp(y′)
is the principal solution of the reciprocal equation (22).
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