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Abstract. We present a generalization of the concept of semiholonomic jets within the
framework of higher order prolongations of a fibred manifold. In this respect, a compilation
of our 2-fibred manifold approach with the methods of natural operators theory is used.
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1. Introduction

Let π : Y → X be a fibred manifold and π1 : J1π → X its first prolongation.

The concept of semiholonomic jets creating an invariant subspace (in fact, an affine
subbundle) Ĵ2π in the space J1π1 of repeated jets is well-known and widely used

(e.g. [5], [8] and [1], [2]). The higher-order generalization of this concept was studied
e.g. in [7] and recently also by the second author in [10]. It appears that it repre-

sents an important background for understanding both the internal structure of jet
prolongations and the higher-order connections as differential equations.

It was the research on relations between various types of connections which moti-

vated the developement of a new approach using the framework of 2-fibred manifolds
in [3]. This method was essentialy applied also in [10], resulting among other in

a definition of πk+r,k-semiholonomic jets useful in the theory of prolongations of
higher-order equations represented by connections.
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In this paper, we prove that our approach can stand for a powerful tool in the

study of invariant subspaces in the most general higher-order situation and that it
is natural in the sense of [5] and [6]. In Section 2 we recall the crucial tool we work
with—a 2-fibred manifold—and the role of a specific morphism Φ within the first

prolongations; for more details we refer to [3]. Section 3 describes the mechanism
of our approach just for the most known situation of semiholonomic jets. Moreover,

the direction for futher generalization is indicated. Section 4 deals with the situation
already described in [10]; in adition, the naturality of the results is discussed. The

top of our story is presented in Section 5, where we study invariant subspaces in
Jsπk+r. For this purpose, we generalize our approach by prolonging the underlying

2-fibred manifold. As a result, we obtain a family of invariant subspaces generalizing
the spaces of πk+r,k-semiholonomic jets from the previous discussion. Again, their

naturality is mentioned.

2. 2-fibred manifold

A 2-fibred manifold is by [4] a quintuple Z
�−→ Y

π−→ X , where π : Y → X and
� : Z → Y (and thus also π◦� : Z → X) are fibred manifolds. Following the standard

notation of jet prolongations of fibred manifolds and fibred morphisms [9], the first
prolongation together with the crucial underlying structures can be described by the

following diagram:

(1)

X
J1(π,idX )≡π1←−−−−−−−−− J1π

J1(�,idX )←−−−−−− J1(π ◦ �)
�idX π1,0

� (π◦�)1,0

�

X
π←−−−− Y

�←−−−− Z
�1,0←−−−− J1�

�idX π

� π◦�
�

X
idX←−−−− X

idX←−−−− X.

In [3], we introduced the idea of a fibred morphism

(2) Φ: Z → J1π

between � and π1,0 over Y and we studied its role in geometrical relations between

connections. Namely, there is a canonical fibred morphism

k : J1π ×Y J
1�→ J1(π ◦ �)
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between π1,0 ×Y �1 (�1 : J1�→ Y ) and � ◦ (π ◦ �)1,0 over Y , defined in terms of the
corresponding sections by

k(j1xγ, j
1
γ(x)ψ) = j

1
x(ψ ◦ γ).

Then an arbitrary fibred morphism Φ (2) induces the affine bundle morphism

kΦ : J1�→ J1(π ◦ �)

between �1,0 and (π ◦ �)1,0 over Z by the composition

J1�
�1,0× id−−−−−→ Z ×Y J

1�
Φ× id−−−→ J1π ×Y J

1�
k−→ J1(π ◦ �).

This kΦ can be then composed with a connection on � (section of �1,0) to get a

connection on π ◦ � (section of (π ◦ �)1,0). For more details and various examples we
refer to [3].

Here, we will be interested in another object related to a morphism Φ. Put

AΦ = {j1xξ ∈ J1(π ◦ �) ; Φ ◦ (π ◦ �)1,0(j1xξ) = J1(�, idX)(j
1
xξ)}.

It is easy to see that AΦ is an affine subbundle in J1(π ◦ �) such that Im kΦ ⊂ AΦ ⊂
J1(π ◦ �). In fact, AΦ := ker SpΦ, where

SpΦ : J
1(π ◦ �)→ VπY ⊗ π∗(T ∗X)

can be on the lines of the Spencer operator (see e.g. [9]) defined in such a way that
SpΦ(j

1
xξ) is a vector such that

J1(�, idX)(j1xξ) + SpΦ(j
1
xξ) = Φ ◦ (π ◦ �)1,0(j1xξ).

The vector bundle AΦ associated to AΦ is (for each Φ)

AΦ = V�Z ⊗ (π ◦ �)∗(T ∗X) ⊂ V(π◦�)Z ⊗ (π ◦ �)∗(T ∗X),

which in general does not split except for � being an affine or vector bundle.
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3. Semiholonomic jets

Consider first a 2-fibred manifold J1π
π1,0−→ Y

π−→ X with the corresponding dia-

gram

(3)

X
π1←−−−− J1π

J1(π1,0,idX)←−−−−−−−− J1π1�idX π1,0

� (π1)1,0

�

X
π←−−−− Y

π1,0←−−−− J1π
(π1,0)1,0←−−−−− J1π1,0�idX π

� π1

�

X
idX←−−−− X

idX←−−−− X

and let Φ: J1π → J1π be a fibred morphism over Y . Denoting by (xi, yσ) the canon-

ical coordinates on Y , the induced coordinates on J1π or on J1π1 are (xi, yσ, yσ
i ) or

(xi, yσ, yσ
i , y

σ
;i, y

σ
i;j), respectively. The morphism Φ is then locally expressed by

(xi, yσ, yσ
i )

Φ�→ (xi, yσ,Φσ
i (x

j , yλ, yλ
k ))

and the corresponding invariant subspace AΦ can be locally characterized by

(4) yσ
;i = Φ

σ
i (x

j , yλ, yλ
k ).

The associated vector subbundle is in this case

AΦ = Vπ1,0J
1π ⊗ π∗1(T ∗X) ⊂ Vπ1J

1π ⊗ π∗1(T ∗X).

In particular, if Φ = idJ1π, then AΦ coincides with the subbundle Ĵ2π of semi-

holonomic jets, the equations of which locally read

yσ
;i = y

σ
i .

Recall here that there is a splitting

Ĵ2π ∼= J2π ×J1π π
∗
1,0(VπY ⊗ π∗(Λ2T ∗X))

—we refer to [3] for more details.
This construction of semiholonomic jets leads to the first task: to determine all

canonical morphisms Φ and consequently to classify all the corresponding invariant
subspaces of J1π1. The result is as follows.
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Proposition 1. The morphism Φ = idJ1π is the only natural transformation

J1π → J1π over the identity of Y .

�����. Denote by Gr
n,m the group of all r-jets at the origin of the diffeomor-

phisms xi = xi(x), yσ = yσ(x, y) of �n+m preserving the origin and the canoni-

cal fibration �n+m → �
n . The canonical coordinates in G1n,m will be denoted by

(ai
j , a

σ
λ, a

σ
i ), while the coordinates of the inverse element will be denoted by a tilde.

By the general theory [5], natural transformations Φ: J1π → J1π over idπ corre-
spond to the G1n,m-equivariant maps

rσ
i = r

σ
i (x

i, yσ, yσ
i )

of standard fibres, which express the coordinate form of Φ. The following transfor-

mation laws, which describe the action of G1n,m on standard fibres, can be easily
computed by direct calculations:

rσ
i = a

σ
λr

λ
j ã

j
i + a

σ
j ã

j
i ,

yσ
i = a

σ
λy

λ
j ã

j
i + a

σ
j ã

j
i .

Using homotheties we have rσ
i = ky

σ
i , k ∈ �. Then the equivariance yields

kyσ
i + a

σ
i = k(y

σ
i + a

σ
i ),

which implies k = 1. Hence rσ
i = yσ

i , so that the only natural transformation in

question is the identity of J1π. �

By Proposition 1, if we identify the invariant subspaces AΦ with canonical mor-
phisms Φ, then the semiholonomic jets Ĵ2π form the only canonical subspace of

J1π1.

The goals for futher investigation are straightforward:

(1) To define certain analogues of semiholonomic jets in the case of higher order

prolongations of a fibred manifold π : Y → X by means of an appropriate
morphism Φ.

(2) To classify all invariant subspaces from item (1).

We remark that the concept of a geometrical (or a canonical) construction has been

reflected as a natural differential operator or a natural transformation, see [5].
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4. πk+r,k-semiholonomic jets

In this section we show that there is an analogue of Proposition 1 for 2-fibred

manifolds Jk+rπ
πk+r,k−−−−→Jkπ

πk−→ X , r � 1. We separate the cases of r = 1 and r � 2.
The reason is that πk+1,k : Jk+1π → Jkπ is an affine bundle, which is not the case

of a general πk+r,k : Jk+rπ → Jkπ with r � 2.
The first situation has the corresponding diagram

(5)

X
(πk)1←−−−− J1πk

J1(πk+1,k,idX )←−−−−−−−−−− J1πk+1�idX (πk)1,0

� (πk+1)1,0

�

X
πk←−−−− Jkπ

πk+1,k←−−−− Jk+1π
(πk+1,k)1,0←−−−−−−− J1πk+1,k�idX πk

� πk+1

�

X
idX←−−−− X

idX←−−−− X.

For an arbitrary fibred morphism Φ: Jk+1π → J1πk define

AΦ = {z ∈ J1πk+1 ; J
1(πk+1,k, idX)(z) = Φ ◦ (πk+1)1,0(z)}.

By the general theory, AΦ is an affine subbundle of J1πk+1 (with respect to the
fibration (πk+1)1,0).

Here, there is a canonical embedding

ι1,k : Jk+1π ↪→ J1πk

defined by
ι1,k(jk+1

x γ) = j1x(j
kγ).

The coordinate expression of this canonical morphism is

(6) yσ
;i = y

σ
i , . . . , y

σ
j1...jk;i = y

σ
j1...jki.

This canonical embedding ι1,k induces an invariant subspace Aι1,k
. It is easy to see

that

Aι1,k
≡ Ĵk+2π ⊂ J1πk+1,

where the elements of Ĵk+2π are called (k + 2)-semiholonomic jets. The local equa-

tions for them are just (6), expressing the fact that while for (k + 2)-holonomic jets
from Jk+2π all derivative coordinates are totally symmetric, those on Ĵk+2π are

totally symmetric except for the highest-order ones. Obviously,

ι1,k+1(Jk+2π) ⊂ Ĵk+2π ⊂ J1πk+1.
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By the following assertion, this subspace is the only canonical one, if we again

identify invariant subspaces AΦ ⊂ J1πk+1 with natural transformations

Φ: Jk+1π → J1πk.

Proposition 2. The morphism ι1,k is the only natural transformation Jk+1π →
J1πk over the identity of Jkπ.

�����. The proof is quite similar to that of Proposition 1, so that we sketch
the basic steps only. In general, the whole proof reduces to determining all Gk+1

n,m-

equivariant maps of the form

rσ
;i = r

σ
;i(y

σ
j , . . . , y

σ
j1...jk

, yσ
j1...jki),

. . .

rσ
j1...jk;i = r

σ
j1...jk;i(y

σ
j , . . . , y

σ
j1...jk

, yσ
j1...jki).

Using homotheties we find rσ
;i = a0y

σ
i , r

σ
j;i = a1y

σ
ji, . . . ,r

σ
j1...jk;i = aky

σ
j1...jki with

arbitrary a0, . . . , ak ∈ �. Using equivariances we directly prove that a0 = a1 = . . . =
1, which is the coordinate form of ι1,k. �

In accordance with the affine structure of πk+1,k, there is a possibility of deeper

analysis of higher-order semiholonomic jets, reflecting the classical situation of Ĵ2π.
It can be shown that Ĵk+1π is a submanifold of J1πk which can be defined as the

kernel of the k-jet Spencer operator

Spk : J
1πk → Vπk−1J

k−1π ⊗ π∗k−1(T ∗X).

This is defined by the requirement on Spk(j
1
xψ) to be just the element (of the total

space of the vector bundle associated to (πk−1)1,0) such that

J1(πk,k−1, idX)(j1xψ) + Spk(j
1
xψ) = ι1,k−1 ◦ (πk)1,0(j1xψ)

with respect to the affine structure. In addition,

π̂k+1,k := (πk)1,0 : J
1πk ⊃ Ĵk+1π → Jkπ

is an affine subbundle of (πk)1,0 with the associated vector bundle (over Jkπ) whose

total space is

π∗k,0(VπY )⊗ π∗k
(
SkT ∗X ⊗ T ∗X

) ∼= Vπk,k−1J
kπ ⊗ π∗k(T ∗X) ⊂ Vπk

Jkπ ⊗ π∗k(T ∗X).
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Moreover, one gets a canonical splitting of the affine bundle π̂k+1,k, expressed in

terms of the total spaces by

Ĵk+1π ∼= Jk+1π ×Jkπ π
∗
k,0(VπY ⊗ π∗(♦2k−1T ∗X)),

which gives rise to natural projections

sk : Ĵk+1π → Jk+1π,

rk : Ĵk+1 → π∗k,0(VπY ⊗ π∗(♦2k−1T ∗X)),

expressing the totally symmetric or asymmetric part of every highest-order derivative
coordinate yσ

j1...jk;i, respectively. Namely, ♦
2
k−1T

∗X is in accordance with [7] defined

by
♦2

k−1T
∗X = A(T ∗X ⊗ SkT ∗X),

where A := id−s with s : ⊗kT ∗X → SkT ∗X is the symmetrization linear projector.

Remark 1. This decomposition can be used for a construction generalizing the
idea of the formal curvature map R, introduced in [1]. Here,

R : J1πk+1,k → π∗k+1,k
(
Vπk

Jkπ ⊗ π∗k
(
Λ2T ∗X

))

is defined for each j1jk
xγχ ∈ J1πk+1,k by

R(j1jk
xγχ) = rk+1 ◦ J1(χ, idX) ◦ ι1,k ◦ χ(jk

xγ).

This concept naturally leads to a transparent description of the curvature of a higher
order connection on π. Namely, for any Γ(k+1) : Jkπ → Jk+1π, one can easily see

that

RΓ(k+1) = −pr2 ◦R ◦ j1Γ(k+1)

= − pr2 ◦ rk+1 ◦ J1(Γ(k+1), idX) ◦ ι1,k ◦Γ(k+1) : Jkπ → Vπk,k−1J
kπ ⊗ π∗k(Λ2T ∗X).

We refer to [10] for a discussion on ♦2
k−1T

∗X and other details.

Consider finally the 2-fibred manifold Jk+rπ
πk+r,k−−−−→Jkπ

πk−→ X , r � 2. The corre-
sponding diagram now is

(7)

X
(πk)1←−−−− J1πk

J1(πk+r,k,idX)←−−−−−−−−− J1πk+r�idX (πk)1,0

� (πk+r)1,0

�

X
πk←−−−− Jkπ

πk+r,k←−−−− Jk+rπ
(πk+r,k)1,0←−−−−−−− J1πk+r,k�idX πk

� πk+r

�

X
idX←−−−− X

idX←−−−− X.
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As before, for an arbitrary fibred morphism Φ: Jk+rπ → J1πk over the identity

of Jkπ,

AΦ = {z ∈ J1πk+r ; J1(πk+r,k, idX)(z) = Φ ◦ (πk+r)1,0(z)}

is an affine subbundle with respect to (πk+r)1,0. Denote by

(8) Φ0 = ι1,k ◦ πk+r,k+1 : Jk+rπ → J1πk

the composition whose coordinate expression coincides with (6). Quite analogously

to Proposition 2 we can prove the following assertion.

Proposition 3. The morphism Φ0 defined by (8) is the only natural transfor-
mation Jk+rπ → J1πk over the identity of Jkπ.

Denote Aπk+r,k
= AΦ0 . This space consists of the points z ∈ J1πk+r satisfying

(9) ι1,k ◦ πk+r,k+1 ◦ (πk+r)1,0(z) = J
1(πk+r,k, idX)(z).

Following the above terminology, such elements can be called πk+r,k-semiholonomic

jets ; the local expression of (8) is again just (6). Consequently, there is a canonical
inclusion

Jk+r+1π ⊂ Ĵk+r+1π ⊂ Aπk+r,k
,

which corresponds to the associated vector bundle

Aπk+r,k
= Vπk+r,k

Jk+rπ ⊗ π∗k+r(T
∗X) ⊂ Vπk+r

Jk+rπ ⊗ π∗k+r(T
∗X).

Remark 2. Here there is no an equivalent of the constructions mentioned in
Remark 1. Nevertheless, certain ideas related to general jet fields can be studied, as

shown in [10].

5. Invariant subspaces in higher order jet prolongations

of a fibred manifold

Let s � 1 be fixed. This section is devoted to the study of invariant subspaces
in Jsπk+r with 1 � s � r and k + r = const. Roughly speaking, we will define
invariant subspaces of Jsπk+r which can be considered generalizations of πk+r,k-

semiholonomic jets in the case s = 1. Here, we show that there is a family of such
spaces according to the “degree of freedom” available in the “parameters” k and r.
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A general framework for this situation is the 2-fibred manifold

Jk+rπ
πk+r,k−−−−→ Jkπ

πk−→ X,

which will be now prolonged to the s-th order, as described in the following diagram:

X
(πk)s←−−−− Jsπk

Js(πk+r,k,idX )←−−−−−−−−− Jsπk+r�idX (πk)s,0

� (πk+r)s,0

�

X
πk←−−−− Jkπ

πk+r,k←−−−− Jk+rπ
(πk+r,k)s,0←−−−−−−− Jsπk+r,k�idX πk

� πk+r

�

X
idX←−−−− X

idX←−−−− X.

As usual, we start with a general fibred morphism

Φ: Jk+rπ → Jsπk

between πk+r,k and (πk)s,0 over the identity of Jkπ. Define

AΦ = {z ∈ Jsπk+r ; Js(πk+r,k, idX)(z) = Φ ◦ (πk+r)s,0(z)}.

According to the geometric nature of the definition, AΦ is an invariant subspace
of Jsπk+r. Since (πk+r)s,0 is not an affine bundle for s > 1, the set AΦ cannot be

defined as the kernel of any affine bundle morphism. Nevertheless, analogously to the
canonical affine morphism Φ0 (8), the composition of ιs,k : Jk+1π → Jsπk defined

by
ιs,k(jk+1

x γ) = js
x(j

kγ)

with the jet projection πk+r,k+s : Jk+rπ → Jk+sπ defines a canonical map

(10) Φs
k,r = ιs,k ◦ πk+r,k+1 : Jk+rπ → Jsπk.

Consequently, Φs
k,r(j

k+r
x γ) = js

x(j
kγ). Then it is easy to see that

AΦs
m,n
⊂ AΦs

m−1,n+1
.

In fact, for any z ∈ AΦs
m,n
we have Js(πm+n,m−1, idX)(z) = Js(πm,m−1, idX) ◦

Js(πm+n,m, idX)(z) = Js(πm,m−1, idX) ◦ ιs,m ◦ πm+n,m+1 ◦ (πm+n)s,0(z) = ιs,m−1 ◦
πm+1,m ◦ πm+n,m+1 ◦ (πm+n)s,0(z) = ιs,m−1 ◦ πm+n,m ◦ (πm+n)s,0(z). Consequently,

Jk+r+sπ ⊂ AΦs
m,n
⊂ AΦs

m−1,n+1
⊂ AΦs

m−2,n+2
⊂ . . . ⊂ AΦs

0,k+r
⊂ Jsπk+r .

Hence there is a family of invariant subspaces in Jsπk+r given by all combinations
of k and r such that k + r = const, 1 � s � r.
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Example 1. The space J1π3 has the invariant subspaces

J4π ⊂ AΦ12,1
⊂ AΦ11,2

⊂ AΦ10,3
.

The coordinate description of these invariant subspaces is given by the following

table:

AΦ10,3
: yσ

;i = yσ
i ,

AΦ11,2
: yσ

;i = y
σ
i , yσ

j;i = y
σ
ji,

Ĵ4π ≡ AΦ12,1
: yσ

;i = y
σ
i , yσ

j;i = y
σ
ji, yσ

j1j2;i = y
σ
j1j2i,

J4π : yσ
;i = y

σ
i , yσ

j;i = y
σ
ji, yσ

j1j2;i = y
σ
j1j2i, yσ

j1j2j3;i = y
σ
j1j2j3i.

Example 2. There are three invariant subspaces in the space J2π3:

J5π ⊂ AΦ21,2
⊂ AΦ20,3

.

In coordinates,

AΦ20,3
: yσ

;i = y
σ
i , yσ

;i1i2 = y
σ
i1i2 ,

AΦ21,2
: yσ

;i = y
σ
i , yσ

;i1i2 = y
σ
i1i2 , yσ

j;i = y
σ
ji, yσ

j;i1i2 = y
σ
ji1i2 .

Example 3. The last example is J3π3 with two invariant subspaces

J6π ⊂ AΦ30,3
,

where AΦ30,3
is locally given by

yσ
;i = y

σ
i , yσ

;i1i2 = y
σ
i1i2 , yσ

;i1i2i3 = y
σ
i1i2i3 .

There is a natural question of the full classification of all invariant subspaces in

Jsπk+r. Taking into account the identification of AΦ with Φ: Jk+rπ → Jsπk, we
can reduce this question to determining all canonical morphisms Φ. We have

Proposition 4. The canonical morphism Φs
k,r defined by (10) is the only natural

transformation Jk+rπ → Jsπk over the identity of Jkπ.

�����. Denote by (xi, yσ, yσ
j1 , . . . , y

σ
j1...jk

, yσ
j1...jk�1

, . . . , yσ
j1...jk�1...�r

) the lo-
cal coordinates on Jk+rπ and by (xi, yσ, yσ

j1
, . . . , yσ

j1...jk
, yσ
;i1 , . . . , y

σ
;i1...is

, yσ
j1;i1 , . . . ,

yσ
j1;i1...is

, . . . , yσ
j1...jk;i1 , . . . , y

σ
j1...jk;i1...is

) the local coordinates on Jsπk. Analo-
gously to the proof of Propositions 1 and 2, we have to determine certain Gk+s

n,m-

equivariant maps which express the coordinate form of natural transformations
in question. Using homotheties and equivariances we prove that yσ

;i1 = yσ
i1
,

yσ
j1;i1 = yσ

j1i1 , . . ., y
σ
j1...jk;i1 = yσ

j1...jki1 and y
σ
;i1i2 = yσ

i1i2 ,. . ., y
σ
;i1...is

= yσ
i1...is

, . . .,
yσ

j1...jk;i1...is
= yσ

j1...jki1...is
. �
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