
Czechoslovak Mathematical Journal

Václav Tryhuk
Remark to transformations of linear differential and functional-differential
equations

Czechoslovak Mathematical Journal, Vol. 50 (2000), No. 2, 265–278

Persistent URL: http://dml.cz/dmlcz/127568

Terms of use:
© Institute of Mathematics AS CR, 2000

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/127568
http://dml.cz


Czechoslovak Mathematical Journal, 50 (125) (2000), 265–278

REMARK TO TRANSFORMATIONS OF LINEAR DIFFERENTIAL

AND FUNCTIONAL-DIFFERENTIAL EQUATIONS

Václav Tryhuk, Brno

(Received April 29, 1997)

Abstract. For linear differential and functional-differential equations of the n-th order
criteria of equivalence with respect to the pointwise transformation are derived.

Keywords: ordinary differential equations, functional-differential equations, transforma-
tions

MSC 2000 : 34A30, 34A34, 34K05, 34K15

1. Introduction

The theory of global pointwise transformations of homogeneous linear differential

equations was developed in the monograph of F. Neuman [6] (see historical remarks,
definitions, results and applications). The criterion of global equivalence of the

second order equations was published by O. Borůvka [1], of the third and higher order
equations by F. Neuman [6]. Transformations of functional-differential equations

were studied in [2, 3, 4, 5, 7, 8]. In this paper we derive criteria of equivalence for
ordinary differential equations and functional-differential equations of the first and

higher orders, exploiting some results from [6, 9].

This research has been conducted at the Department of Mathematics as part of the
research project “Qualitative Behaviour of Solutions of Functional Differential Equations
Describing Mathematical Models of Technical Phenomena” and has been supported by
CTU grant No. 460078.
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2. Notation

Let Vn+1 denote an (n + 1)-dimensional vector space, �c = [c0, c1, . . . , cn]T =
[ci]ni=0 ∈ Vn+1 being a point, a vector of the space written in the column form;
T means the transposition. Let Vn+1 be equipped with the scalar product

(�p, �q) =
n∑

i=0
piqi for any pair �p, �q of its vectors. Let �p0, �p1, . . . , �pm be m + 1

vectors from Vn+1. Notation P = [�p0, �p1, . . . , �pm] = [pij ]
i=0,...,n
j=0,...,m denotes a ma-

trix and (P, Q) =
i∑
j

pijqij the scalar product of two matrices of the same type.

Similarly P(j,...,k) = [�pj , . . . , �pk] means a submatrix, PQ = P(0,...,n)Q(0,...,n) is

the matrix multiplication. Consider real functions y ∈ Cn+1(I), I ⊆ � being
an interval, ξ1, ξ2, . . . , ξm ∈ Cn(I), ξj : I → I, ξ0 = idI , ξj �= ξk for j �= k;

j, k ∈ {0, . . . , m}; m, n ∈ � = {1, 2, . . .}. We denote (y(ξj(x)))(i) = diy(ξj(x))/dxi,
y(i)(ξj(x)) = diy(ξj(x))/dξj(x)i, x ∈ I and yi(x) = y(i)(x), yij(x) = y(i)(ξj(x)).

Then �y(x) = [y0(x), y1(x), . . . , yn(x)]T = [y(x), y′(x), . . . , y(n)(x)]T ∈ Vn+1 for each
x ∈ I and Y(j,...,k)(x) = [�y(ξj(x)), . . . , �y(ξk(x))], x ∈ I.

3. Preliminary results

Lemma 1 (A modification of Lemma 8.5.1, [6]). Let n ∈ � and let the relation

z(t) = L(t)y(ϕ(t))

be satisfied where the real functions y : I → �, z : J → � belong to the classes

Cn+1(I), Cn+1(J) respectively, and L : J → �, L ∈ Cr(J), L(t) �= 0 on J , and ϕ is

a Cr diffeomorphism of J onto I for some integer r � n+ 1. Then

z(i)(t) =
i∑

j=0

aij(t)y(j)(ϕ(t))

= ai0(t)y(ϕ(t)) + ai1(t)y′(ϕ(t)) + . . .+ aii(t)y(i)(ϕ(t)),

i ∈ {0, 1, . . . , n+ 1},

where

a00(t) = L(t), . . . , ai0(t) = a′i−10(t), i � 1;
aij(t) = a′i−1j(t) + ai−1j−1(t)ϕ′(t), i > j > 1;

aii(t) = ai−1i−1(t)ϕ′(t), i ∈ {0, 1, . . . , n+ 1}
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are real functions, aij(t) ∈ Cr−(i−j)−1(J) for j > 0, and ai0(t) ∈ Cr−i(J). Moreover

ai0(t) = L(i)(t), i � 0;

ai1(t) = (L(t)ϕ(t))(i) − L(i)(t)ϕ(t) =
i−1∑

j=0

(
i

j

)
L(j)(t)ϕ(i−j)(t), i � 1;

. . .

aij(t) =

(
i

j

)
L(i−j)(t)ϕ′(t)j +

(
i

j − 1

)
L(t)ϕ′(t)j−1ϕ(i−j+1)(t)

+ rij(L, . . . , L(i−j−1), ϕ′, . . . , ϕ(i−j))(t), i > j > 1;

. . .

aii−2(t) =

(
i

2

)
L′′(t)ϕ′(t)i−2 +

(
i

3

)
(L(t)ϕ′′′(t) + 3L′(t)ϕ′′(t))ϕ′(t)i−3

+ 3

(
i

4

)
L(t)ϕ′(t)i−4ϕ′′(t)2, i � 2;

aii−1(t) =

(
i

1

)
L′(t)ϕ′(t)i−1 +

(
i

2

)
L(t)ϕ′(t)i−2ϕ′′(t), i � 2;

aii(t) = L(t)ϕ′(t)i, i � 0

and

ai0(t) = ai0(L(i))(t), i � 0;
aij(t) = aij(L, . . . , L(i−j), ϕ′, . . . , ϕ(i−j+1))(t), i � j > 0; i ∈ {0, 1, . . . , n+ 1}.

�����. From the relation

z(t) = a00(t)y(ϕ(t)), a00(t) = L(t),

we have

z′(t) = a′00(t)y(ϕ(t)) + a00(t)ϕ′(t)y′(ϕ(t)) = a10(t)y(ϕ(t)) + a11(t)y′(ϕ(t)).

Suppose by induction that

z(i−1)(t) = ai−10(t)y(ϕ(t)) + . . .+ ai−1j−1(t)y(j−1)(ϕ(t))

+ ai−1j(t)y(j)(ϕ(t)) + . . .+ ai−1i−1(t)y(i−1)(ϕ(t)).

Then

z(i)(t) = a′i−10(t)y(ϕ(t)) + . . .+ (ai−1j−1(t)ϕ′(t)

+ a′i−1j(t))y
(j)(ϕ(t)) + . . .+ ai−1i−1(t)ϕ′(t)y(i)(ϕ(t))

= ai0(t)y(ϕ(t)) + . . .+ aij(t)y(j)(ϕ(t)) + . . .+ aii(t)y(i)(ϕ(t)).
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Hence

z(i)(t) =
i∑

j=0

aij(t)y(j)(ϕ(t))

where

a00(t) = L(t), . . . , ai0(t) = a′i−10(t), i � 1;
aij(t) = a′i−1j(t) + ai−1j−1(t)ϕ′(t), i > j > 1;

aii(t) = ai−1i−1(t)ϕ′(t); i ∈ {0, 1, . . . , r}.

By induction we get

a00(t) = L(t), a10(t) = a′00(t) = L′(t), . . .

and
ai0(t) = a′i−10(t) = L(i)(t), i � 0.

Similarly

a00(t) = L(t), a11(t) = a00(t)ϕ′(t) = L(t)ϕ′(t), . . .

and

aii(t) = ai−1i−1(t)ϕ
′(t) = L(t)ϕ′(t)i, i � 0.

We have

a21(t) = a′11(t) + a10(t)ϕ′(t) = 2L′(t)ϕ′(t) + L(t)ϕ′′(t) = (L(t)ϕ(t))′′ − L′′(t)ϕ(t)

and by induction we get

ai1(t) = (L(t)ϕ(t))
(i) − L(i)(t)ϕ(t); i � 2

because

ai+11(t) = a′i1(t) + ai0(t)ϕ
′(t) = ((L(t)ϕ(t))(i) − L(i)(t)ϕ(t))′ + L(i)(t)ϕ′(t)

= (L(t)ϕ(t))(i+1) − L(i+1)(t)ϕ(t).

Then

a21(t) = 2L′(t)ϕ′(t) + L(t)ϕ′′(t),

a32(t) = a′22(t) + a21(t)ϕ′(t)

=

(
3
1

)
L′(t)ϕ′(t)3−1 +

(
3
2

)
L(t)ϕ′(t)3−2ϕ′′(t)

and

aii−1(t) =

(
i

1

)
L′(t)ϕ′(t)i−1 +

(
i

2

)
L(t)ϕ′(t)i−2ϕ′′(t), i � 2
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since

ai+1i(t) = a′ii(t) + aii−1(t)ϕ′(t)

= (L(t)ϕ′(t)i)′ +

(
i

1

)
L′(t)ϕ′(t)i +

(
i

2

)
L(t)ϕ′(t)i−1ϕ′′(t)

=

(
i+ 1
1

)
L′(t)ϕ′(t)i +

(
i+ 1
2

)
L(t)ϕ′(t)i−1ϕ′′(t).

In the same way,

a20(t) = L′′(t),

a31(t) = a′21(t) + a20(t)ϕ′(t) = L′′′(t)ϕ(t) + 3L′(t)ϕ′′(t) + 3L′′(t)ϕ′(t)

=

(
3
2

)
L′′(t)ϕ′(t)3−2 +

(
3
3

)
(L(t)ϕ′′′(t) + 3L′(t)ϕ′′(t))ϕ′(t)3−3

and

aii−2(t) =

(
i

2

)
L′′(t)ϕ′(t)i−2 +

(
i

3

)
(L(t)ϕ′′′(t) + 3L′(t)ϕ′′(t))ϕ′(t)i−3

+ 3

(
i

4

)
L(t)ϕ′(t)i−4ϕ′′(t)2; i � 2

because then

ai+1i−1(t) = a′ii−1(t) + aii−2(t)ϕ′(t)

=

(
i+

(
i

2

))
L′′(t)ϕ′(t)i−1 +

((
i

2

)
+

(
i

3

))
L(t)ϕ′(t)i−3ϕ′′′(t)

+

(
i(i− 1) +

(
i

2

)
+ 3

(
i

3

))
L′(t)ϕ′(t)i−2ϕ′′(t)

+

(
(i− 2)

(
i

2

)
+ 3

(
i

4

))
L(t)ϕ′(t)i−3ϕ′′(t)2

=

(
i+ 1
2

)
L′′(t)ϕ′(t)i−1 +

(
i+ 1
3

)
(L(t)ϕ′′′(t) + 3L′(t)ϕ′′(t))ϕ′(t)i−2

+ 3

(
i+ 1
4

)
L(t)ϕ′(t)i−3ϕ′′(t)2.

Using the above results we can suppose that

aij(t) =

(
i

j

)
L(i−j)(t)ϕ′(t) j +

(
i

j − 1

)
L(t)ϕ′(t) j−1ϕ(i−j+1)(t)

+ rij(L, . . . , L(i−j−1), ϕ′, . . . , ϕ(i−j))(t).
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Then

ai+1k(t) = a′ik(t) + aik−1(t)ϕ
′(t)

=

((
i

k

)
L(i−k)(t)ϕ′(t)k +

(
i

k − 1

)
L(t)ϕ′(t)k−1ϕ(i−k+1)(t)

+ rik(L, . . . , L(i−k−1), ϕ′, . . . , ϕ(i−k))(t)

)′

+

((
i

k − 1

)
L(i−k+1)(t)ϕ′(t)k−1 +

(
i

k − 2

)
L(t)ϕ′(t)k−2ϕ(i−k+2)(t)

+ rik−1(L, . . . , L(i−k), ϕ′, . . . , ϕ(i−k+1))(t)

)
ϕ′(t)

=

((
i

k

)
+

(
i

k − 1

))
L(i−k+1)(t)ϕ′(t)k

+

((
i

k − 1

)
+

(
i

k − 2

))
L(t)ϕ′(t)k−1ϕ(i−k+2)(t)

+ [r′ik(L, . . . , L(i−k−1), ϕ′, . . . , ϕ(i−k))(t)

+ rik−1(L, . . . , L(i−k), ϕ′, . . . , ϕ(i−k+1))(t)ϕ′(t)

+ k

(
i

k

)
L(i−k)(t)ϕ′(t)k−1ϕ′′(t) +

(
i

k − 1

)
L′(t)ϕ′(t)k−1ϕ(i−k+1)(t)

+ (k − 1)
(

i

k − 1

)
L(t)ϕ′(t)k−2ϕ′′(t)ϕ(i−k+1)(t)]

=

(
i+ 1

k

)
L((i+1)−k)(t)ϕ′(t)k +

(
i+ 1
k − 1

)
L(t)ϕ′(t)k−1ϕ((i+1)−k+1)(t)

+ ri+1k(L, . . . , L((i+1)−k+1), ϕ′, . . . , ϕ((i+1)−k))(t)

for every k, 0 < k � i+ 1. Moreover,

ai0(t) = ai0(L(i)(t)) = L(i)(t).

We can suppose by induction that

aij(t) = aij(L(t), . . . , L(i−j)(t), ϕ′(t), . . . , ϕ(i−j+1)(t))

for i � j > 0 because a11(t) = L(t)ϕ′(t) = a11(L(t), ϕ′(t)) and

ai+1k(t) = a′ik(L(t), . . . , L
(i−k)(t), ϕ′(t), . . . , ϕ(i−k+1)(t))

+ aik−1(L(t), . . . , L(i−k+1)(t), ϕ′(t), . . . , ϕ(i−k+2)(t))ϕ′(t)

= ai+1k(L(t), . . . , L
((i+1)−k)(t), ϕ′(t), . . . , ϕ((i+1)−k+1)(t))

for every k, 0 < k � i+ 1.
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Finally,

ai0(t) = Li(t) ∈ Cr−i(J),

aij(t) = aij(L(t), . . . , L(i−j)(t), ϕ′(t), . . . , ϕ(i−j+1)(t)) ∈ Cr−(i−j)−1(J)

for j > 0, with respect to the assumptions L, ϕ ∈ Cr(J). �

4. Linear differential equations

Consider two ordinary homogeneous linear differential equations

yn+1(x) = (�p(x), �y(x)) = p0(x)y0(x) + p1(x)y1(x) + . . .+ pn(x)yn(x),(1)

yi(x) = y(i)(x), x ∈ I;

zn+1(t) = (�q(t), �z(t)) = q0(t)z0(t) + q1(t)z1(t) + . . .+ qn(t)zn(t),(2)

zi(t) = z(i)(t), t ∈ J

with real coefficients, defined on an interval I ⊆ �, J ⊆ �, respectively.

Definition 1 ([6], p. 15). We say that (1) is globally transformable into (2) if
there exist two functions L, ϕ such that

– the function L is of the class Cn+1(J) and is nonvanishing on J ,
– the function ϕ is a Cn+1 diffeomorphism of the interval J onto I,

and the function

(3) z(t) = L(t)y(ϕ(t))

is a solution of (2) whenever y is a solution of (1).

If (1) is globally transformable into (2) then we say that (1), (2) are equivalent
equations. We say that (3) is a stationary transformation if it globally transforms

an equation (1) into itself on I, i.e. if L ∈ Cn+1(I), L(x) �= 0 on I, ϕ is a Cn+1

diffeomorphism of I onto I = ϕ(I) and the function z(x) = L(x)y(ϕ(x)) is a solution

of zn+1(x) = (�p(x), �z(x)) whenever y is a solution of yn+1(x) = (�p(x), �y(x)), x ∈ I.

Theorem 1. Let n, r ∈ � and r � n + 1. Let L, ϕ satisfy the assumptions of

Lemma 1. Then (1) is globally transformable into (2) by means of a transformation

z(t) = L(t)y(ϕ(t)) if and only if

(4) �an+1(t) = AT (t)�q(t)− an+1n+1(t)�p(ϕ(t)), t ∈ J
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is satisfied for the vectors of coefficients of the equations (1), (2) and

A(t) = [aij(t)]
i=0,...,n
j=0,...,n,�an+1(t) = [an+10(t), an+11(t), . . . , an+1n(t)]

T

where the functions aij(t) are defined by Lemma 1.

�����. Using Lemma 1, we obtain

zi(t) = z(i)(t) =
i∑

j=0

aij(t)y(j)(ϕ(t)) =
i∑

j=0

aij(t)yj(ϕ(t)), i ∈ {0, 1, . . . , n+ 1}, t ∈ J.

Thus

�z(t) = [zi(t)]ni=0 = A(t)�y(ϕ(t)),

zn+1(t) = an+10(t)y0(ϕ(t)) + . . .+ an+1n(t)yn(ϕ(t)) + an+1n+1(t)yn+1(ϕ(t))

= (�an+1(t), �y(ϕ(t))) + an+1n+1(t)(�p(ϕ(t)), �y(ϕ(t)))

= (�q(t), �z(t)) = (�q(t), A(t)�y(ϕ(t))), t ∈ J.

Hence

(�an+1(t), �y(ϕ(t))) = (A
T (t)�q(t)− an+1n+1(t)�p(ϕ(t)), �y(ϕ(t)))

and

(5) �an+1(t) = AT (t)�q(t)− an+1n+1(t)�p(ϕ(t)),

i.e.

an+10(t) = a00(t)q0(t) + a10(t)q1(t) + . . .+ an0(t)qn(t)− an+1n+1(t)p0(ϕ(t)),

an+11(t) = a11(t)q1(t) + . . .+ an1(t)qn(t)− an+1n+1(t)p1(ϕ(t)),

. . .

an+1n(t) = ann(t)qn(t)− an+1n+1(t)pn(ϕ(t)),

t ∈ J.

�

Corollary 1. If (1) is globally transformable into (2) by means of the transfor-
mation (3), then the (n + 1)-st derivatives (n � 1) of the functions L and ϕ satisfy
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differential equations

L(n+1)(t) = h(t, ϕ(t), ϕ′(t), L(t), . . . , L(n)(t))

= q0(t)L(t) + . . .+ qn(t)L(n)(t)− L(t)ϕ′(t)n+1p0(ϕ(t));

ϕ(n+1)(t) = g(t, ϕ(t), . . . , ϕ(n)(t), L(t), . . . , L(n)(t))

=
1

L(t)

n∑

k=1

(ak1(t)qk(t)−
(

n+ 1
k

)
L(k)(t)ϕ(n+1−k)(t)) − p1(ϕ(t))ϕ

′(t)n+1,

ak1(t) = ak1(L, . . . , L(k−1), ϕ′, . . . , ϕ(k))(t); t ∈ J.

We obtain the assertion using the first two equations in (5) together with the defin-

itions of the functions aij(t) in Lemma 1.

Corollary 2. The transformation (3) is a stationary transformation of (1) if and
only if ϕ(I) = I and the functions L, ϕ ∈ Cn+1(I) satisfy the conditions

�an+1(x) = AT (x)�p(x)− an+1n+1(x)�p(ϕ(x)), x ∈ I,

where the functions aij are defined by Lemma 1; i, j ∈ {0, 1, . . . , n+ 1}.

Remark 1. Using Theorem 1, if we suppose that qn(t) ≡ 0 on J , pn(x) ≡ 0 on
I, then an+1n(t) = (n+1)ϕ′(t)n−1(L′′(t)ϕ(t) + n

2L(t)ϕ(t)) ≡ 0 on J and an+1n(t) =
−{ϕ, t}

(
n+2
3

)
L(t)ϕ′(t)n−1 for ϕ ∈ Cr(J), r > n + 1 (r � n + 1 if n > 1), ϕ′(t) �= 0,

where the symbol {ϕ, t} := 1
2

ϕ′′′(t)
ϕ′(t) − 3

4 (
ϕ′′(t)
ϕ′(t) )

2 is used for the Schwarzian derivative
of ϕ; t ∈ J (See [6], p. 7). In the case n = 1 we obtain for ϕ ∈ C3(J) the Kummer

equation q0(t) = p0(ϕ(t))ϕ′(t)2 − {ϕ, t}, t ∈ J (see [6], p. 89). We can obtain more
useful formulas (as in [6], pp. 49–52) using (5).

5. Linear functional-differential equations

Let y ∈ Cn+1(I); ξ1, ξ2, . . . , ξm ∈ Cn(I), I ⊆ � being an interval, ξj : I → I, ξ0 =
idI , ξj �= ξk for j �= k; j, k ∈ {0, . . . , m}; m, n ∈ �. We consider a homogeneous linear

functional-differential equation with real coefficients pi, pij and m delays ξ1, . . . , ξm

of the form

yn+1(x) = (�p(x), �y(x)) + (P (x), Y(1,...,m)(x))

= ([pi(x)]ni=0, [yi(x)]ni=0) + ([pij(x)]
i=0,...,n
j=1,...,m, [yi(ξj(x))]

i=0,...,n
j=1,...,m)

=
n∑

i=0

(pi(x)yi(x) +
m∑

j=1

pij(x)yi(ξj(x))), yi(x) = y(i)(x), x ∈ I.
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Consider two such equations

yn+1(x) = (�p(x), �y(x)) + (P (x), Y (x)), Y (x) = [yi(ξj(x))]
i
j , x ∈ I,(6)

zn+1(t) = (�q(t), �z(t)) + (Q(t), Z(t)), Z(t) = [zi(ηj(t))]ij , t ∈ J.(7)

In accordance with Definition 1 (see [2], [5], [7], [8]), an equation (6) is glob-
ally transformable into an equation (7) with respect to the transformation z(t) =

L(t)y(ϕ(t)), if L ∈ Cn+1(J), L(t) �= 0 on J , ϕ is a Cn+1 diffeomorphism of J onto I

and the function z is a solution of (7) whenever y is a solution of (6). Moreover,

(8) ξj(ϕ(t)) = ϕ(ηj(t)), j = 1, 2, . . . , m; t ∈ J

is true for the deviations ξj(x), ηj(t) and the function ϕ.

Theorem 2. Let m, n, r ∈ � and r � n+ 1. Let L, ϕ satisfy the assumptions of

Lemma 1. Then (6) is globally transformable into (7) by means of a transformation

z(t) = L(t)y(ϕ(t)) if and only if the function ϕ is a solution of

ξj(ϕ(t)) = ϕ(ηj(t)), j = 1, 2, . . . , m; t ∈ J, ϕ(J) = I,

and

�an+1(t) = AT (t)�q(t)− an+1n+1(t)�p(ϕ(t));(9)

AT (ηj(t))�qj(t) = an+1n+1(t)�pj(ϕ(t)), j = 1, 2, . . . , m(10)

are satisfied on J , where aij(t) are the functions defined by Lemma 1, �an+1(t) =

[an+10(t), an+11(t), . . . , an+1n(t)]T , �pj(ϕ(t)) and �qj(t) denotes the j-th column of the

matrix P (ϕ(t)) and Q(t) respectively.

�����. By using Lemma 1 we have

zi(t) = z(i)(t) =
i∑

j=0

aij(t)y
(j)(ϕ(t)) =

i∑

j=0

aij(t)yj(ϕ(t)), i ∈ {0, 1, . . . , n+ 1}, t ∈ J.

Thus

�z(t) = [zi(t)]ni=0 = A(t)�y(ϕ(t))

and for ξj(ϕ(t)) = ϕ(ηj(t)) we get

�z(ηj(t)) = A(ηj(t))�y(ϕ(ηj(t))) = A(ηj(t))�y(ξj(ϕ(t))); j = 1, 2, . . . , m; t ∈ J.
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Then

zn+1(t) = (�an+1(t), �y(ϕ(t))) + an+1n+1(t)yn+1(ϕ(t))

= (�an+1(t), �y(ϕ(t))) + an+1n+1(t)(�p(ϕ(t)), �y(ϕ(t)))

+ an+1n+1(t)(P (ϕ(t)), Y (ϕ(t)))

= (�an+1(t) + an+1n+1(t)�p(ϕ(t)), �y(ϕ(t)))

+
n∑

j=1

(an+1n+1(t)�pj(ϕ(t)), �y(ξj(ϕ(t)))), t ∈ J

where �pj denotes the j-th column of the matrix P . Hence

zn+1(t) = (�q(t), �z(t)) + (Q(t), Z(t)) = (�q(t), �z(t)) +
m∑

j=1

(�qj(t), �z(ηj(t)))

= (�q(t), A(t)�y(ϕ(t))) +
m∑

j=1

(�qj(t), A(ηj(t))�y(ξj(ϕ(t))))

= (AT (t)�q(t), �y(ϕ(t))) +
m∑

j=1

(AT (ηj(t))�qj(t), �y(ξj(ϕ(t)))).

Comparison of the last two expressions yields

(�an+1(t) + an+1n+1(t)�p(ϕ(t)) −AT (t)�q(t), �y(ϕ(t)))

+
m∑

j=1

(an+1n+1(t)�pj(ϕ(t)) −AT (ηj(t))�qj(t), �y(ξj(ϕ(t)))) = 0, t ∈ J.

Thus

�an+1(t) = AT (t)�q(t)− an+1n+1(t)�p(ϕ(t)),

AT (ηj(t))�qj(t) = an+1n+1(t)�pj(ϕ(t))

on J and the assertion of Theorem 2 is proved. �

Corollary 3. If (6) is globally transformable into (7) by means of the transfor-
mation (3), then the (n+ 1)-st derivatives (n ∈ �) of the functions L, ϕ satisfy the
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differential equations

L(n+1)(t) = h(t, ϕ(t), ϕ′(t), L(t), . . . , L(n)(t))

= q0(t)L(t) + . . .+ qn(t)L
(n)(t)− L(t)ϕ′(t)n+1p0(ϕ(t));

ϕ(n+1)(t) = g(t, ϕ(t), . . . , ϕ(n)(t), L(t), . . . , L(n)(t))

=
1

L(t)

n∑

k=1

(ak1(t)qk(t)−
(

n+ 1
k

)
L(k)(t)ϕ(n+1−k)(t)) − p1(ϕ(t))ϕ′(t)n+1,

ak1(t) = ak1(L, . . . , L(k−1), ϕ′, . . . , ϕ(k))(t); t ∈ J.

Moreover,

ϕ′(t) = G(t, ϕ(t), L(t), [L(i)(ηj(t))]
i=0,...,n
j=1,...,m), t ∈ J.

We obtain the assertion using the first two equations in (9) and the first equation in
(10) together with the definitions of the functions aij(t) in Lemma 1.

Corollary 4. The transformation (3) is a stationary transformation of (6) if and
only if the functions L, ϕ ∈ Cn+1(I) satisfy the conditions

ξj(ϕ(x)) = ϕ(ξj(x)), ϕ(I) = I,

�an+1(x) = AT (x)�p(x) − an+1n+1(x)�p(ϕ(x)),

AT (ξj(x))�pj(x) = an+1n+1(x)�pj(ϕ(x)), x ∈ I,

where the functions aij are defined by Lemma 1 and �pj denotes the j-th column of

the matrix P ; i, j ∈ {0, 1, . . . , n+ 1}, x ∈ I.

Remark 2 (see [7]; pp. 355, 357.). In a situation when the deviating arguments
in equation (6) are constant deviations

ξj(x) = x− cj , cj ∈ � − {0}; j = 1, 2, . . . , m,

the condition ξj(ϕ(t)) = ϕ(ηj(t)) become a system of Abel equations

ϕ(ηj(t)) = ϕ(t)− cj ; j = 1, 2, . . . , m.

When the deviating arguments in (7) are

ηj(t) = t− dj , dj ∈ � − {0},

then we get
ϕ(t− dj) = ϕ(t)− cj ; j = 1, 2, . . . , m.
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If we require that the delayed arguments be converted into delayed ones (or the

advanced into advanced), then we need ϕ′(t) > 0, t ∈ J. Let dj/dk be irrational for
a pair j, k ∈ {1, 2, . . . , m}. Then for each fixed j ∈ {1, 2, . . . , m}, the Abel equation
ϕ(t − dj) = ϕ(t) − cj has a general solution ϕ ∈ Cn+1(J), ϕ′(t) > 0, ϕ(J) = I, of

the form
ϕ(t) =

cj

dj
t+ k, k ∈ �.

For the existence of a simultaneous solution ϕ it is then sufficient and necessary to
have � = cj/dj (a constant not depending on ϕ) for all j ∈ {1, 2, . . . , m}.
Example. Consider two equations

y′′(x) =

([
p0

p1

]
,

[
y(x)

y′(x)

])
+

([
p01 p02

p11 p12

]
,

[
y(x− c1) y(x− c2)

y′(x− c1) y′(x− c2)

])
,

x ∈ I = [a,∞)

and

z′′(t) =

([
q0

q1

]
,

[
z(t)

z′(t)

])
+

([
q01 q02

q11 q12

]
,

[
z(t− d1) z(t− d2)

z′(t− d2) z′(t− d2)

])
,

t ∈ J = [b,∞)

with constant coefficients and deviations; c1, c2, d1, d2 ∈ � − {0}, c1
d1

> 0, d1
d2
being

irrational. Due to Theorem 2 they are equivalent with respect to the transformation

(3) if and only if

ϕ(t− dj) = ϕ(t)− cj ,[
a20(t)
a21(t)

]
=

[
a00(t) a10(t)
0 a11(t)

]
·
[

q0
q1

]
− a22(t)

[
p0
p1

]
,

[
a00(t− dj) a10(t− dj)

0 a11(t− dj)

]
·
[

q0j

q1j

]
= a22(t)

[
p0j

p1j

]
,

j = 1, 2, where a00(t) = L(t), a10(t) = L′(t), a11(t) = L(t)ϕ′(t), a20(t) = L′′(t),
a21(t) = 2L′(t)ϕ′(t) + L(t)ϕ′′(t), a22(t) = L(t)ϕ′(t)2, t ∈ J. In accordance with

Remark 2 we have ϕ(t) = �t+k, � = c1
d1
= c2

d2
> 0, k ∈ �−{0} and ϕ(t) = �·(t−b)+a

for ϕ(J) = I.

Then

L′′(t) = q0L(t) + q1L
′(t)− p0�

2L(t),

2L′(t) = (q1 − p1�)L(t),

q0jL(t− dj) + q1jL
′(t− dj) = p0j�

2L(t),

q1jL(t− dj) = p1j�L(t), j = 1, 2; t ∈ J.
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Using the second equation we obtain L(t) = c exp{kt}, k = q1−p1�
2 , c ∈ � − {0},

and

k2 = q0 + q1k − p0�
2,

q1j = p1j� exp{kdj},
q0j + q1jk = p0j�

2 exp{kdj}, j = 1, 2.

Thus the equations are equivalent with respect to the transformation z(t) =

L(t)y(ϕ(t)) if and only if there exists � ∈ �, � > 0, such that cj = �dj ,

q21 + 4q0 =
(
p21 + 4p0

)
�2,

q0j = �
(
p0j�−

1
2
p1j(q1 − p1�)

)
exp

{q1 − p1�

2
dj

}
,

q1j = p1j� exp
{q1 − p1�

2
dj

}
, j = 1, 2.

For the functions L, ϕ we have

L(t) = c exp
{q1 − p1�

2
t
}

, ϕ(t) = �(t− b) + a; c ∈ � − {0}.
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