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Abstract. In this paper we study nonlinear parabolic equations using the method of
upper and lower solutions. Using truncation and penalization techniques and results from
the theory of operators of monotone type, we prove the existence of a periodic solution
between an upper and a lower solution. Then with some monotonicity conditions we prove
the existence of extremal solutions in the order interval defined by an upper and a lower
solution. Finally we consider problems with discontinuities and we show that their solution
set is a compact Rδ-set in (CT, L2(Z)).
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1. Introduction

The method of upper and lower solutions turned out to be a powerful tool in the
analysis of nonlinear partial differential equations and in the context of semilinear
problems it produced monotone iterative schemes which generate the extremal so-
lutions. This is exemplified by the work of Sattinger [35]. Later, in an interesting
paper, Deuel-Hess [12] used upper and lower solutions to establish the existence of
periodic solutions for a class of nonlinear parabolic problems. The periodic problem
in the context of abstract evolution equations, was also addressed recently by Vrabie
[37] and Hirano [19], but their hypotheses on the nonlinear perturbation term are
strong and exclude the possibility of fitting in their model evolution equation, second
order problems with the right hand side term f depending also on the gradient of
the solution, as is the case here.
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Our work here is closely related to that of Deuel-Hess [12]. However we do not
require the upper and lower solutions to be bounded and in return this allows us to
impose a more general growth condition on the perturbation term f . Moreover, our
approach is different from that of Deuel-Hess. Instead of associating our problem
to a parabolic variational inequality with a stationary constraint set (see also Puel
[33]), for the analysis of which it is crucial that the upper and lower solutions be
bounded (see the proof of the main theorem, p. 101, of Deuel-Hess [12]), here we
rely on a fixed point theorem for set-valued maps defined on partially ordered metric
spaces, due to Heikkila-Hu [17]. In addition, under some extra hypotheses on the
data, which make the problem monotonic (hence guarantee the existence of a unique
solution for an auxiliary initial boundary-value problem used in the proof), we show
that the problem has extremal periodic solutions in the interval determined by the
upper and lower solutions. Finally we also examine problems with discontinuous
nonlinearities.

2. Mathematical preliminaries

In our approach we will use evolution triples, some function spaces related to
them and evolution equations defined on such triples. So in this section we recall
some basic definitions and facts concerning evolution triples. Detailed proofs and
additional results can be found in Zeidler [38].
Let H be a Hilbert space and X a dense subspace of H carrying the structure of

a separable reflexive Banach space, which embeds into H continuously. Identifying
H with its dual (pivot space), we have X ↪→ H ↪→ X∗, with all embeddings being
continuous and dense. Such a triple of spaces is known in the literature as “evolution
triple” or “Gelfand triple”. By | · | (resp. ‖ · ‖, ‖ · ‖∗), we denote the norm of H
(resp. of X,X∗). Also by 〈·, ·〉 we denote the duality brackets for the pair (X,X∗)
and by (·, ·) the inner product of H . The two are compatible in the sense that
〈·, ·〉 |X×H = (·, ·). We will need the following generalization of the notion of a
maximal monotone operator (see Zeidler [38], p. 585).

Definition. An operator A : X → X∗ is said to be “pseudomonotone”, if
xn

w→ x in X as n → ∞ and lim 〈A(xn), xn − x〉 � 0, imply that 〈A(x), x − y〉 �
lim 〈A(xn), xn − y〉 for all y ∈ X .

Remark. A monotone hemicontinuous operator or a completely continuous op-
erator A : X → X∗, is pseudomonotone. Pseudomonotonicity is preserved under
addition and it is easy to see that it implies property (M); i.e., if xn

w→ x in X ,
A(xn)

w→ u∗ in X∗ as n→∞ and lim 〈A(xn), xn − x〉 � 0, then A(x) = u∗.

A related notion, useful in the context of parabolic problems, is the following:
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Definition. Let Y be a reflexive Banach space, L : D(L) ⊆ Y → Y ∗ a linear
maximal monotone operator and V : Y → Y ∗ a bounded nonlinear operator. We
say that V (·) is “L-pseudomonotone”, if for {yn}n�1 ⊆ D(L) such that yn

w→ y

in Y , L(yn)
w→ L(y) in Y ∗ as n → ∞ and lim(V (yn), yn − y)Y ∗,Y � 0, we have

V (yn)
w→ V (y) in Y ∗ and (V (yn), yn)Y ∗,Y → (V (y), y)Y ∗,Y as n→∞.

Remark. Recall that a linear operator L : D(L) ⊆ Y → Y ∗ is maximal monotone
if and only if L is densely defined, closed and both L and L∗ are monotone (see Zeidler
[38], Theorem 321, p. 897).

To see how these two pseudomonotonicity notions are related, we need to introduce
a function space, which plays a central role in the analysis of evolution equations.
So let Wpq(T ) = {x ∈ Lp(T,X) : ẋ ∈ Lq(T,X∗)}, 1 < p < ∞, 1p + 1

q = 1. The
time derivative of x(·), is understood in the sense of vector valued distributions. The
space Wpq(T ) embeds continuously in C(T,H) and if X embeds compactly in H ,
then so does Wpq(T ) in Lp(T,H). Let L1 : D1 ⊆ Lp(T,X)→ Lq(T,X∗) be defined
by L1(x) = ẋ for all x ∈ D1 = {x ∈ Wpq(T ) : x(0) = x(b)}. By virtue of the
continuous embedding of Wpq(T ) in C(T,H), the pointwise evaluation at t = 0 and
t = b makes sense. Since the space C10 (T,X) is dense in L

p(T,X), we see at once that
D1 is dense in Lp(T,X). Also since L∗1 : D

∗
1 ⊆ Lp(T,X)→ Lq(T,X∗) is defined by

Lv = −v̇ for all v ∈ D∗
1 = D1, we see that both L1 and L∗1 are monotone operators

(indeed ((L1x, x)) = ((L∗1v, v)) = 0, where ((·, ·)) denotes the duality brackets for the
pair (Lp(T,X), Lq(T,X∗) = Lp(T,X)∗)) and clearly L1 is closed. Therefore L1 is
maximal monotone.

The next proposition relates the two pseudomonotonicity notions introduced ear-
lier and it can be found in Papageorgiou [31].

Proposition 1. If A : T ×X → X∗ is an operator such that,

(i) for every x ∈ X , t→ A(t, x) is measurable;

(ii) for almost all t ∈ T , x→ A(t, x) is demicontinuous and pseudomonotone;

(iii) ‖A(t, x)‖∗ � a1(t) + c1‖x‖p−1 a.e. on T , with a1 ∈ Lq(T ), c1 > 0, 2 � p < ∞
and 1p +

1
q = 1;

(iv) 〈A(t, x), x〉 � c‖x‖p− η‖x‖r − θ(t) for almost all t ∈ T , with c, η > 0, 1 � r < p

and θ ∈ L1(T ); and if Â : Lp(T,X) → Lq(T,X∗) is the Nemitsky operator
corresponding to A (i.e. Â(x)(·) = A(·, x(·))),

then Â is demicontinuous and L-pseudomonotone.

For L-pseudomonotone operators, we have the following basic surjectivity result
(see B-A. Ton [36], or Lions [27], p. 319).
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Proposition 2. If Y is a reflexive Banach space, L : D(L) ⊆ Y → Y ∗ is a
linear maximal monotone operator and G : Y → Y ∗ is a bounded, demicontinuous,
L-pseudomonotone, coercive operator (i.e. (G(y),y)Y ∗,Y

‖y‖Y
→ +∞ as ‖y‖Y →∞),

then (L+G)(·) is surjective.

Another monotonicity type notion that we will need, is the following:

Definition. An operator A : X → X∗ is said to be of “type (S)+”, if xn
w→ x in

X as n→∞ and lim 〈A(xn), xn − x〉 � 0, then xn → x in X as n→∞.

Remark. A uniformly monotone operator is of type (S)+. Also a demicontinuous
operator of type (S)+, is pseudomonotone (see Zeidler [38]).

Also in analogy with L-pseudomonotonicity, we introduce the notion of an operator
of “type L-(S)+”.

Definition. Let Y be a reflexive Banach space, L : D(L) ⊆ Y → Y ∗ is a linear
densely defined maximal monotone operator and V : Y → Y ∗. We say that V (·) is
of “type L-(S)+”, if for {yn}n�1 ⊆ D(L), yn

w→ y in Y , L(yn)
w→ L(y) in Y ∗ and

lim(V (yn), yn − y)Y ∗,Y � 0, we have yn → y in Y as n→∞.

A slight modification of the proof of Proposition 1, gives the following “lifting”
property for condition (S)+.

Proposition 3. If A : T ×X → X∗ is an operator such that,
(i) for every x ∈ X , t→ A(t, x) is measurable;
(ii) for almost all t ∈ T , x→ A(t, x) is demicontinuous and of type (S)+;
(iii) ‖A(t, x)‖∗ � a1(t) + c1‖x‖p−1 a.e. on T , with a1 ∈ Lq(T ), c1 > 0, 2 � p < ∞

and 1p +
1
q = 1;

(iv) 〈A(t, x), x〉 � c‖x‖p− η‖x‖r − θ(t) for almost all t ∈ T , with c, η > 0, 1 � r < p

and θ ∈ L1(T ); and if Â : Lp(T,X) → Lq(T,X∗) is the Nemitsky operator
corresponding to A,

then Â is demicontinuous and of type L-(S)+.

On the evolution triple (X,H,X∗) we consider the following evolution equation:

(1)
ẋ(t) +A(t, x(t)) = h(t) a.e. on T

x(0) = x0.

On A(t, x) we impose the following conditions:
H(A): A : T ×X → X∗ is a map such that
(i) for every x ∈ X , t→ A(t, x) is measurable;
(ii) for almost all t ∈ T , x→ A(t, x) is demicontinuous, monotone;
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(iii) ‖A(t, x)‖∗ � a1(t) + c1‖x‖p−1 a.e. on T with a1 ∈ Lq(T ), c1 > 0, 2 � p < ∞,
1
p +

1
q = 1;

(iv) 〈A(t, x), x〉 � c‖x‖p − η‖x‖r − θ(t) for almost all t ∈ T , with c > 0, η > 0,
θ ∈ L1(T ) and 1 � r < p.

It is well-known that under these hypotheses, for every h ∈ Lq(T,H) and every
x0 ∈ H , problem (1) has a unique solution x ∈ Wpq(T ) ⊆ C(T,H). Let p̂ :
Lq(T,H) × H → C(T,H) be the map which to each pair (h, x0) ∈ Lq(T,H) × H

assigns the unique solution x = p̂(h, x0) of (1). The next proposition determines
the continuity properties of p̂(·, ·) and can be found in Papageorgiou-Shahzad [32]
(see also Avgerinos-Papageorgiou [3]). In what follows by Lq(T,H)w, we denote the
Lebesgue-Bochner space Lq(T,H) furnished with the weak topology.

Proposition 4. If hypotheses H(A) hold and X embeds compactly in H , then
p̂ : Lq(T,H)w ×H → C(T,H) is sequentially continuous.

3. Existence of solutions

Let T = [0, b] and let Z ⊆ �
N be a bounded domain in �N with C1-boundary Γ.

We consider the following nonlinear parabolic boundary value problem defined on
T × Z:

(2)
∂x

∂t
−

N∑

k=1

Dkak(t, z, x,Dx) + f(t, z, x(t, z), Dx(t, z)) = h(t, z) in T × Z

x(0, z) = x(b, z) a.e. on Z, x|T×Γ = 0.

Here as usual Dk = ∂
∂zk
, k ∈ {1, 2, . . . , N}, and D = (Dk)Nk=1 (the gradient

operator). We will need the following hypotheses on the data of (2):
H(a): ak : T × Z × � × �

N → �, k ∈ {1, 2, . . . , N}, are functions such that
(i) for every (x, ξ) ∈ � × �

N , (t, z)→ ak(t, z, x, ξ) is measurable;
(ii) for every (t, z) ∈ T × Z, (x, ξ)→ ak(t, z, x, ξ) is continuous;
(iii) for every (x, ξ) ∈ � × �

N , |ak(t, z, x, ξ)| � β1(t, z) + c1(|x|p−1 + ‖ξ‖p−1) a.e. on
T × Z with β1 ∈ Lq(T × Z), c1 > 0, 2 � p <∞, 1p + 1q = 1;

(iv)
N∑
k=1

(
ak(t, z, x, ξ)− ak(t, z, x, ξ

′
)
)
(ξk − ξ

′
k) > 0 a.e. on T × Z, for every x ∈ �

and every ξ, ξ
′ ∈ �N with ξ �= ξ′ ;

(v)
N∑
k=1

ak(t, z, x, ξ)ξk � c‖ξ‖p a.e. on T × Z for every (x, ξ) ∈ � × �
N and with

c > 0.

Remark. Hypotheses H(a) are the well-known Leray-Lions conditions on the
coefficients ak (see Lions [27]).

471



Because of hypotheses H(a), we can define the semilinear Dirichlet form a :
Lp(T,W 1,p(Z))× Lp(T,W 1,p(Z))→ �, by

a(x, y) =
∫ b

0

∫

Z

N∑

k=1

ak(t, z, x,Dx)Dky(t, z) dz dt.

In what follows by ((·, ·)) we denote the duality brackets for the pairs

(Lp(T,W 1,p(Z)), Lq(T,W 1,q(Z)∗)) and (Lp(T,W 1,p
0 (Z)), L

q(T,W−1,q(Z)));

i.e. ((x, v)) =
∫ b
0 〈x(t), v(t)〉 dt. Recall that if Y is a reflexive Banach space (or

more generally if Y ∗ has the Radon-Nikodym property) and 1 � p < ∞, then
Lp(T, Y )∗ = Lq(T, Y ∗), with 1p +

1
q = 1 (see Diestel-Uhl [13], Theorem 1, p. 98).

In what follows the following two particular instances ofWpq(T ) introduced earlier,
will be very useful in our considerations:

Ŵpq(T ) =

{
f ∈ Lp(T,W 1,p(Z)) :

∂f

∂t
∈ Lq(T,W 1,p(Z)∗)

}

and

Wpq(T ) =

{
f ∈ Lp(T,W 1,p

0 (Z)) :
∂f

∂t
∈ Lq(T,W−1,q(Z))

}
.

In these definitions, the derivative ∂f∂t is defined in the sense of vector-valued dis-
tributions. Both spaces become separable reflexive Banach spaces, when we furnish
them with the norm ‖f‖pq = ‖f‖p +

∥∥∥∂f∂t
∥∥∥
q
. Moreover, they embed continuously in

C(T, L2(Z)) and compactly in Lp(T × Z).
Now we introduce the notions of upper and lower solutions, which will be our main

analytical tools in what follows:

Definition. A function ϕ ∈ Ŵpq(T ) is said to be an “upper solution” of (2), if

((
∂ϕ

∂t
, y

))
+ a(ϕ, y) +

∫ b

0

∫

Z

f(t, z, ϕ,Dϕ)y(t, z) dz dt �
∫ b

0

∫

Z

h(t, z)y(t, z) dz dt

for all y ∈ Lp(T,W 1,p
0 (Z))∩Lp(T ×Z)+, and ϕ(0, z) � ϕ(b, z) a.e. on Z, ϕ|T×Γ = 0.

Similarly a function ψ ∈ Ŵpq(T ), is a “lower solution” of (1), if the inequalities in
the above definition are reversed.

Remark. The hypotheses on f (see H(f) below) justify the integrations∫ b
0

∫
Z
f(t, z, ϕ,Dϕ)y(t, z) dz dt and

∫ b
0

∫
Z
f(t, z, ψ,Dψ)y(t, z) dz dt and so ϕ and ψ

are well-defined.
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H0: There exist an upper solution ϕ ∈ Ŵpq(T ) and a lower solution ψ ∈ Ŵpq(T ) for
the problem (2) and ψ(t, z) � ϕ(t, z) a.e. on T × Z.

Remark. In contrast to Deuel-Hess [12], we do not require that ϕ, ψ ∈ L∞(T×Z).
Definition. A function x ∈Wpq(T ) is a “solution” of (2), if

((
∂x

∂t
, y

))
+ a(x, y) +

∫ b

0

∫

Z

f(t, z, x,Dx)y(t, z) dz dt =
∫ b

0

∫

Z

h(t, z)y(t, z) dz dt

for all y ∈ Lp(T,W 1,p
0 (Z)).

The hypotheses on f(t, z, x, ξ) are the following:
H(f): f : T × Z × � × �

N → �, is a function such that
(i) for every (x, ξ) ∈ � × �

N , (t, z)→ f(t, z, x, ξ) is measurable;
(ii) for every (t, z) ∈ T × Z, (x, ξ)→ f(t, z, x, ξ) is continuous;
(iii) for almost all (t, z) ∈ T × Z, for every x ∈ [ψ(t, z), ϕ(t, z)] and every ξ ∈ �

N ,
|f(t, z, x, ξ)| � β2(t, z) + c2(|x|p−1 + ‖ξ‖p−1) with β2 ∈ Lq(T × Z), c2 > 0.

The approach that we employ here uses truncation and penalization techniques.
So we introduce the truncation operator τ(x)(·, ·), defined by

τ(x)(t, z) =





ϕ(t, z) if ϕ(t, z) � x(t, z)

x(t, z) if ψ(t, z) � x(t, z) � ϕ(t, z)

ψ(t, z) if x(t, z) � ψ(t, z).

The following lemma can be found in Cardinali-Fiacca-Papageorgiou [6].

Lemma 5. τ : Lp(T,W 1,p(Z))→ Lp(T,W 1,p(Z)) is continuous.
The penalty function u : T × Z × � → � is defined by

u(t, z, x) =





(x− ϕ(t, z))p−1 if ϕ(t, z) � x

0 if ψ(t, z) � x � ϕ(t, z)

−(ψ(t, z)− x)p−1 if x � ψ(t, z).

A straightforward, elementary calculation reveals that the following is true for
u(t, z, x) (see also Deuel-Hess [12]).

Lemma 6. u : T × Z × � → � is a function such that,
(a) for every x ∈ �, (t, z)→ u(t, z, x) is measurable;
(b) for every (t, z) ∈ T × Z, x→ u(t, z, x) is continuous;
(c) |u(t, z, x)| � β3(t, z) + c3|x|p−1 for almost all (t, z) ∈ T ×Z and all x ∈ �, with

β3 ∈ Lq(T × Z), c3 > 0; and
(d)

∫ b
0

∫
Z
u(t, z, x(t, z))x(t, z) dz dt � c4‖x‖pLp(T×Z) − c5‖x‖p−1Lp(T×Z) for some c4 and

c5 > 0.
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A final auxiliary result that we will need in the proof of the existence theorem of
this section is the next proposition. Let A : T ×W 1,p

0 (Z)→W−1,q(Z) be defined by

〈A(t, x), y〉 =
N∑

k=1

∫

Z

ak(t, z, τ(x), Dx)Dky(t, z) dz dt

for all y ∈ W 1,p
0 (Z).

Proposition 7. If hypotheses H(a) hold and A : T ×W 1,p
0 (Z) → W−1,q(Z) is

defined as above, then for every x ∈W 1,p
0 (Z) t→ A(t, x) is measurable and for every

t ∈ T x→ A(t, x) is demicontinuous and of type (S)+.

�����. In what follows, for notational simplicity, let X = W 1,p
0 (Z) and X

∗ =
W−1,q(Z). By Fubini’s theorem, for every y ∈ X , t → 〈A(t, x), y〉 is measurable.
So t → A(t, x) is weakly measurable and since X∗ is separable, from the Pettis
measurability theorem (see Diestel-Uhl [13], Theorem 2, p. 42), we infer that t →
A(t, x) is measurable.
Next fix t ∈ T and let xn → x in X as n→∞. Then by passing to a subsequence if

necessary, we may assume that τ(xn)(t, z)→ τ(x)(t, z) and Dxn(z)→ Dx(z) a.e. on
Z as n → ∞. By virtue of hypothesis H(a) (ii), ak(t, z, τ(xn)(t, z), Dxn(z)) →
ak(t, z, τ(x)(t, z), Dx(z)) a.e. on Z as n → ∞ for all k ∈ {1, 2, . . . , N}. So applying
the dominated convergence theorem (see hypothesis H(a) (v)), it follows that for all
y ∈ X

〈A(t, xn), y〉 =
∫

Z

N∑

k=1

ak(t, z, τ(xn), Dxn)Dky(z) dz

→
∫

Z

N∑

k=1

ak(t, z, τ(x), Dx)Dky(z) dz = 〈A(t, x), y〉 as n→∞.

Since y ∈ X was arbitrary, we infer that A(t, xn) w→ A(t, x) in X∗ as n→∞ and
this proves the demicontinuity of A(t, ·).
Finally we will show that A(t, ·) is of type (S)+. To this end let xn w→ x in X

and assume that lim 〈A(t, xn)−A(t, x), xn − x〉 � 0. Since X embeds compactly in
Lp(Z), by passing to a subsequence if necessary, we may assume that xn → x in
Lp(Z) and xn(z)→ x(z), τ(xn)(t, z)→ τ(x)(t, z) a.e. on Z. Then we have

lim
∫

Z

N∑

k=1

(ak(t, z, τ(xn), Dxn)− ak(t, z, τ(xn), Dx))Dk(xn − x)(z) dz

+ lim
∫

Z

N∑

k=1

(ak(t, z, τ(xn), Dx) − ak(t, z, τ(x), Dx))Dk(xn − x)(z) dz � 0.
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By virtue of the continuity of ak(t, z, ·, ·), we have

lim
∫

Z

N∑

k=1

(ak(t, z, τ(xn), Dx) − ak(t, z, τ(x), Dx))Dk(xn − x)(z) dz = 0

⇒ lim
∫

Z

N∑

k=1

(ak(t, z, τ(xn), Dxn)− ak(t, z, τ(xn), Dx))Dk(xn − x)(z) dz � 0.

By hypothesis H(a) (iv), we have

∫

Z

N∑

k=1

(ak(t, z, τ(xn), Dxn)− ak(t, z, τ(xn), Dx))Dk(xn − x)(z) dz → 0

and by passing to an appropriate subsequence if necessary, we may also assume that

N∑

k=1

(ak(t, z, τ(xn), Dxn)− ak(t, z, τ(xn), Dx))Dk(xn − x)(z)→ 0

and

N∑

k=1

(ak(t, z, τ(xn), Dxn)− ak(t, z, τ(xn), Dx))Dk(xn − x)(z) � h1(z)

for all z ∈ Z \ N1, λ(N1) = 0 (λ being the Lebesque measure on Z) and with
h ∈ L1(Z). Using hypothesis H(a) (v), we see that for every z ∈ Z \ N1 and every
n � 1, we have

h1(z) �
N∑

k=1

(ak(t, z, τ(xn), Dxn)− ak(t, z, τ(xn), Dx))Dk(xn − x)(z)(3)

� c1 (‖Dxn(z)‖p + ‖Dx(z)‖p)− 2β1(t, z)

−
N∑

k=1

|Dkx(z)|
(
β2(t, z) + c2(|τ(xn)(t, z)|p−1 + |Dkxn(z)|p−1)

)

−
N∑

k=1

|Dkxn(z)|
(
β2(t, z) + c2(|τ(xn)(t, z)|p−1 + |Dkx(z)|p−1)

)
.

Recall that xn(z) → x(z) and τ(xn)(t, z) → τ(x)(t, z) as n → ∞ and moreover
|τ(xn)(t, z)| � max[|ϕ(t, z)|, |ψ(t, z)|] for all t ∈ T and all z ∈ Z \ N3, λ(N3) = 0.
From (3) above it follows that for every z ∈ Z \ N , N =

3⋃
k=1

Nk, the sequence

{‖Dxn(z)‖}n�1 is bounded. So for every z ∈ Z \ N , we can find a subsequence
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{xm(z)}m�1 of {xn(z)}n�1, such that τ(xm)(z) → τ(x)(z) and Dkxm(z) → yk(z)
as m → ∞. Hence in the limit as m → ∞, we have for all z ∈ Z \ N and for
y(z) = (yk(z))Nk=1

N∑

k=1

(ak(t, z, τ(x)(t, z), y(z))− ak(t, z, τ(x)(t, z), Dx)) (yk −Dkx)(z) = 0

⇒ yk(z) = Dkx(z) for all k = 1, 2, . . . , N (see hypothesis H(a) (iv)).

So we deduce that Dxn(z)→ Dx(z) for all z ∈ Z \N as n→∞. Moreover, from
(3) we have that

‖Dxn(z)‖p � h1(z) + c1‖Dx(z)‖p + 2β1(t, z)(4)

+
N∑

k=1

|Dkx(z)|
(
β2(t, z) + c2(|τ(xn)(t, z)|p−1 + |Dkxn(z)|p−1)

)

+
N∑

k=1

|Dkxn(z)|
(
β2(t, z) + c2(|τ(xn)(t, z)|p−1 + |Dkx(z)|p−1)

)

for all z ∈ Z \N . Note that for C ⊆ Z measurable, we have

N∑

k=1

∫

C

|Dkx(z)|
(
β2(t, z) + c2(|τ(xn)(t, z)|p−1 + |Dkxn(z)|p−1)

)
dz(5)

�
N∑

k=1

‖χCDkx‖p
(
‖β2(t, ·)‖qq +

∫

Z

(
c2(|τ(xn)(t, z)|p−1 + |Dkxn(z)|p−1)

)q
dz

)1/q

� c4

( N∑

k=1

‖χCDkxn‖pp
)1/p( N∑

k=1

‖β2(t, ·)‖qq + c2‖τ(xn)(t, ·)‖pp + c2‖Dxn(·)‖pp
)1/q

for some c4>0

� c5

( N∑

k=1

∫

C

|Dkxn(z)|p dz
)1/p

for some c5 > 0.

Also we have

N∑

k=1

∫

C

|Dkxn(z)|
(
β2(t, z) + c2(|τ(x)(t, z)|p−1 + |Dkx(z)|p−1)

)
dz(6)

�
N∑

k=1

∥∥χC
(
β2(t, ·) + c2(|τ(x)(t, ·)|p−1 + |Dkx(·)|p−1)

)∥∥
q
‖Dkxn‖p

� c6

N∑

k=1

∫

C

(
β2(t, z) + c2(|τ(x)(t, z)|p−1 + |Dkx(z)|p−1)

)
dz

for some c6 > 0.
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From (4), (5) and (6) it follows that {‖Dxn(·)‖p} is uniformly integrable. So from
the extended dominated convergence theorem (see for example Ash [2], Theorem
7.5.2, p. 295), we infer that Dxn → Dx in Lp(Z,�N ) as n→∞. Therefore xn → x

in X as n→∞ and this proves that A(t, ·) is of type (S)+. �

Now we are ready for the existence theorem of this section.

Theorem 8. If hypotheses H(a), H0 hold and h ∈ Lq(T × Z), then problem (2)
admits a solution x ∈ Wpq(T ) such that ψ(t, z) � x(t, z) � ϕ(t, z) a.e. on T × Z.

�����. Let x0 ∈ [ψ(0, ·), ϕ(0, ·)] = {y ∈ L2(Z) : ψ(0, z) � y(z) � ϕ(0, z) a.e.
on Z} and consider the following initial-boundary value problem

(7)

∂x

∂t
−

N∑

k=1

Dkak(t, z, τ(x), Dx) + f(t, z, τ(x)(t, z), Dτ(x)(t, z)) + λu(t, z, x(t, z))

= h(t, z) in T × Z

x(0, z) = x0(z) a.e. on Z, x|T×Γ = 0.

Here λ > 0 and is going to be fixed in the process of the proof. In what follows we
consider the evolution triple X = W 1,p

0 (Z), H = L2(Z) and X∗ = W−1,q(Z). Note
that in this case the embeddings are compact. Let L : D(L) ⊆ Lp(T,X)→ Lq(T,X∗)
be defined by L(x) = ẋ for all x ∈ D(L) = {x ∈ Wpq(T ) : x(0) = 0}. Using the
integration by parts formula for functions in Wpq(T ) (see Zeidler [38], Proposition
23.23, pp. 422–423), we obtain that L∗ : D∗ ⊆ Lp(T,X)→ Lq(T,X∗) is defined by
L∗(v) = −v̇ for all v ∈ D∗ = {v ∈Wpq(T ) : v(b) = 0}. So L is densely defined (since
C∞0 (T,X) is dense in L

p(T,X)), closed and both L and L∗ are monotone. Therefore
L is maximal monotone operator.
We will show that problem (7) has a solution. First assume that x0 ∈ X ∩

[ψ(0, ·), ϕ(0, ·)]. Define A : T ×X → X∗ by

〈A(t, x), y〉 =
∫

Z

N∑

k=1

ak(t, z, τ(x), Dx)Dky(z) dz.

Let A1 : T × X → X∗ be defined by A1(t, x) = A(t, x + x0). Using Propo-
sition 7, we have that t → A1(t, x) is measurable, while x → A1(t, x) is demi-
continuous and of type (S)+, thus demicontinuous and pseudomonotone. Let
Â1 : Lp(T,X) → Lq(T,X∗) be the Nemitsky operator corresponding to A1(·, ·);
i.e. Â1(x)(·) = A1(·, x(·)). By virtue of Proposition 1, Â1(·) is L-pseudomonotone.
Also let F̂ : Lp(T,X)→ Lq(T × Z) be defined by

F̂ (x)(t, z) = f(t, z, τ(x)(t, z), Dτ(x)(t, z)) + λu(t, z, x(t, z))
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By Lemmas 5 and 6, F̂ (·) is continuous. Hence so is F̂1(x) = F̂ (x + x0). Now if
xn

w→ x in Wpq(T ) and lim((Â1(xn) + F̂1(xn), xn − x)) � 0, we have

lim((Â1(xn), xn − x)) + lim((F̂1(xn), xn − x)) � 0
⇒ lim((Â1(xn), xn − x)) + lim(F̂1(xn), xn − x)pq � 0

with (·, ·)pq being the duality brackets for the pair (Lp(T × Z), Lq(T × Z)). Since
Wpq(T ) embeds compactly in Lp(T × Z), it follows that xn → x in Lp(T × Z) and
so (F̂1(xn), xn − x)pq → 0. Therefore lim((Â1(xn), xn − x)) � 0 and since by Propo-
sition 3, Â1(·) is demicontinuous and of type L-(S)+, it follows that xn → x in
Lp(T,X) and Â1(xn)

w→ Â1(x). Then exploiting the continuity of F̂1(·), we have
Â1(xn) + F̂1(xn)

w→ Â1(x) + F̂1(x) in Lq(T,X∗) and ((Â1(xn) + F̂1(xn), xn)) →
((Â1(x) + F̂1(x), x)) as n → ∞, which proves the L-pseudomonotonicity of the
bounded demicontinuous operator Ĝ1(x) = Â1(x) + F̂1(x).

Next we will show that Ĝ1(·) is coercive; i.e. ((Ĝ1(x),x))‖x‖Lp(T,X)
→ +∞ as ‖x‖Lp(T,X) →∞.

To this end let Ĝ(x) = Â(x)+F̂ (x), where F (x)(t, z) = f(t, z, τ(x)(t, z), Dτ(x)(t, z)).
Because of hypothesis H(a) (v), we have

(8)
∫ b

0

∫

Z

N∑

k=1

ak(t, z, τ(x), Dx)Dkxdz dt � c

∫ b

0

∫

Z

‖Dx(t, z)‖p dz dt = c‖x‖pLp(T,X)

(recall that

(
N∑
k=1

‖Dkx‖pp
)1/p

is an equivalent norm on W 1,p
0 (Z)). Also from

Lemma 6, we have that

(9) λ

∫ b

0

∫

Z

u(t, z, x(t, z))x(t, z) dz dt � λc4‖x‖pLp(T×Z) − λc5‖x‖p−1Lp(T×Z).

In addition, because of hypothesis H(f) (iii), we have

∣∣∣∣∣

∫ b

0

∫

Z

f(t, z, τ(x)(t, z), Dτ(x)(t, z))x(t, z) dz dt

∣∣∣∣∣

�
∫ b

0

∫

Z

(
β2(t, z) + c2

(
|τ(x)(t, z)|p−1 + ‖Dτ(x)(t, z)‖p−1

))
|x(t, z)| dz dt.

From Gilbarg-Trudinger [16] (p. 145), we know that

Dτ(x)(t, z) =





Dϕ(t, z) if ϕ(t, z) � x(t, z)

Dx(t, z) if ψ(t, z) � x(t, z) � ϕ(t, z)

Dψ(t, z) if x(t, z) � ψ(t, z).
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So via Hölder’s inequality, we obtain
∣∣∣∣∣

∫ b

0

∫

Z

f(t, z, τ(x)(t, z), Dτ(x)(t, z))x(t, z) dz dt

∣∣∣∣∣(10)

�
(
‖β2‖Lq(T×Z) + c6 + ‖Dx‖p−1Lp(T×Z,�N)

)
‖x‖Lp(T×Z) (for some c6 > 0)

�
(
c7 + ‖x‖p−1Lp(T,X)

)
‖x‖Lp(T×Z) (for some c7 > 0)

� c8(ε) + c9(ε)‖x‖pLp(T,X) + c10(ε)‖x‖Lp(T×Z)

(by Young’s inequality with ε > 0 and c8(ε), c9(ε), c10(ε) > 0)

⇒
∫ b

0

∫

Z

f(t, z, τ(x)(t, z), Dτ(x)(t, z)) dz dt

� − c8(ε)− c9(ε)‖x‖pLp(T,X) − c10(ε)‖x‖pLp(T×Z).

From (8), (9) and (10), it follows that

((G(x), x)) � (c− c9(ε))‖x‖pLp(T,X) + (λc4 − c10(ε))‖x‖pLp(T,X)(11)

− λc5‖x‖pLp(T,X) − c8(ε)

⇒ ((G1(x), x)) � (c− ĉ9(ε))‖x
+ x0‖pLp(T,X) + (λc4 − c10(ε))‖x+ x0‖pLp(T,X) − λĉ5‖x
+ x0‖pLp(T,X) − ĉ8(ε)

for some ĉ9(ε), ĉ5, ĉ8(ε) > 0. Let ε > 0 be such that c − ĉ9(ε) > 0. Then for this
choice of ε > 0, we choose λ > 0 large enough so that λc4 − c10(ε) > 0. Therefore
(11) implies that G1(·) is coercive.
Apply Proposition 2 to obtain x ∈ D(L) such that L(x) + G1(x) = h. Evidently

x + x0 = y solves (7) when x0 ∈ X ∩ [ψ(0, ·), ϕ(0, ·)]. For the general case let
x0 ∈ [ψ(0, ·), ϕ(0, ·)] and let Proposition 2 xn0 ∈ X ∩ [ψ(0, ·), ϕ(0, ·)] be such that
xn0 → x0 inH as n→∞. To see that such a sequence exists, let {yn0 }n�1 ⊆ X be such
that yn0 → x0 in H as n→∞. Set xn0 = (yn0 ∨ψ(0))∧ϕ(0) = (yn0 ∧ϕ(0))∨ψ(0). From
Gilbarg-Trudinger [16] (p. 145), we have that xn0 ∈ X for every n � 1. Moreover,
from the continuity of the lattice operations in H , it follows that xn0 → x0 in H as
n → ∞. Let xn ∈ Wpq(T ) n � 1 be a solution of (7) with initial condition xn0 . We
have

ẋn + Â(xn) + F̂ (xn) = h, xn(0) = x
n
0 n � 1(12)

⇒ ((ẋn, xn)) + ((Â(xn), xn)) + ((F̂ (xn), xn)) = ((h, xn)).

From the integration by parts formula for functions in Wpq(T ), we have

(13) ((ẋn, xn)) =
1
2
|xn(b)|2 −

1
2
|xn0 |2 � −c11
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for some c11 > 0. Also from the previous estimations which established the coer-
civity of Ĝ(·), we have

(14) ((Â(xn) + F̂ (xn), xn)) � c12‖xn‖pLp(T,X) − λc13‖xn‖p−1Lp(T,X) − c14.

Using (13) and (14) in (12), we obtain

(15) c12‖xn‖pLp(T,X) � ‖h‖Lq(T,H)‖xn‖Lp(T,X) + λc13‖xn‖p−1Lp(T,X) + c15

with c15 = c11 + c14 > 0. From (15) it follows at once that {xn}n�1 is bounded in
Lp(T,X) and then by virtue of (12), hypotheses H(a) (iii), H(f) (iii) and Lemma 6,
we obtain that {ẋn}n�1 is bounded in Lq(T,X∗). So {xn}n�1 is bounded in Wpq(T )
and by passing to a subsequence if necessary, we may assume that xn

w→ x inWpq(T )
as n → ∞. Since Wpq(T ) embeds continuously in C(T,H), we also have xn

w→ in
C(T,H), thus xn(0)

w→ x(0) in H as n→∞. Therefore x(0) = x0. Also we have

(16) lim((Â(xn) + F̂ (xn), xn − x)) � lim((ẋn, x− xn)).

Once again, employing the integration by parts formula in Wpq(T ), we obtain

((ẋn, x− xn)) = −1
2
|x(b)− xn(b)|2 +

1
2
|x(0)− xn0 |2 + ((ẋ, x− xn))(17)

⇒ lim((ẋn, x− xn)) � 0.

Using (17) in (16) and since ((F̂ (xn), xn− x)) = (F̂ (xn), xn − x)pq → 0 as n→∞,
we infer that

lim((Â(xn), xn − x)) � 0.

But recall that Â(·) is demicontinuous and of type L-(S)+. Hence xn → x in
Lp(T,X) and Â(xn)

w→ Â(x) in Lq(T,X∗). Because F̂ (·) is continuous, we obtain
F̂ (xn)→ F (x) in Lq(T ×Z). Thus in the limit as n→∞, we have ẋ+Â(x)+F̂ (x) =
h, x(0) = x0, which proves that x ∈ Wpq(T ) is a solution of (7) for the initial
condition x0 ∈ [ψ(0, ·), ϕ(0, ·)]. Therefore the solution set S(x0) ⊆ Wpq(T ) of (7) is
nonempty for every x0 ∈ [ψ(0, ·), ϕ(0, ·)].
Next let K = [ψ, ϕ] = {x ∈ C(T,H) : ψ(t, z) � x(t, z) � ϕ(t, z) a.e. on Z for

every t ∈ T }. We claim that for every x0 ∈ [ψ(0, ·), ϕ(0, ·)], S(x0) ⊆ K. Indeed let
x ∈ S(x0). Since ψ is a lower solution of (2), with (ψ− x)+ ∈Wpq(T )∩Lp(T ×Z)+
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as our test function, we have

−
∫ b

0

〈
∂ψ

∂t
, (ψ − x)+

〉
dt− a(ψ, (ψ − x)+)(18)

−
∫ b

0

∫

Z

f(t, z, ψ,Dψ)(ψ − x)+(t, z) dz dt

� −
∫ b

0

∫

Z

h(t, z)(ψ − x)+(t, z) dz dt,

ψ(0, z) � ψ(b, z) a.e. on Z, ψ|T×Γ � 0.

Since x ∈ S(x0), we have
∫ b

0

〈
∂x

∂t
, (ψ − x)+

〉
dt+ a(x, (ψ − x)+)(19)

+
∫ b

0

∫

Z

f(t, z, τ(x), Dτ(x))(ψ − x)+(t, z) dz dt

+ λ
∫ b

0

∫

Z

u(t, z, x)(ψ − x)+(t, z) dz dt

=
∫ b

0

∫

Z

h(t, z)(ψ − x)+(t, z) dz dt,

x(0, z) = x(b, z) a.e. on Z, x|T×Γ = 0.

Adding (18) and (19) above, we obtain

∫ b

0

〈
∂(x− ψ)

∂t
, (ψ − x)+

〉
dt+ a(x, (ψ − x)+)− a(ψ, (ψ − x)+)(20)

+
∫ b

0

∫

Z

(f(t, z, τ(x), Dτ(x)) − f(t, z, ψ,Dψ))(ψ − x)+(t, z) dz dt

+ λ
∫ b

0

∫

Z

u(t, z, x)(ψ − x)+(t, z) dz dt � 0.

By virtue of the integration by parts formula for functions in Wpq(T ) and since
x0 ∈ [ψ(0, ·), ϕ(0, ·)], hence (ψ(0, ·)− x(0, ·))+ = 0, we have

(21)
∫ b

0

〈
∂(x− ψ)

∂t
, (ψ − x)+

〉
dt = −1

2
‖ψ(b, ·)− x(b, ·)‖22 � 0.

Also because of hypothesis H(a) (ii), we have

a(x, (ψ − x)+)− a(ψ, (ψ − x)+)(22)

=
∫ b

0

∫

Z

N∑

k=1

(ak(t, z, τ(x), Dx) − ak(t, z, ψ,Dψ))Dk(ψ − x)+(t, z) dz dt � 0.
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Finally from the definition of the truncation map τ(·), we have

(23)
∫ b

0

∫

Z

(f(t, z, τ(x), Dτ(x)) − f(t, z, ψ,Dψ))(ψ − x)+(t, z) dz dt = 0.

Using (21), (22) and (23) in (20) above, we obtain

λ

∫ b

0

∫

Z

u(t, z, x(t, z))(ψ − x)+(t, z) dz dt � 0

⇒ 0 � λ

∫ ∫

{ψ�x}
−(ψ − x)p−1(t, z)(ψ − x)+(t, z) dz dt

⇒ ‖(ψ − x)+‖pLp(T×Z) = 0,

hence ψ(t, z) � x(t, z) for all t ∈ T and almost all z ∈ Z.
In a similar fashion, we prove that x(t, z) � ϕ(t, z) a.e. on Z, t ∈ T . Hence we

have proved that for every x0 ∈ [ψ(0, ·), ϕ(0, ·)], S(x0) ⊆ K = [ψ, ϕ].
Now let R : [ψ(0, ·), ϕ(0, ·)]→ 2[ψ(0,·),ϕ(0,·)] \ {∅} be the multifunction defined by

R(y) = (eb ◦ S)(y) = eb(S(y)) = S(y)(b) = {x(b) : x ∈ S(y)}

(here eb : C(T,H)→ H is the evaluation at t = b map). First note that if y = ψ(0, ·),
then for every x ∈ S(y), we have ψ(0, ·) � x(b, ·) ∈ R(y). Next let v1 ∈ R(y1), y1 � v1
and y1 � y2 (the order being the usual pointwise partial order on H). We claim
that there is v2 ∈ R(y2) such that v1 � v2. Indeed let x1 ∈ S(y1) such that
x1(b) = v1, x1(0) = y1 and let τ1 be the truncation map and u1 the penalty function
corresponding to the pair (x1, ϕ). Note that since y1 � v1, x1(·, ·) is a lower solution
for problem (2). Consider the following initial-boundary value problem:

(24)
∂x

∂t
−

N∑

k=1

Dkak(t, z, τ1(x), Dx) + f(t, z, τ1(x), Dτ1(x)) + λu1(t, z, x(t, z))

= h(t, z) in T × Z

x(0, z) = y2(z) a.e. on Z, x|T×Γ = 0.

Exactly as we did for problem (2), we can show that problem (24) above has
a nonempty solution set S1(y2) ⊆ Wpq(T ) and that S1(y2) ⊆ K1 = [x1, ϕ]. In
particular, if x2 ∈ S1(y2), then x2 ∈ S(y2) and x1 � x2.
Next we claim that S(x0) is compact in C(T,H) for every x0 ∈ [ψ(0, ·), ϕ(0, ·)].

To this end {xn}n�1 ⊆ S(x0). From earlier consideration, we know that {xn}n�1 is
bounded in Wpq(T ). Thus by passing to a subsequence if necessary, we may assume
that xn

w→ x in Wpq(T ) as n→∞. From an earlier part of the proof, we know that

482



x ∈ S(x0) and lim((Â(xn), xn − x)) � 0. Since Â(·) is of type L-(S)+, we have that
xn → x in Lp(T,X) as n→∞. From the integration by parts formula for functions
in Wpq(T ), we obtain

1
2
|xn(t)− x(t)|2 �

∫ t

0
〈ẋn(s)− ẋ(s), xn(s)− x(s)〉 ds

� ‖ẋn − ẋ‖Lp(T,X∗)‖xn − x‖Lp(T,X)

� M‖xn − x‖Lp(T,X)

for some M > 0 since {ẋn}n�1 ⊆ Lq(T,X∗) is bounded. Therefore

‖xn − x‖C(T,H) → 0 as n→∞
⇒ S(x0) is compact in C(T,H) as claimed.

Then R = eb◦S is a multifunction with nonemty compact values in [ψ(0, ·), ϕ(0, ·)].
Since the positive cone in L2(Z) is regular, we can apply Proposition 2.2 of Heikkila-
Hu [17] and produce y ∈ [ψ(0, ·), ϕ(0, ·)] such that y = R(y). If x ∈ S(y) ⊆ Wpq(T )
is such that x(b) = x(0) = y, then x ∈ Wpq(T ) is the desired solution of (2). �

4. Extremal solutions

In this section we consider a version of (2) in which the coefficient functions ak
are independent of x and the term f is independent of the gradient Dx. Moreover,
the continuity condition on f(t, z, ·) is replaced by a weak monotonicity condition.
For such a problem we prove the existence of extremal solutions in the order interval
[ψ, ϕ]; i.e. we show that there exist solutions x∗, x∗ ∈ [ψ, ϕ] such that for every
solution x ∈ [ψ, ϕ], we have x∗(t, z) � x(t, z) � x∗(t, z) for all t ∈ T and almost all
z ∈ Z.
So let T, Z ⊆ �

N be as in section 3. On T ×Z we consider the following nonlinear
periodic parabolic problem:

(25)

∂x

∂t
−

N∑

k=1

Dkak(t, z,Dx) = f(t, z, x(t, z)) in T × Z

x(0, z) = x(b, z) a.e. on Z, x|T×Γ = 0.

Our hypotheses concerning the data of problem (25), are the following:
H(a)1: ak : T × Z × �

N → �, k = 1, 2, . . . , N , are functions such that
(i) for every ξ ∈ �N , (t, z)→ ak(t, z, ξ) is measurable;
(ii) for every (t, z) ∈ T × Z, ξ → ak(t, z, ξ) is continuous;
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(iii) for every ξ ∈ �
N , |ak(t, z, ξ)| � β1(t, z) + c1‖ξ‖p−1 a.e on T × Z, with β1 ∈

Lq(T × Z), c1 > 0, 2 � p <∞, 1p + 1q = 1;

(iv)
N∑
k=1

(
ak(t, z, ξ)− ak(t, z, ξ

′
)
)
(ξk− ξ

′
k) � 0 a.e. on T × Z, for every x ∈ � and

every ξ, ξ
′ ∈ �N ;

(v)
N∑
k=1

ak(t, z, ξ)ξk � c‖ξ‖p a.e. on T × Z for every ξ ∈ �N and with c > 0.

H10: There exist an upper solution ϕ ∈ Ŵpq(T ) and a lower solution ψ ∈ Ŵpq(T ) for
problem (25) such that ψ(t, z) � ϕ(t, z) for all t ∈ T and almost all z ∈ Z.
H(f)1: f : T × Z × � → �, is a function such that
(i) f(·, ·, ϕ(·, ·)), f(·, ·, ψ(·, ·)) ∈ Lq(T × Z);
(ii) there exists M � 0 such that for almost all (t, z) ∈ T × Z x→ f(t, z, x) +Mx

is strictly increasing on the interval [ψ(t, z), ϕ(t, z)];
(iii) if x ∈ C(T, L2(Z)) and for all t ∈ T and almost all z ∈ Z, ψ(t, z) � x(t, z) �

ϕ(t, z), then (t, z)→ f(t, z, x(t, z)) is measurable.

Remark. If f(·, ·, ·) is a jointly Borel measurable function or more generally a
Shragin function (see Appell-Zabrejko [1]), then hypothesis H(f)1 (iii) is satisfied.
This includes the case where f(t, z, x) is a Caratheodory function; i.e. measurable
in (t, z) and continuous in x. Moreover, by virtue of hypothesis H(f)1 (ii) and
Theorem 1.9 of Appell-Zabrejko [1], we see that H(f)1 (iii) holds if and only if f is
equivalent to a Borel function; i.e. there exists a Borel function f1 : T ×Z × � → R

such that f(t, z, x) = f1(t, z, x) for all (t, z) ∈ (T × Z) \ N and all x ∈ �, with N
being a Lebesgue-null subset of T × Z.

Theorem 9. If hypotheses H(a)1, H10 and H(f)1 hold, then problem (25) has
extremal solutions in the order interval K = [ψ, ϕ] = {x ∈ C(T, L2(Z)) : ψ(t, z) �
x(t, z) � ϕ(t, z) for all t ∈ T and almost all z ∈ Z}.

�����. As in the proof of Theorem 8, let X = W 1,p
0 (Z), H = L2(Z) and

X∗ = W−1,q(Z). Let K0 = [ψ(0, ·), ϕ(0, ·)] = {y0 ∈ H : ψ(0, z) � y0(z) � ϕ(0, z)
a.e. on Z}. Given (y, y0) ∈ K × K0, we consider the following nonlinear parabolic
initial-boundary value problem:

(26)

∂x

∂t
−

N∑

k=1

Dkak(t, z,Dx) +Mx(t, z) = f(t, z, y(t, z)) +My(t, z) in T × Z

x(0, z) = y0(z) a.e. on Z, x|T×Γ = 0.

If A : T × X → X∗ is defined by 〈A(t, x), y〉 =
∫
Z

N∑
k=1

ak(t, z,Dx)y(z) dz, then

we can easily verify that t → A(t, x) is measurable, x → A(t, x) is demicontinuous
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and monotone (see hypothesis H(a) (iv)), ‖A(t, x)‖∗ � â(t) + ĉ‖x‖p−1 a.e. on T ,
with â ∈ Lq(T ), ĉ > 0 and 〈A(t, x), x〉 � c0‖x‖p−1 for some c0 > 0. Thus from
a well-known existence theorem for evolution equations (see for example Zeidler
[38], Theorem 30.A, p. 771), we infer that problem (26) has a unique solution x =
S(y, y0) ∈Wpq(T ).
We claim that S(K,K0) ⊆ K. To this end let (y, y0) ∈ K×K0 and let x = S(y, y0).

Because ψ is a lower solution of (25), by using (ψ − x)+ ∈Wpq(T ) ∩ Lp(T × Z)+ as
our test function, we obtain

−
∫ b

0

〈
∂ψ

∂t
, (ψ − x)+

〉
dt−

∫ b

0

∫

Z

N∑

k=1

ak(t, z,Dψ)Dk(ψ − x)+(t, z) dz dt(27)

� −
∫ b

0

∫

Z

f(t, z, ψ(t, z))(ψ − x)+(t, z) dz dt,

ψ(0, z) � ψ(b, z) a.e. on Z, ψ|T×Γ � 0.

Also since x ∈Wpq(T ) is a solution of (26), we have

∫ b

0

〈
∂x

∂t
, (ψ − x)+

〉
dt+

∫ b

0

∫

Z

N∑

k=1

ak(t, z,Dx)Dk(ψ − x)+(t, z) dz dt(28)

+M
∫ b

0

∫

Z

x(t, z)(ψ − x)+(t, z) dz dt

= −
∫ b

0

∫

Z

f(t, z, y(t, z))(ψ − x)+(t, z) dz dt

+M
∫ b

0

∫

Z

y(t, z)(ψ − x)+(t, z) dz dt.

Adding (27) and (28), we obtain

∫ b

0

〈
∂(x− ψ)

∂t
, (ψ − x)+

〉
dt(29)

+
∫ b

0

∫

Z

N∑

k=1

(ak(t, z,Dx)− ak(t, z,Dψ))Dk(ψ − x)+(t, z) dz dt

+M
∫ b

0

∫

Z

x(t, z)(ψ − x)+(t, z) dz dt

�
∫ b

0

∫

Z

(f(t, z, y(t, z))− f(t, z, ψ(t, z)))(ψ − x)+(t, z) dz dt

+M
∫ b

0

∫

Z

y(t, z)(ψ − x)+(t, z) dz dt.
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Note that

(30)
∫ b

0

〈
∂(x− ψ)

∂t
, (ψ − x)+

〉
dt = −1

2
‖(ψ(b, ·)− x(b, ·))+‖2L2(Z) � 0.

Also because of hypothesis H(a)1 (iv), we have

(31)
∫ b

0

∫

Z

N∑

k=1

(ak(t, z,Dx)− ak(t, z,Dψ))Dk(ψ − x)+(t, z) dz dt � 0.

Finally hypothesis H(f)1 (ii) implies that

∫ b

0

∫

Z

(f(t, z, y(t, z)) +My(t, z)− f(t, z, ψ(t, z))(32)

−Mx(t, z))(ψ − x)+(t, z) dz dt

�
∫ b

0

∫

Z

(f(t, z, y(t, z)) +My(t, z)− f(t, z, ψ(t, z))

−Mψ(t, z))(ψ − x)+(t, z) dz dt � 0.

Combining (29) → (32), we obtain

∫ b

0

∫

Z

(f(t, z, y(t, z)) +My(t, z)− f(t, z, ψ(t, z))

−Mx(t, z))(ψ − x)+(t, z) dz dt = 0

⇒
∫∫

{ψ�x}
(f(t, z, y(t, z)) +My(t, z)− f(t, z, ψ(t, z))

−Mx(t, z))(ψ − x)(t, z) dz dt = 0.

This last equality in conjunction with hypothesis H(f) (ii), implies that T+ =
{t ∈ T : ψ(t, ·) > x(t, ·) in L2(Z)} is Lebesgue-null. So because t → x(t, ·), t →
ψ(t, ·) ∈ C(T, L2(Z)), we infer that x(t, z) � ψ(t, z) for all t ∈ T and almost all
z ∈ Z. Similarly we show that x(t, z) � ϕ(t, z) for all t ∈ T and almost all z ∈ Z.
Hence x ∈ K and so S(K,K0) ⊆ K.

Next we will show that S(·, ·) is a monotone increasing operator from K × K0
into K. To this end let (y1, y10), (y2, y

2
0) ∈ K ×K0 and assume that y1(t, ·) � y2(t, ·)

in L2(Z) for all t ∈ T and y10 � y20 in L
2(Z). Let x1 = S(y1, y10) and x2 = S(y2, y

2
0).
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We have

∫ b

0

〈
∂x1
∂t

, (x1 − x2)+

〉
dt+

∫ b

0

∫

Z

N∑

k=1

ak(t, z,Dx1)Dk(x1 − x2)+(t, z) dz dt(33)

+M
∫ b

0

∫

Z

x1(t, z)(x1 − x2)+(t, z) dz dt

=
∫ b

0

∫

Z

f(t, z, y1(t, z))(x1 − x2)+(t, z) dz dt

+M
∫ b

0

∫

Z

y1(t, z)(x1 − x2)+(t, z) dz dt.

Also we have

−
∫ b

0

〈
∂x2
∂t

, (x1 − x2)+

〉
dt−

∫ b

0

∫

Z

N∑

k=1

ak(t, z,Dx2)Dk(x1 − x2)+(t, z) dz dt(34)

−M

∫ b

0

∫

Z

x2(t, z)(x1 − x2)+(t, z) dz dt

= −
∫ b

0

∫

Z

f(t, z, y2(t, z))(x1 − x2)+(t, z) dz dt

−M

∫ b

0

∫

Z

y2(t, z)(x1 − x2)+(t, z) dz dt.

Adding (33) and (34), we obtain

∫ b

0

〈
∂(x1 − x2)

∂t
, (x1 − x2)+

〉
dt+

∫ b

0

∫

Z

N∑

k=1

(ak(t, z,Dx1)(35)

− ak(t, z,Dx2))Dk(x1 − x2)+(t, z) dz dt

+M
∫ b

0

∫

Z

(x1 − x2)(x1 − x2)+ dz dt

=
∫ b

0

∫

Z

(f(t, z, y1(t, z))− f(t, z, y2(t, z))) (x1 − x2)+(t, z) dz dt

+M
∫ b

0

∫

Z

(y1 − y2)(x1 − x2)+ dz dt.

Observe that (x1(0, ·) − x2(0, ·))+ = 0, because x1(0, ·) = y10 � y20 = x2(0, ·) in
L2(Z). So

(36)
∫ b

0

〈
∂(x1 − x2)

∂t
, (x1 − x2)+

〉
dt =

1
2
‖x1(b, ·)− x2(b, ·)‖2L2(Z) � 0.
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Also hypothesis H(a)1 (ii) implies that

(37)
∫ b

0

∫

Z

N∑

k=1

(ak(t, z,Dx1)− ak(t, z,Dx2))Dk(x1 − x2)(t, z) dz dt � 0.

Furthermore, note that

(38) M

∫ b

0

∫

Z

(x1 − x2)(x1 − x2)+ dz dt � 0.

Using (36) → (38) in (35) and exploiting the monotonicity of x→ f(t, z, x) +Mx

(see hypothesis H(f)1 (ii)), we obtain

∫ b

0

∫

Z

(
f(t, z, y1(t, z)) +My1(t, z)− f(t, z, y2(t, z))

−My2(t, z)
)
(x1 − x2)+(t, z) dz dt = 0

⇒ x1(t, ·) � x2(t, ·) in L2(Z) for every t ∈ T.

So S(·, ·) is monotone increasing from K ×K0 into K.
Next let êb : C(T,H) → C(T,H) × H be defined by êb(x) = (x, x(b)). Then

define R : K × K0 → K × K0 by R = êb ◦ S. Evidently R(·, ·) is a nondecreasing
map on K ×K0. Let {(yn, yn0 )}n�1 be a monotone sequence in K ×K0. From the
monotone convergence theorem, we have yn0 → y0 in H as n → ∞. Let f̂(t, y)(·) =
f(t, ·, y(·)) for every y : Z → � measurable (i.e. the Nemitsky operator corresponding
to f(t, z, x)). Then if un(·) = f̂(·, yn(·)) +Myn, n � 1, by hypotheses H(f)1 we see
that {un}n�1 is bounded in Lq(T,H). So by passing to a subsequence if necessary,
we may assume that un

w→ u in Lq(T,H). If xn = S(yn, yn0 ), n � 1, we have

ẋn(t) +A(t, xn(t)) = un(t) a.e. on T

xn(0) = yn0 .

Invoking Proposition 4, we have xn → x in C(T,H) as n→∞, with x ∈ Wpq(T )
being the unique solution of

ẋ(t) +A(t, x(t)) = u(t) a.e. on T

x(0) = y0.

Then R(yn, yn0 ) = (xn, xn(b))→ (x, x(b)) = R(y, y0) in X(T,H))×H as n→∞.
So we can apply Theorem 1.2.2, p. 23, of Heikkila-Lakshmikantham [18] and produce
(x∗, x10) and (x

∗, x20) the least and greatest fixed points in K×K of R (extremal fixed
points). Evidently x∗ and x∗ are the extremal solutions of (25) in K = [ψ, ϕ]. �
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5. Parabolic problems with discontinuities

In this section we focus our attention to nonlinear parabolic with discontinuities.
So with T and Z ⊆ �

N as in the previous sections, we consider the following nonlinear
initial-boundary value problem:

(39)

∂x

∂t
−

N∑

k=1

Dkak(t, z,Dx) = f(x(t, z)) in T × Z

x(0, z) = x0(z) a.e. on Z, z|T×Γ = 0.
Here f : � → � is a locally bounded, measurable but in general discontinuous

function. It is well-known that in the absence of continuity hypotheses on f(·), in
general we can not expect to have solutions for (39). In this case it is advisable to
consider instead a multivalued version of (39), for which an adequate existence theory
can be established. This approach is developed in the book Filippov [15] (for ordinary
differential equations), in the papers of Rauch [34] and Chang [7] (for semilinear
elliptic equations) and in the paper of Feireisl [14] (for semilinear parabolic problems).
Parabolic problems with discontinuities arise in various problems of mathematical
physics and engineering.
To introduce a multivalued variant of (39), for which we will be able to prove an

existence theorem, we define F (r) = [f1(r), f2(r)], r ∈ �, where f1(r) = limt→rf(t)
and f2(r) = limt→rf(t). Let 
 : � → � be defined by 
(r) =

∫ r
0 f(t) dt. Then 
(·)

is locally Lipschitz and se we can define its subdifferential ∂
(r) in the sense of
Clarke [8]. Then ∂
(r) ⊆ F (r) and if the one sided limits f(r±) exist at r ∈ �, then
∂
(r) = F (r) (see Chang [7]). In a more applied language, this last equality implies
that the multivalued law is characterized by the Clarke subdifferential of a nonsmooth
potential 
(·). Then instead of (39), we consider the following multivalued nonlinear
parabolic problem:

(40)

∂x

∂t
−

N∑

k=1

Dkak(t, z,Dx) ∈ F (x(t, z)) in T × Z

x(0, z) = x0(z) a.e. on Z, x|T×Γ = 0.

Definition. A function ϕ ∈ Ŵpq(T ) is said to be an “upper solution” of (40), if
f2(ϕ(·, ·)) ∈ Lq(T × Z),

((
∂ϕ

∂t
, u

))
+

∫ b

0

∫

Z

N∑

k=1

ak(t, z,Dx)Dku(t, z) dz dt �
∫ b

0

∫

Z

f2(ϕ(t, z))u(t, z) dz dt

for all u ∈ Lp(T,W 1,p
0 (Z))∩Lp(T ×Z)+, ϕ(0, z) � x0(z) a.e. on Z and ϕ|T×Γ � 0.

Similarly a function ψ ∈ Ŵpq(T ) is a “lower solution” of (40), if f1(ψ(·, ·)) ∈ Lq(T×Z)
and the inequalities in the previous definition are reversed and f2 is replaced by f1.
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H20: There exist an upper solution ϕ and a lower solution ψ such that ψ(t, z) �
ϕ(t, z) for all t ∈ T and almost all z ∈ Z.
Our hypotheses on the nonlinear discontinuity f(t, z, x), are the following:

H(f)2: f : � → � belong in L∞loc(�) and for almost all (t, z) ∈ T × Z and all
r ∈ [ψ(t, z), ϕ(t, z)], we have that |f(r)| � β2(t, z) + c2(t)|r|, with β2 ∈ L2(T × Z)
and c2 ∈ L2(T ).
Let Y be a separable Banach space and let Pf (Y ) (resp. Pfc(Y )) denote the family

of nonempty, closed (resp. nonempty, closed, convex) subsets of Y . On Pf (Y ) we
can define a generalized metric, known in the literature as “Hausdorff metric”, by
setting

h(A,C) = max

[
sup
a∈A

d(a, C), sup
c∈C

d(c, A)

]

for all A,C ∈ Pf (Y ). It is well-known that (Pf (Y ), h) is a complete metric space
and (Pfc(Y ), h) is closed (hence complete) subspace of it (see for example Klein-
Thompson [23]). Also let h∗(A,C) = sup[d(a, C) : α ∈ A]. If V is a Hausdorff
topological space, a multifunction (set-valued function) G : V → 2V \ {∅} is said
to be “h∗-upper semicontinuous (h∗-usc)”, if for every v ∈ V the function v

′ →
h∗(G(v

′
), G(v)) is continuous at v. Recall that ifG(·) is upper-semicontinuous (i.e. for

every C ⊆ Y closed, G−(C) = {v ∈ V : G(v) ∩ C �= ∅} is closed in V ), then G(·) is
h∗-usc, while the converse is true if G(·) has compact values. Moreover, both notions
imply that GrG = {(v, y) ∈ V × Y y ∈ G(v)} is closed in V × Y . A multifunction
G : V → Pf (Y ) is said to be “h-continuous” (resp. h-Lipschitz), if it is continuous
(resp. Lipschitz) as a function from V into (Pf (Y ), h). For details on these and
related notions we refer to DeBlasi-Myjak [11]. Finally a multifunction F : T →
Pf (Y ) is said to be measurable if GrF = {(t, y) ∈ T × Y : y ∈ F (t)} ∈ L × B(Y ),
with L being the Lebesque σ-field of T and B(Y ) the Borel σ-field of Y .
The following lemma can be proved as Proposition 4.1 of DeBlasi [9], with minor

obvious modifications to accomodate the presence of t ∈ T .

Lemma 10. If T = [0, b], Y is a seperable Banach space and F : T ×Y → Pfc(Y )
is a multifunction which is measurable in t ∈ T , h∗-usc in y ∈ Y and |F (t, y)| =
sup[‖v‖Y : v ∈ F (t, y)] � θ(t) a.e. on T with θ ∈ L2(T ), then there exists a sequence
of multifunctions Fn : T × Y → Pfc(Y ), n � 1, such that for every y ∈ Y there
exist k(y) > 0 and ε > 0 such that if y1, y2 ∈ Bε(y) = {y′ ∈ Y : ‖y′ − y‖ � ε},
then h(Fn(t, y1), Fn(t, y2)) � k(y)θ(t)‖y1 − y2‖Y a.e. on T (i.e. Fn(t, ·) is locally
h-Lipschitz), F (t, y) ⊆ . . . ⊆ Fn(t, y) ⊆ Fn+1(t, y) ⊆ . . ., |Fn(t, y)| = sup[‖v‖Y : v ∈
Fn(t, y)] � θ(t) a.e. on T , n � 1, for every [t, y] ∈ T × Y Fn(t, y)

h→ F (t, y) as
n → ∞ and there exists un : T × Y → Y , n � 1, measurable in t, locally Lipschitz
in y and for every [t, y] ∈ T × Y un(t, y) ∈ Fn(t, y), n � 1. Moreover, if F (t, ·) is
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h-continuous, then t→ Fn(t, x) is measurable (hence (t, x)→ Fn(t, x) is measurable
too; see Papageorgiou [29]).

In this analysis we will be using the following truncation map τ̂ : T × L2(Z) →
L2(Z) and penalty map B : T × L(Z)→ Lq(Z), defined by

τ̂ (t, x)(z) =





ϕ(t, z) if ϕ(t, z) � x(z)

x(z) if ψ(t, z) � x(z) � ϕ(t, z)

ψ(t, z) if x(z) � ψ(t, z)

and

B(t, x)(z) =





x(z)− ϕ(t, z) if ϕ(t, z) � x(z)

0 if ψ(t, z) � x(z) � ϕ(t, z)

x(z)− ψ(t, z) if x(z) � ψ(t, z)

it is straightforward to verify the validity of the following lemmas:

Lemma 11. τ̂ (t, x) is measurable in t and continuous in x.

Remark. From Gilbarg-Trudinger [16] (p. 145), we know that for every t ∈ T

and every x ∈ W 1,p(Z), τ̂(t, x) ∈ W 1,p(Z).

Lemma 12. B(t, x) is measurable in t, continuous in x and satisfies the following
growth condition: there exist a∗ ∈ L2(T ) and c∗ > 0 such that for almost all t ∈ T

and all x ∈ L2(Z)
‖B(t, x)‖2 � a∗(t) + c∗‖x‖2.

Now we are ready for a theorem, which not only establishes the existence of a
solution in K = [ψ, ϕ] for problem (4), but also provides information about the
topological structure of this solution set. The set of solutions of (40) located in
K = [ψ, ϕ], will be denoted by S(x0).

Definition. By an “Rδ-set” we mean a set S in a metric space Y which is home-
omorphic to the intersection of a decreasing sequence {Sn}n�1 of absolute retracts.
If every Sn is compact, we say that S is a “compact Rδ-set”.

Remark. Recall that a closed subset A of Y is said to be an “absolute retract”
(AR), if every homeomorphic image ofA in a metric space V , is retract of V . A subset
C of V is said to be a “retract”, if there exists a continuous mapping (retraction) r :
V → C such that r|C coincides with the identity map (see Kuratowski [25]). Hyman’s
theorem [21] states that a subset A of a metric space is a compact Rδ-set if and
only if it is the intersection of a decreasing sequence of contractible compact metric
spaces. Observe that every compact Rδ-set is a continuous (nonempty, compact and
connected), but, in contrast to contractible sets, need not be path-connected.
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Theorem 13. If hypotheses H(a)1, H20 and H(f)2 hold, then S(x0) is a compact
Rδ-set in C(T, L2(Z)).

�����. As before we set X = W 1,p
0 (Z), H = L2(Z) and X∗ = W−1,q(Z). Let

F̂ : T ×H → Pfc(H) be defined by

F̂ (t, x) = {h ∈ H : f1(τ(t, x)(z)) � h(z) � f2(τ(t, x)(z)) a.e. on Z}.

We claim that for every x ∈ H , t→ F̂ (t, x) is measurable. To this end note that

GrF̂ (·, x) = {(t, y) ∈ T ×H : f1(τ(t, x)(z)) � y(z) � f2(τ(t, x)(z)) a.e. on Z}

=

{
(t, y) ∈ T ×H :

∫

C

f1(τ(t, x)(z)) dz �
∫

C

y(z) �
∫

C

f2(τ(t, x)(z)) dz,

C ∈ B(Z)
}
.

Here by B(Z) we denote the Borel σ-field of Z. Recall that B(Z) is countably
generated. So there exists a countable field {Cn}n�1 such that B(Z) = σ({Cn}n�1).
Hence we can write

GrF̂ (·, x) =
⋂

n�1

{
(t, y) ∈ T ×H :

∫

Cn

f1(τ(t, x)(z)) dz �
∫

Cn

y(z) dz �
∫

Cn

f2(τ(t, x)(z)) dz

}
.

But f1(·) is lower semicontinuous and f2(·) is upper semicontinuous, hence mea-
surable (see for example Rauch [34] or Chang [7]). Then by lemma 11 and Fubini’s
theorem, it follows that t→

∫
Cn
f1(τ(t, x)(z)) dz t→

∫
Cn
f2(τ(t, x)(z)) dz, n � 1,

are measurable. Thus

GrF̂ (·, x) =
⋂

n�1

{
(t, y) ∈ T ×H :

∫

Cn

f1(τ(t, x)(z)) dz �
∫

Cn

y(z) dz �
∫

Cn

f2(τ(t, x)(z)) dz

}

∈ L ×B(H).

where we recall that L denotes the Lebesque σ-field of T and B(H) the Borel σ-field
of H . Moreover, from Papageorgiou [30], we know that

h∗(F̂ (t, x), F̂ (t, y)) =
∫

Z

h∗(F (τ(t, x)(z)), F (τ(t, y)(z))) dz.
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But F (·) is h∗-usc (since f1(·) is lower semicontinuous, f2(·) is upper semicontin-
uous and F (r) = [f1(r), f2(r)] for all r ∈ �; see Klein-Thompson [23]). Therefore,
via Fatou’s Lemma we check at once for every t ∈ T , F̂ (t, ·) is h∗-usc. In addition,
because of hypotheses H(f)2, we have

|F̂ (t, x)| = sup{|v| : v ∈ F̂ (t, x)} � β̂2(t) + c2(t)|x| a.e. on T

with β̂2(t) = ‖β2(t, ·)‖L2(Z) and c2 ∈ L2(T ) as in H(f)2. Set

F̂1(t, x) = F̂ (t, x)−B(t, x).

Evidently by virtue of Lemma 12, we see that F̂1(t, x) satisfies the same measur-
ability, continuity and growth properties as F̂ (t, x).
Let A : T ×X∗ be defined by

〈A(t, x), y〉 =
∫

Z

N∑

k=1

ak(t, z,Dx)Dky(z) dz

for all y ∈ X . We know from the proof of Theorem 9, that t→ A(t, x) is measurable,
x → A(t, x) is demicontinuous, monotone, ‖A(t, x)‖∗ � â(t) + ĉ‖x‖p−1 a.e. on T
with â ∈ Lq(T ), ĉ > 0 and 〈A(t, x)〉 � c0‖x‖p−1 for some c0 > 0. Then consider the
following evolution inclusion:

(41) ẋ(t) +A(t, x(t)) ∈ F̂1(t, x(t)) a.e. on T
x(0) = x0.

By standard a priori estimation, we may assume without any loss of generality
that |F̂1(t, x)| � θ(t) a.e. on T with θ ∈ L2(T ) (see Papageorgiou-Shahzad [32]).
Now let F̂1n : T ×H → Pfc(H), n � 1, be a sequence of multifunctions postulated

by Lemma 10. For every n � 1, consider the following Cauchy problem

(42) ẋ(t) +A(t, x(t)) ∈ F̂1n(t, x(t)) a.e. on T
x(0) = x0.

Let Ŝ(x0) and Ŝn(x0) be the solution sets of (41) and (42) respectively. They
are subsets of Wpq(T ) ⊆ C(T,H) and by virtue of Proposition 4, they are compact
sets in C(T,H) (see also Papageorgiou-Shahzad [32]). We will show that for every
n � 1, Ŝn(x0) is contractible. Let un(t, x) be the Caratheodory (in fact locally
Lipschitz in x) selector of F̂1n(t, x), postulated by Lemma 10. For every r ∈ [0, b)
and x ∈ Ŝn(x0), let w(t, x)(·) ∈Wpq(T ) be the unique solution of ẇ(t)+A(t, w(t)) =
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un(t, w(t)) a.e. on [r, b], w(r) = x(r). For r = b, we set w(b, x)(b) = x(b). Define
hn : T × Ŝn(x0)→ Ŝn(x0) by

hn(r, x)(t) =

{
x(t) if 0 � t � r

w(r, x)(t) if r � t � b.

Evidently hn(0, x) = w(0, x) and hn(b, x) = x for every x ∈ Ŝn(x0). It remains
to show that h(·, ·) is continuous in C(T,H). To this end let [rm, xm] → [r, x] in
T × Ŝn(x0) ⊆ T × C(T,H). We consider two distinct cases:
Case I: rm � r for every m � 1.
Let vm(t) = hn(rm, xm)(t), t ∈ T . Evidently vm ∈ Ŝn(x0) for all m � 1 and so

by passing to a subsequence if necessary, we may assume that vm → v in C(T,H)
as m → ∞. Clearly v(t) = x(t) for 0 � t � r. Also let y ∈ Wpq(T ) be the unique
solution of ẏ(t) +A(t, y(t)) = un(t, v(t)) a.e. on [r, b], y(r) = v(r). Let N � 1. Then
for m � N large enough, vm(·) satisfies v̇m(t) + A(t, vm(t)) = un(t, vm(t)) a.e. on
[rN , b]. Because A(t, ·) is monotone, we have

〈ẏ(t)− v̇m(t), y(t)− vm(t)〉 � (un(t, v(t)) − un(t, vm(t)), y(t)− vm(t))

a.e on [rN , b]

⇒ 1
2
d
dt
|y(t)− vm(t)|2 � |un(t, v(t))− un(t, vm(t))| · |y(t)− vm(t)|

a.e on [rN , b]

⇒ 1
2
|y(t)− vm(t)|2 � 1

2
|y(rN )− vm(rN )|2

+
∫ t

rN

|un(s, v(s)) − un(s, vm(s))| · |y(s)− vm(s)| ds.

Invoking Lemma A.5, p. 157 of Brezis [5], we obtain

|y(t)− vm(t)| � |y(rN )− vm(rN )|+
∫ t

rN

|un(s, v(s))− un(s, vm(s))| ds.

Passing to the limit as m→∞, we obtain

|y(t)− v(t)| � |y(rN )− v(rN )| for rN � t � b.

Since y(rN ) → x(r) and v(rN ) → v(r) = x(r) in H as N → ∞, in the limit we
have

|y(t)− x(t)| = 0

for r � t � b. Hence v̇(t) + A(t, v(t)) = un(t, v(t)) a.e. on [r, b], v(r) = x(r) and so
v = h(r, x). Therefore h(rm, xm)→ h(r, x) in C(T,H)
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Case II: rm � r for every m � 1.
Keeping the notation introduced in the analysis of Case I, we have that v(t) = x(t)

for 0 � t � r. Also via the same argument as in Case I, we have

|y(t)− vm(t)| � |y(r)− vm(r)| +
∫ t

r

|un(s, v(s)) − un(s, vm(s))| ds

for t ∈ [r, b]
⇒ |y(t)− v(t)| � |y(r)− v(r)| for t ∈ [r, b]

But y(r) = x(r) = v(r). So y(t) = v(t) for t ∈ [r, b]. Hence v = h(r, x), which
implies that h(rm, xm)→ h(r, x) asm→∞ in C(T,H). Therefore Ŝn(x0) is compact
and contractible in C(T,H).
In general we can always find a subsequence {rm}m�1 satisfying Case I or Case

II. Thus we have established the continuity of hn(·, ·), n � 1. So for every n � 1, the
solution set Sn(x0) ⊆ C(T,H) is compact and contractible.
Next we claim that Ŝ(x0) =

⋂
n�1

Ŝn(x0). Clearly Ŝ(x0) ⊆
⋂
n�1

Ŝn(x0). Let x ∈
⋂
n�1

Sn(x0). Then x = p̂(fn, x0) for some fn ∈ L2(T,H) such that fn(t) ∈ F̂1(t, xn(t))

a.e. on T . But {fn}n�1 is bounded in L2(T,H), so by passing to a subsequence if
necessary, we may assume that fn

w→ f in L2(T,H). Then f(t) ∈ F (t, x(t)) (see
Papageorgiou [28], Theorem 4.5). Also by Proposition 4 x = p̂(f, x0). So Ŝ(x0) =⋂
n�1

Ŝn(x0). Now the theorem of Hyman [21] implies that Ŝ(x0) is compact Rδ-set in

C(T,H). Moreover, from the proof of Theorem 8, we know that Ŝ(x0) ⊆ K = [ψ, ϕ].
So Ŝ(x0) = S(x0). Therefore, S(x0) is a compact Rδ-set in C(T,H). �

An immediate consequence of this theorem is the following Kneser-type result for
problem (40).

Corollary 14. If hypotheses H(a)1, H20 and H(f)2 hold, then for every t ∈ T ,
{x(t, ·) ∈ H : x ∈ S(x0)} is nonempty, compact and connected (i.e. a continuum) in
H = L2(Z).

Remark. Analogous structural results for the solution set of differential inclu-
sions in �N , were established by DeBlasi-Myjak [10] and Hu-Papageorgiou [20]. In
addition, Corollary 14 above extends the results of Ballotti [4] and Kikuchi [22], who
consider semilinear parabolic problems with a continuous perturbation term.

Another consequence of Theorem 13, is the following corollary:

Corollary 15. If hypotheses H(a)1, H20 , H(f)2 hold and there is a compact, con-
vex set C ⊆ [ψ(0, ·), ϕ(0, ·)] ⊆ L2(Z) such that S(x0)(b) = {x(b, ·) ∈ L2(Z) : x ∈
S(x0)} ⊆ C, then problem (40) has a periodic solution.
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�����. Let R : C → Pk(K) be defined by R(y0) = eb(S(y0)). Recalling that a
compact Rδ-set is acyclic, we see that R(·) is pseudo-acyclic in the sense of Lasry-
Robert [26] and so Theorem 8 of [26], gives a y0 ∈ R(y0). Let x ∈ S(y0). Then
x(0, ·) = x(b, ·) = y0(·), i.e. x is the desired periodic solution. �
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