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TRANSFORMATIONS z(t) = L(t)y(ϕ(t)) OF ORDINARY

DIFFERENTIAL EQUATIONS

Václav Tryhuk, Brno

(Received April 29, 1997)

Abstract. The paper describes the general form of an ordinary differential equation of
an order n + 1 (n � 1) which allows a nontrivial global transformation consisting of the
change of the independent variable and of a nonvanishing factor. A result given by J. Aczél
is generalized. A functional equation of the form

f

(
s, w00v0, . . . ,

n∑

j=0

wnjvj

)
=

n∑

j=0

wn+1jvj + wn+1n+1f(x, v, v1, . . . , vn),

where wn+10 = h(s, x, x1, u, u1, . . . , un), wn+11 = g(s, x, x1, . . . , xn, u, u1, . . . , un) and
wij = aij(x1, . . . , xi−j+1, u, u1, . . . , ui−j) for the given functions aij is solved on �, u �= 0.
Keywords: ordinary differential equations, linear differential equations, transformations,

functional equations

MSC 2000 : 34A30, 34A34, 39B40

1. Introduction

The theory of global pointwise transformations z(t) = L(t)y(ϕ(t)) of homogeneous

linear differential equations was developed in the monograph [5] by F. Neuman (see
historical remarks, definitions, results and applications). Transformations z(t) =

y(ϕ(t)) were studied in [6] as a “motion” for n-th order linear differential equations.
A general form

y′′(x) = b(y(x))y′(x)2 + p(x)y′(x)

This research has been conducted at the Department of Mathematics as part of the
research project “Qualitative Behaviour of Solutions of Functional Differential Equations
Describing Mathematical Models of Technical Phenomena” and has been supported by
CTU grant no. 460078.
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where ϕ satisfies a differential equation ϕ′′(x) = p(x)ϕ′(x) − p(ϕ(x))ϕ′(x)2 and b,

p are arbitrary functions, was derived by J. Aczél [2] for the second order differen-
tial equations (eliminating regularity conditions from [4]). This general form allows
a transformation z(t) = y(ϕ(t)) and transforms the equation into itself on the whole

interval of definition. Aczél’s result is generalized in [7] to ordinary differential equa-
tions of the order n+ 1 (n � 1).
The transformation z(t) = L(t)y(ϕ(t)) is the most general form of a pointwise

transformation of homogeneous linear differential equations of an order greater

than 2. Consider a differential equation

y′′(x) = k
y′(x)2

y(x)
+ p(x)y′(x) + q(x)y(x), x ∈ I ⊆ �

and the conditions ϕ(I) = I,

ϕ′′(t) = 2(k − 1)L
′(t)

L(t)
ϕ′(t) + p(t)ϕ′(t)− p(ϕ(t))ϕ′(t)2,

(
L′(t)
L(t)

)′
= (k − 1)

(
L′(t)
L(t)

)
+ p(t)

L′(t)
L(t)

+ q(t) − q(ϕ(t))ϕ′(t)2

on I. This second order differential equation is of a general form which allows the

transformation z(t) = L(t)y(ϕ(t)) that transforms the equation into itself on I. The
equation is a linear differential equation if solutions can vanish at some points in I

(then k y′(x)2

y(x) exists only if k = 0). This result is not a special case of Aczél’s result
(see [8]).

In this paper we derive, similarly to [2, 4, 8], a general form of ordinary differential
equations of the order n+1 (n � 1) which allows transformations z(t) = L(t)y(ϕ(t))

that transform the equation into itself on the whole interval of definition. Further
on we assume that the solutions vanish at some points in I. We prove that the most

general differential equation of the order n+1 (n � 1) of the above property, defined
for y ∈ �, is the linear differential equation.

2. Notation, preliminary results

Denote by (f) and (f∗) respectively the ordinary differential equations

y(n+1)(x) = f(x, y(x), . . . , y(n)(x)), x ∈ I ⊆ �,

z(n+1)(t) = f∗(t, z(t), . . . , z(n)(t)), t ∈ J ⊆ �,

of the order n+ 1, n � 1.
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Definition (see [5], pp. 25–26). We say that (f) is globally transformable into
(f∗) with respect to the transformation z(t) = L(t)y(ϕ(t)) if there exist two functions
L, ϕ such that

– the function L is of the class Cn+1(J) and is nonvanishing on J ,

– the function ϕ is a Cn+1 diffeomorphism of the interval J onto the interval I

and the function

(1) z(t) = L(t)y(ϕ(t)), t ∈ J,

is a solution of the equation (f∗) whenever y is a solution of the equation (f).

If (f) is globally transformable into (f∗), then we say that (f), (f∗) are equivalent

equations. We say that (1) is a stationary transformation if it globally transforms
an equation (f) into itself on I, i.e. if L, ϕ satisfy the assumptions of Definition and

the function z(t) = L(t)y(ϕ(t)) is a solution of z(n+1)(t) = f(t, z(t), . . . , z(n)(t)),
t ∈ I = ϕ(I), whenever y(x) is a solution of y(n+1)(x) = f(x, y(x), . . . , y(n)(x)),

x ∈ I.

We denote y(i)(ϕ(t)) = diy(ϕ(t))/dϕ(t)i, (y(ϕ(t)))(i) = diy(ϕ(t))/dti, i � 0.

Proposition 1 (Lemma 1, [9]). Let n ∈ � and let the relation

z(t) = L(t)y(ϕ(t))

be satisfied where the real functions y : I → �, z : J → � belong to the classes

Cn+1(I), Cn+1(J) respectively, and L : J → �, L ∈ Cr(J), L(t) �= 0 on J , and ϕ is

a Cr diffeomorphism of J onto I for some integer r � n+ 1. Then

z(i)(t) =
i∑

j=0

aij(t)y
(j)(ϕ(t)) = ai0(t)y(ϕ(t)) + ai1(t)y

′(ϕ(t)) + . . .+ aii(t)y
(i)(ϕ(t)),

i ∈ {0, 1, . . . , n+ 1},

where

a00(t) = L(t), . . . , ai0(t) = a′i−10(t), i � 1;
aij(t) = a′i−1j(t) + ai−1j−1(t)ϕ′(t), i > j > 1;

aii(t) = ai−1i−1(t)ϕ′(t); i ∈ {0, 1, . . . , n+ 1}
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are real functions, aij(t) ∈ Cr−(i−j)−1(J) for j > 0, and ai0(t) ∈ Cr−i(J). Moreover,

ai0(t) = L(i)(t), i � 0;

ai1(t) = (L(t)ϕ(t))(i) − L(i)(t)ϕ(t) =
i−1∑

j=0

(
i

j

)
L(j)(t)ϕ(i−j)(t), i � 1;

. . .

aij(t) =

(
i

j

)
L(i−j)(t)ϕ′(t)j +

(
i

j − 1

)
L(t)ϕ′(t)j−1ϕ(i−j+1)(t)

+ rij(L, . . . , L(i−j−1), ϕ′, . . . , ϕ(i−j))(t), i > j > 1;

. . .

aii−2(t) =

(
i

2

)
L′′(t)ϕ′(t)i−2 +

(
i

3

)
(L(t)ϕ′′′(t) + 3L′(t)ϕ′′(t))ϕ′(t)i−3

+ 3

(
i

4

)
L(t)ϕ′(t)i−4ϕ′′(t)2, i � 2;

aii−1(t) =

(
i

1

)
L′(t)ϕ′(t)i−1 +

(
i

2

)
L(t)ϕ′(t)i−2ϕ′′(t), i � 2;

aii(t) = L(t)ϕ′(t)i, i � 0

and

ai0(t) = ai0(L
(i))(t), i � 0;

aij(t) = aij(L, . . . , L(i−j), ϕ′, . . . , ϕ(i−j+1))(t), i � j > 0; i ∈ {0, 1, . . . , n+ 1}.

Let Vn+1 denote an (n+1)-dimensional vector space, �c = [c0, . . . , cn]T = [ci]ni=0 ∈
Vn+1 being a vector of the space written in the column form; T means the transpo-
sition. Denote by �o = [0, . . . , 0]T the origin of Vn+1 and by �e0, . . . , �en an orthonor-

mal basis in Vn+1. Let Vn+1 be equipped with the scalar product (�p, �q) =
n∑

i=0
piqi

for any pair �p, �q of its vectors. Let �p1, . . . , �pm be m vectors from Vn+1. Notation

P = [�p1, . . . , �pm] = [pij ]
i=0,...,n
j=1,...,m denotes a matrix and (P, Q) =

i∑
j

pijqij the scalar

product of two matrices of the same type. Similarly P(j,...,k) = [�pj, . . . , �pk] means
a submatrix, PQ = P(0,...,n)Q(0,...,n) is the matrix multiplication. For y ∈ Cn+1(I)

we denote yi(x) = y(i)(x), x ∈ I, i ∈ {0, . . . , n+ 1}. Then

y(x) = [y0(x), . . . , yn(x)]T = [y(x), y′(x), . . . , y(n)(x)]T ∈ Vn+1

for each x ∈ I.
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Remark 1. Let the assumptions of Proposition 1 be satisfied. Then

�z(t) = A(t)�y(ϕ(t))

is true on J forA(t) = [aij(t)]
i=0,...,n
j=1,...,m, where aij(t) = 0 for j > i.Moreover, zn+1(t) =

(�an+1(t), �y(ϕ(t))) + an+1n+1yn+1(ϕ(t)), where �an+1(t) = [an+10(t), . . . , an+1n(t)]T ,

t ∈ J.

Observation 1 (see Corollary 1, [9]). Every homogeneous linear differential equa-
tion of an order n + 1 (n � 1) is a particular case of the equation (f), and for two
equivalent linear equations

yn+1(x) = (�p(x), �y(x)) = p0(x)y0(x) + p1(x)y1(x) + . . .+ pn(x)yn(x),

yi(x) = y(i)(x), x ∈ I;

zn+1(t) = (�q(t), �z(t)) = q0(t)z0(t) + q1(t)z1(t) + . . .+ qn(t)zn(t),

zi(t) = z(i)(t), t ∈ J ;

there always exist relations

L(n+1)(t) = h(t, ϕ(t), ϕ′(t), L(t), . . . , L(n)(t))

= q0(t)L(t) + . . .+ qn(t)L(n)(t)− L(t)ϕ′(t)n+1p0(ϕ(t));

ϕ(n+1)(t) = g(t, ϕ(t), . . . , ϕ(n)(t), L(t), . . . , L(n)(t))

=
1

L(t)

n∑

k=1

(ak1(t)qk(t)−
(

k

n+ 1

)
L(k)(t)ϕ(n+1−k)(t))

− p1(ϕ(t))ϕ′(t)n+1; t ∈ J

between the functions L, ϕ and the coefficients of linear differential equations.

Here ak1(t) = ak1(ϕ′, . . . , ϕ(k), L, L′, . . . , L(k−1)(t)) are defined by Proposition 1.

Assumption. For transformations z(t) = L(t)y(ϕ(t)) of ordinary differential
equations of an order n+1 (n � 1) we assume that there exist differential equations

L(n+1)(t) = h(t, ϕ(t), ϕ′(t), L(t), . . . , L(n)(t)),

ϕ(n+1)(t) = g(t, ϕ(t), . . . , ϕ(n)(t), L(t), . . . , L(n)(t)), t ∈ J.
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3. Results

Lemma 1. Let n, r ∈ � and r � n+ 1. Let ϕ satisfy the assumptions of Propo-

sition 1. Then (1) is a stationary transformation of the equation (f) if and only if
ϕ(I) = I and the real function f satisfies the functional equation

(2) f(s, W�v) = (�wn+1, �v) + wn+1n+1f(x,�v),

where W = [wij ]
i=0,...,n
j=0,...,n, �wn+1 = [wn+10, wn+11, . . . , wn+1n]T , �v = [v0, v1, . . . , vn]T

and wi0 = ai0(ui), wij = aij(x1, x2, . . . , xi−j+1, u, u1, . . . , ui−j) for j > 0 are defined

by

(3) wi0 = ui, 1 � i � n;

wn+10 = h(s, x, x1, u, u1, . . . , un);

wi1 =

(
i

0

)
uxi +

(
i

1

)
u1xi−1 + . . .+

(
i

i− 1

)
ui−1x1, 1 � i � n;

wn+11 = (n+ 1)ug(s, x, x1, . . . , xn, u, u1, . . . , un) +
n∑

j=1

(
n

j

)
ujxn−j ;

. . .

wij =

(
i

j

)
ui−jx

j
1 +

(
j − 1

i

)
uxj−1
1 xi−j+1

+ rij(x1, . . . , xi−j , u1, . . . , ui−j−1), 1 < j < i;

. . .

wii−2 =

(
i

2

)
u2x

i−2
1 +

(
i

3

)
(ux3 + 3u1x2)x

i−3
1 + 3

(
i

4

)
uxi−4
1 x22, i � 2;

wii−1 =

(
i

1

)
u1x

i−1
1 +

(
i

2

)
uxi−2
1 x2, i � 2;

wii = uxi
1, i � 0;

where s, x = x0, xi, v = v0, vi, u = u0, . . . , ui ∈ �, u �= 0; aij , rij are real functions,

n ∈ �.

�����. The transformation (1) is a global transformation of the equation

(f) if and only if ϕ(I) = I and at the same time the functions y(x) = y(ϕ(t)),
z(t) = L(t)y(ϕ(t)) satisfy

(4) y(n+1)(x) = y(n+1)(ϕ(t)) = f(ϕ(t), y(ϕ(t)), . . . , y(n)(ϕ(t)))

= f(ϕ(t), �y(ϕ(t))),

y(n+1)(t) = f(t, y(t), . . . , y(n)(t)) = f(t, �z(t)), t ∈ I = ϕ(I).
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From (4), Proposition 1 and Remark 1 we get

zn+1(t) = (�an+1(t), �y(ϕ(t))) + an+1n+1(t)yn+1(ϕ(t))

= (�an+1(t), �y(ϕ(t))) + an+1n+1(t)f(ϕ(t), �y(ϕ(t)))

= f(t, �z(t)) = f(t, A(t)�y(ϕ(t))),

i.e.

f(t, A(t)�y(ϕ(t))) = (�an+1(t), �y(ϕ(t))) + an+1n+1(t)f(ϕ(t), �y(ϕ(t))),

where zn+1(t) = z(n+1)(t) and the functions aij(t) are defined by Proposition 1,
t ∈ J. We denote s = t, x0 = x = ϕ(t), xi = ϕ(i)(t), u = u0 = L(t), ui = L(i)(t), v0 =

v = y(ϕ(t)), vi = y(i)(ϕ(t)), wi0 = ui, wij = aij(x1, x2, . . . , xi−j+1, u, u1, . . . , ui−j)
for i � j � 1. Using the definitions of aij we obtain the assertion of Lemma 1. Here

L(n+1)(t) = h(t, ϕ(t), ϕ′(t), L(t), . . . , L(n)(t)),

ϕ(n+1)(t) = g(t, ϕ(t), . . . , ϕ(n)(t), L(t), . . . , L(n)(t)), t ∈ J,

i.e. un+1 = h(s, x, x1, u, u1, . . . , un) and xn+1 = g(s, x, x1, . . . , xn, u, u1, . . . , un) in
accordance with Assumption. �

Theorem 1. The continuous general solution of the functional equation (2) is
given by

f(x,�v) =
n∑

j=0

pj(x)vj = (�p(x), �v),

wn+1j =
n∑

k=j

pk(s)wkj − wn+1n+1pj(x), j ∈ {0, . . . , n}

where p0, p1, . . . , pn are arbitrary functions and wi0 = ui, wij = aij(x1, x2, . . . ,
xi−j+1, u, u1, . . . , ui−j) for j > 0 are defined by (3), i � j � 0, i ∈ {0, 1, . . . , n+ 1},
n ∈ �. Moreover,

un+1 = h(s, x, x1, u, u1, . . . , un) =
n∑

j=0

pj(s)uj − uxn+1
1 p0(x),

xn+1 = g(s, x, x1, . . . , xn, u, u1, . . . , un)

=
1

(n+ 1)u

( n∑

j=1

(
pj(s)wj1 −

(
n

j

)
ujxn−j

)
− uxn+1

1 p1(x)

)
.
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�����. Consider the functional equation (2),

(5) f(s, W�v) =
n∑

j=0

wn+1jvj + wn+1n+1f(x,�v)

and define functions pi(x) = f(x,�ei), i ∈ {0, 1, . . . , n}. Substituting �v = �ei into (2)
we obtain

(6) wn+1i = f(s, W�ei)− wn+1n+1pi(x), i ∈ {0, 1, . . . , n}.

The functional equation (5) becomes

(7) f(s, W�v) = wn+1n+1(f(x,�v)− (�p(x), �v)) +
n∑

i=0

f(s, W�ei)vi.

We can put f(x,�v) − (�p(x), �v) = δ(�v) because wi0 = ui, wij = aij(x1, . . . , xi−j+1, u,

u1, . . . , ui−j) are independent of x for j > 0. Then δ(�e0) = f(x,�e0) − p0(x) =
p0(x)− p0(x) = 0 and similarly δ(�ei) = 0, i ∈ {0, 1, . . . , n}. Hence

(8) f(x,�v) = (�p(x), �v) + δ(�v); δ(�ei) = 0, i ∈ {0, 1, . . . , n}

for x, v, v1, . . . , vn ∈ �.

Substituting (8) into (7) we obtain

(9) δ(W�v) =
n∑

i=0

δ(W�ei)vi + wn+1n+1δ(�v).

Using v1 = . . . = vn = 0 and (3) we get

(10) δ(uv, u1v, . . . , unv) = δ(u, u1, . . . , un)v + uxn+1
1 δ(v, 0, . . . , 0)

and for x1 = 1 we have

(11) δ(uv, u1v, . . . , unv) = δ(u, u1, . . . , un)v + uδ(v, 0, . . . , 0).

Comparison of (10), (11) gives u(xn+1
1 − 1)δ(v, 0, . . . , 0) = 0 for u, x1, v ∈ �, u �= 0.

Hence δ(v, 0, . . . , 0) = 0 for all v ∈ � and

(12) δ(�uv) = δ(�u)v, u, u1, . . . , un, v ∈ �.

Similarly, (9) together with v2 = . . . = vn = 0 gives

δ(W (�e0v + �e1v1)) = δ(W�e0)v + δ(W�e1)v1 + wn+1n+1δ(�e0v + �e1v1),
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i.e.

(13) δ(w00v, w10v + w11v1, . . . , wn0v + wn1v1)

= δ(w00, w10, . . . , wn0)v + δ(0, w11, . . . , wn1)v1 + wn+1n+1δ(v, v1, 0, . . . , 0).

For u1 = . . . = un = 0 we have w00 = u, wi0 = ui = 0 (0 < i � n), wi1 = uxi

(1 � i � n), and (13) becomes

δ(uv, ux1v1, . . . , uxnv1) = δ(u, 0, . . . , 0)v + δ(0, ux1, . . . , uxn)v1

+ uxn+1
1 δ(v, v1, 0, . . . , 0).

Thus, using (12) and δ(�e0) = 0,

(14) δ(v, x1v1, . . . , xnv1) = δ(0, x1, . . . , xn)v1 + xn+1
1 δ(v, v1, 0, . . . , 0).

For v1 = 1 we obtain

(15) δ(v, x1, . . . , xn) = β(x1, . . . , xn) + b(v)xn+1
1 ,

where β(x1, . . . , xn) = δ(0, x1, . . . , xn) and b(v) = δ(v, 1, 0, . . . , 0). Here

(16) β(cx1, . . . , cxn) = β(x1, . . . , xn)c,

(17) b(cv)cn+1 = b(v)c, v ∈ �,

according to (12); x1, . . . , xn, v ∈ �.

Choosing v = 1 in (17) we obtain b(c) = k
cn and the function b is continuous on �

if and only if b(c) = 0 on �. Hence,

(18) δ(v, x1, . . . , xn) = β(x1, . . . , xn), β(cx1, . . . , cxn) = β(x1, . . . , xn)c

on �.

Now δ(v, v1, 0, . . . , 0) = β(v1, 0, . . . , 0) = v1β(1, 0, . . . , 0) = v1δ(0, 1, 0, . . . , 0) =
v1δ(�e1) = 0 and from (13) we get

β(w10v + w11v1, . . . , wn0v + wn1v1) = β(w10, . . . , wn0)v + β(w11, . . . , wn1)v1

= β(vw10, . . . , vwn0) + β(v1w11, . . . , v1wn1)

and the function β satisfies Cauchy’s functional equation in several variables

β(u1 + v1, . . . , un + vn) = β(u1, . . . , un) + β(v1, . . . , vn)
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with the general continuous solution (see Aczél [1])

(19) β(u1, . . . , un) =
n∑

j=1

cjuj, cj ∈ �.

In accordance with (8), (18), (19), the function f is of the form

f(x, v, v1, . . . , vn) =
n∑

j=0

pj(x)vj +
n∑

j=1

cjvj =
n∑

j=0

p̃jvj ,

i.e.

(20) f(x, v, v1, . . . , vn) =
n∑

j=0

pj(x)vj = (�p(x), �v) = f(x,�v),

where p0, p1, . . . , pn are arbitrary functions.

If we combine (20) with (6) we conclude

wn+1i = f(s, W�ei)− wn+1n+1pi(x)

=
n∑

k=i

pk(s)wki − wn+1n+1pi(x), i ∈ {0, 1, . . . , n},

where wkj are defined by (3). Moreover, using (3) we have

h(s, x, x1, u, u1, . . . , un) = un+1 = wn+10 =
n∑

k=0

pk(s)wk0 − wn+1n+1p0(x)

=
n∑

k=0

pk(s)uk − uxn+1
1 p0(x);

g(s, x, x1, . . . , xn, u, u1, . . . , un) =
1

(n+ 1)u

(
wn+11 −

n∑

j=1

(
n

j

)
ujxn−j

)

=
1

(n+ 1)u

( n∑

k=1

pk(s)wk1 − wn+1n+1p1(x) −
n∑

j=1

(
n

j

)
ujxn−j

)

=
1

(n+ 1)u

( n∑

k=1

(pk(s)wk1 −
(

n

k

)
ukxn−k)− wn+1n+1p1(x)

)
.

The assertion of the theorem is proved. �
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Remark 2. By virtue of Theorem 1 and Proposition 1, if (1) is a stationary
transformation of the equation (f) and the solutions of the equation (f) vanish at
some points on I, then (f) is a linear differential equation. The criterion of global
equivalence of the second order linear differential equations was published by O.

Borůvka [3], of the third and higher order equations by F. Neuman [5]. In the
monograph [5] there is a complete list of stationary groups for homogeneous linear

differential equations of the n-th order. Some criteria for stationary transformations
of linear differential and linear functional-differential equations are given in [9].
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