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Abstract. We characterize real hypersurfaces with constant holomorphic sectional curva-
ture of a non flat complex space form as the ones which have constant totally real sectional
curvature.
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1. Introduction

The sectional curvature gives a lot of information of the intrinsic geometry of a
Riemannian manifold. For instance, manifolds which have constant sectional cur-
vature have been a great source of study. In complex manifolds, the holomorphic
sectional curvature and the totally real sectional curvature arise naturally and it is
very well-known that the constancy of holomorphic sectional curvature is equivalent
to the constancy of totally real sectional curvature. The main target of this paper is
to study whether this fact is inherited to real hypersurfaces of complex space forms
�Mm (c), c �= 0, with constant holomorphic sectional curvature c. Real hypersurfaces
with constant holomorphic sectional curvature of �Mm (c), c �= 0, m � 3, have been
classified by Kimura in [2] when c > 0, i.e., in the complex projective space �Pm (c),
and by the authors in [6] and [7] when c < 0, i.e., in the complex hyperbolic space
�Hm (c).
Let M be a connected real hypersurface of �Mm (c), c �= 0, N a local unit normal

vector field to M , If J is the almost complex structure of �Mm (c), c �= 0, we
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will denote ξ = −JN . Given a vector field X tangent to M , we will write JX =
ϕX + η(X)N , where ϕX and η(X)N are the tangential and the normal component
of JX respectively. We recall that M is ruled if the distribution � (p) = {X ∈
TpM : X ⊥ ξ}, p ∈ M , is integrable and its leaves are totally geodesic �Mm−1(c).
If π is a 2-plane included in � (p), where p ∈ M , we will say that π is totally real if

ϕπ is orthogonal to π. We denote by T (π) = T (X, Y ) the sectional curvature of any
totally real 2-plane π = Span{X, Y } included in � (p), p ∈ M , and we will call it the
totally real sectional curvature of M . If T (π) is constant for any π included in � (p)
and any p ∈ M , we will say that M has constant totally real sectional curvature. If
the complex dimension of the complex space form is m = 2, there are no totally real
2-planes tangent to M . Therefore, the totally real sectional curvature is meaningful
when m � 3.
We need to write c = 4ε/k2, where ε = ±1 is the sign of c and k �= 0 is a real

constant. Our results are:

Theorem. Let M be a real hypersurface of �Mm (c), c �= 0, m � 3, on which T

is constant. Then M is one of the following:
a) ruled, c = 4T ,
b) a real hypersurface which admits a foliation of codimension two such that each
leaf is contained in a totally geodesic �Mm−1 (c), c �= 0, as a ruled real hyper-
surface, c = 4T ,

c) if ε = 1, an open subset of a geodesic hypersphere of radius r > 0, i.e., an open

subset of a tube of radius r > 0 over a point, T = c
4 +

cot2(r)
k2 ,

d) if ε = −1 then M is an open subset of either

d.1) a tube of radius r > 0 over a totally geodesic �Mm−1 (c), c
4 < T = c

4 +
tanh2(r)

k2 < c
4 +

1
k2 ,

d.2) a Montiel tube, T = c
4 +

1
k2 ,

d.3) a geodesic hypersphere of radius r > 0, c
4 +

1
k2 < c

4 +
coth2(r)

k2 .

A 2-plane π tangent to M is called holomorphic if it admits an orthonormal basis
of the form {X, ϕX}. The holomorphic sectional curvature is the sectional curvature
of any holomorphic 2-plane tangent to M . We will denote it by H(π) = H(X). The
next corollary gives an affirmative answer to the main question of this paper.

Corollary. LetM be a real hypersurface of �Mm(c), c �= 0, m � 3. Then M has
constant holomorphic sectional curvature if and only if M has constant totally real
sectional curvature.
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2. Preliminaries

Let M be a real hypersurface of �Mm(c), c �= 0, m � 3. Let ∇ be the Levi-Civita
connection ofM . In the introduction we wrote JX = ϕX+ η(X)N for all X ∈ TM .
Thus, ϕ is a skew-symmetric tensor field of type (1,1) of M and η is a 1-form on
M . We will denote by g both the metric on �Mm (c) and the induced metric on M .
Now it is easy to see η(X) = g(X, ξ). The set (ϕ, ξ, η, g) is called an almost contact
metric structure on M and its elementary properties are

ϕ2X = −X + η(X)ξ, ϕξ = 0, η(ϕX) = 0(1)

g(ϕX, Y ) + g(X, ϕY ) = 0, g(ϕX, ϕY ) = g(X, Y )− η(X)η(Y )

for any X, Y ∈ TM , where A is the Weingarten endomorphism associated to N .
We will denote by U� (p) = {X ∈ TpM : g(X, ξ) = 0, ‖X‖ = 1}, p ∈ M . The
Gauss equation allows us to compute the following expressions of the totally real
and holomorphic sectional curvature of M

(2) T (X, Y ) =
c

4
+ g(AX, X)g(AY, Y )− g(AX, Y )2

where X, Y ∈ U� and g(X, Y ) = g(ϕX, Y ) = 0.

(3) H(X) = c+ g(AX, X)g(AϕX, ϕX)− g(AX, ϕX)2

for any X ∈ U� . Finally, we need the following results to prove ours.

Theorem 1. ([2]) Let M be a real hypersurface of �P m(c), c > 0, m � 3, which
has constant holomorphic sectional curvature H . Then M is one of the following
cases:

a) an open subset of a geodesic hypersphere, H > c,
b) ruled, H = c,
c) a real hypersurface which admits a foliation of codimension two such that each
leaf is contained in a totally geodesic hyperplane �P m−1(c) as a ruled real
hypersurface, H = c.

Theorem 2. ([6] and [7]) LetM be a real hypersurface of �Hm (c), c < 0, m � 3,
which has constant holomorphic sectional curvature H . Then M is one of the fol-
lowing cases:

a) an open subset of a geodesic hypersphere of radius r > 0, c + 1
k2 < H =

c+ coth
2(r)

k2 ,
b) an open subset of a Montiel tube, H = c+ 1

k2 ,
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c) an open subset of a tube of radius r > 0 over a hyperplane �Hm−1 (c), c < H =

c+ tanh
2(r)

k2 < c+ 1
k2 ,

d) ruled, H = c,
e) a real hypersurface which admits a foliation of codimension two such that each
leaf is contained in a totally geodesic hyperplane �Hm−1 (c) as a ruled real
hypersurface, H = c.

If p is a point of M , the rank of A at p is called the type number of M at p, and
it will be denoted by t(p).

Theorem 3. ([6] and [8]) LetM be a real hypersurface of �Mm (c), c �= 0, m � 3,
which satisfies t(p) � 2 for all p ∈ M . Then M is ruled.

Acknowledgements. The authors wish to thank the referee for their valuable
comments.

3. Proof of the Theorem

Let p be a point of M . Let X, Y, Z ∈ U� (p) such that Span{X, Y } and
Span{X, Z} are totally real and g(X, Z) = 0. There is a curve X(t), t ∈ (−δ, δ),
such that X(t) ∈ � (p), Span{Y, X(t)} is totally real, X(0) = X and X ′(0) = Z.
By (2)

d
dt |t=0

g(AX(t), Y )g(AY, Y )− g(AX(t), Y )2 = 0.

A straightforward computation shows

(4) 0 = g(AY, Y )g(AX, Z)− g(AX, Y )g(AY, Z)

for any X, Y, Z ∈ U� (p) such that Span{X, Y } and Span{Y, Z} are totally real, and
g(X, Z) = 0. In the sequel, we will denote by (∗)� the component of (∗) in � . Take
{ξ, E1, . . . , E2m−2} an orthonormal basis of TpM such that

(5) (AEi)� = aiEi i = 1, . . . , 2m− 2

where ai are functions on M . Choose i ∈ {1, . . . , 2m− 2}. If we substitute Y = Ei

in (4),

(6) 0 = aig(AX, Z)

where X, Z ∈ U� (p), Span{X, Z} ⊥ Span{Ei, ϕEi} and g(X, Z) = 0. Now we have
to discuss the following three cases:
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Case 1. At least two of the ai are not zero. We can suppose without losing any
generality that a1, a2 are not zero. Let (Ω) = {p ∈ M : a1(p) �= 0, a2(p) �=
0}. During this case, p ∈ (Ω) unless otherwise stated. From this and (6),
g(AX, Z) = 0 for any X, Z ∈ U� (p) such that g(X, Z) = 0 and Span{X, Z} is
orthogonal to Span{E1, ϕE1}. Therefore there exists a local orthonormal basis
{ξ, E1, ϕE1, F2, ϕF2, . . . , Fm−1, ϕFm−1} of T (Ω) such that

(AE1)� = a1E1, (AϕE1)� ∈ Span{E1}⊥ ∩ �(7)

(AFk)� ∈ Span{ϕE1, Fk}, (AϕFk)� ∈ Span{ϕE1, ϕFk}, k = 1, . . . , m− 1.

This shows rank(A|� ) � 2 on (Ω). By (2) and (7),

(8) 0 = g(AX, ϕE1)g(AZ, ϕE1)

for any X, Z ∈ U� (p) such that g(X, Z) = 0, Span{X, ϕE1} and Span{Z, ϕE1}
are totally real. Given X, Z ∈ U� (p) in these latter conditions, the vectors X ′ =
1√
2
(X + Z), Z ′ = 1√

2
(X − Z) satisfy the conditions of (8) and introducing them in

that formula, we obtain g(AX, ϕE1)2 = g(AZ, ϕE1)2. From this and (8) we see that
AϕE1 ∈ Span{ξ, ϕE1}. Now, bearing in mind (7), there exists a local orthonormal
basis {ξ, E1, ϕE1, . . . , Em−1, ϕEm−1} of T (Ω) such that

(9) (AEk)� = dkEk, (AϕEk)� = ekϕEk, k = 1, . . . , m− 1

where dk, ek are functions on (Ω). By (9), if we take X = Ej , Y = Ei, i �= j in (2)

(10) T − c

4
= djdi i �= j.

If we put X = ϕEj , Y = Ei, i �= j in (2), by (9)

(11) T − c

4
= ejdi i �= j.

And similarly, if X = ϕEi, Y = ϕEj

(12) T − c

4
= ejei i �= j.

Now we show 4T �= c. Indeed, if 4T = c, then from (10) and (12) we deduce that
there is a point q ∈ (Ω) such that at most one of the di and at most one of the ej are
not zero at q. Equations (11) yield i = j. We can suppose i = j = 1 without losing
any generality. Now we put X = 1√

2
(E1+E2) and Y = 1√

10
(2E1+ϕE1−2E2−ϕE2).

It is easy to check that Span{X, Y } is totally real. If we introduce X , Y in (2), by
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bearing (9) in mind, we obtain 0 = T (X, Y )− c
4 =

d1(q)e1(q)
20 , which yields d1(q) = 0

or e1(q) = 0. This means rank(A|� ) � 1, which is a contradiction.
Therefore, 4T − c �= 0, and introducing this in (10) and (11),

(13) 0 �= dj = ej j = 1, . . . , m− 1.

Choose i �= j. From (9) and (13), the orthonormal system {Ei, ϕEi, Ej , ϕEj} in
TpM , p ∈ (Ω), satisfies

(AEi)� = diEi, (AϕEi)� = diϕEi(14)

(AEj)� = djEj , (AϕEj)� = djϕEj .

If α = 1/
√
3, β =

√
2/3, we consider the vectors

(15) X = αEi + βEj , Y = βEi − αEj , Z = βϕEi − αϕEj .

It is clear that X, Y, Z ∈ U� (p) and Span{X, Y }, Span{X, Z} are totally real. From
(2), (14) and (15) it is easy to compute T (X, Y )− c

4 =
2d2i+5didj+2d

2
j

9 − 2(di−dj)
2

9 and

T (X, Y )− c
4 =

2d2i+5didj+2d
2
j

9 . Now it is evident di = dj if i �= j. From this and (13),

(16) d1 = . . . = dm−1 = e1 = . . . = em−1 = d.

From (10), we see that d must be constant. Besides, d cannot be zero as rank(A|� ) �
2 on (Ω). By (9) and (16) we have

(17) (AX)� = dX, for any X ∈ � (p), any p ∈ (Ω) (d ∈ � − {0}).

If we choose X ∈ U� (p), p ∈ (Ω), by (3) and (17), H(X) = c+d2 > c, which implies
that (Ω) has constant holomorphic sectional curvature. Therefore (Ω) is case a) of
Theorem 1 or case a), b) or c) of Theorem 2.
In the sequel, we can suppose that the interior of the set (Γ) = {p ∈ M : a1(p) =

0 or a2(p) = 0} is non-empty.

Case 2. Let us suppose a1 = . . . = a2m−1 = 0 on an open subset (Ω) of M , which
can be supposed to be included in (Γ). By (5), t(p) � 2 on (Ω). By Theorem 3, (Ω)
is a ruled real hypersurface. Bearing in mind that M is connected and by a similar
reasoning as in Theorem 1, case (A) in [2], we see M = (Ω), and therefore M is
ruled. By definition, � is integrable and totally geodesic in M , so that if X, Y ∈ � ,
then ∇XϕY ∈ � , that is to say, 0 = g(ξ,∇XϕY ). By (2), 0 = g(∇Xξ, ϕY ) =
g(ϕAX, ϕY ) = g(AX, Y ) for any X, Y ∈ � . From this equation and (2), it is clear
T (X, Y ) = c/4, which shows that M has constant totally real sectional curvature.
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Case 3. Let us suppose that exactly one of the ai �= 0 and all the other ak are zero.
We can suppose without losing any generality i = 1. Let (Ω) be the open subset of
M where a1 �= 0, which can be supposed to be included in (Γ). During this case,
p ∈ (Ω) unless otherwise stated. From (5), we obtain

(18) (AX)� = a1g(X, E1)E1

for any X ∈ � in a neigbourhood of each point p ∈ (Ω). By (2) and (18), H(X) = c

for any X ∈ U� (p) and any p ∈ (Ω). By Theorem 1 and Theorem 2, either (Ω) is
ruled or (Ω) admits a foliation of codimension two such that each leaf is contained
in a totally geodesic hyperplane �Mm−1 (c) as a ruled hypersurface. As a1 �= 0,
t(p) � 3 on (Ω), and by Theorem 3, (Ω) cannot be ruled. Bearing in mind that M

is connected and by a similar reasoning as in Theorem 1, case (B) in [2], (Ω) = M

and therefore M is either case c) of Theorem 1 or case e) of Theorem 2.
Finally, all model spaces of Theorem 1 and Theorem 2 have constant totally real

sectional curvature. This finishes the proof. �
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