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CHARACTERIZATION OF LATTICES OF CONVEX

SUBSETS OF POSETS

Judita Lihová, Košice

(Received May 20, 1997)

Dedicated to Professor Ján Jakubík on the occasion of his seventy-fifth birthday

Systems of convex subsets of partially ordered sets, particularly those of convex

sublattices of lattices, have been considered by many authors (see e.g. [1]–[6]). In
this note we give necessary and sufficient conditions for a lattice to be isomorphic to

the lattice of all convex subsets of a nonempty partially ordered set (Theorem 1.6).
Such a lattice will be called a c-lattice. Further, we describe directly irreducible

c-lattices and prove that each c-lattice is a direct product of directly irreducible
c-lattices (Theorem 2.3).

Let � = (A, �) be a partially ordered set. A subset X of A is called convex if

x1 � a � x2, x1, x2 ∈ X , a ∈ A imply a ∈ X . Let Conv � denote the system of
all convex subsets of � . The system Conv � , ordered by set-inclusion, is a complete

lattice. Moreover, it is atomic in the sense that each element of Conv � different
from the empty set is the join of some atoms. If X ⊆ A, the symbol [X ] will be used

for the least convex subset of � containing X . The set of all minimal and maximal
elements of � is denoted by Min � and Max � , respectively.

1. Characterization of Conv �

In this section we give necessary and sufficient conditions for a lattice to be iso-
morphic to Conv � for a nonempty partially ordered set.

We start with some definitions.

Let � = (L, �) be a complete atomic lattice. An element p ∈ L will be called

totally irreducible if p � supM, M ⊆ L imply p � m for some m ∈ M .

The author was supported by the Slovak VEGA Grant No. 1/4379/97.

113



A complete lattice � will be said to be a z-lattice if each a ∈ L is a join of totally

irreducible elements of L.

By a complete sublattice of a complete lattice, a sublattice closed under arbitrary
joins and meets will be meant.

Let � = (C, �) be a complete lattice and let 0 and 1 denote the least and greatest
element, respectively. Suppose that � has a complete sublattice Z which is a z-lattice
and contains 0 and 1. Denote by P the set of all totally irreducible elements of Z

different from 0. Since 1 ∈ Z, it is obvious that for any c ∈ C the set {z ∈ Z : z � c}
has a least element. We denote it by ↓c.
Consider the following conditions:

(i) if c ∈ C, {pi : i ∈ I} ⊆ P , then c ∧ sup{pi : i ∈ I} = sup{c ∧ pi : i ∈ I};
(ii) if p ∈ P , {cj : j ∈ J} ⊆ C and p∧ cj = 0 for each j ∈ J , then p∧ sup{cj : j ∈

J} = 0;
(iii) if c, c′ ∈ C, ↓c � ↓c′ and the relations p ∈ P , p � ↓c, p∧c′ = 0 imply p∧c = 0,

then c � c′;
(iv) if z1, z2 ∈ Z, z1 � z2, p ∈ P , p � z1 and c0 is the greatest element of the set

{c ∈ C : c � z1, c ∧ z2 = 0}, then p ∧ c0 = 0 implies p � z2 and p ∧ c0 > 0
implies p � ↓c0.

These conditions are not satisfied, in general. Let, e.g., � be as in Fig. 1, Z =

{0, p, q, 1}. Then P = {p, q} and (i) does not hold, while (ii) holds. If � is as in
Fig. 2, Z = {0, p, q, 1}, then neither (i) nor (ii) is satisfied. On the other hand, if �
is any infinitely distributive complete lattice and Z is any of its complete sublattices
which is a z-lattice, both (i) and (ii) are satisfied. So, e.g., a three-element chain

with Z = {0, 1} satisfies (i), (ii), (iv), while (iii) does not hold. Let � be as in Fig. 3
with Z = {0, 1, p, q, r}. Then (i), (ii), (iii) hold but (iv) is not satisfied.
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Lemma 1.1. Let � , Z, P be as above and let the conditions (i), (ii) be satisfied.
Then for any z1, z2 ∈ Z, z1 � z2, the set {c ∈ C : c � z1, c ∧ z2 = 0} has a greatest
element.
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�����. Evidently 0 ∈ {c ∈ C : c � z1, c ∧ z2 = 0}. Take c0 = sup{c ∈ C : c �
z1, c ∧ z2 = 0}. Evidently c0 � z1. If z2 = 0, then c0 ∧ z2 = 0 holds trivially. Let
z2 > 0. Then z2 = sup{pi : i ∈ I} for a nonempty subset {pi : i ∈ I} of P. The
relation c ∧ z2 = 0 implies c ∧ pi = 0 for each i ∈ I. Thus pi ∧ c0 = 0 for each i ∈ I

by (ii). Using (i) we obtain c0 ∧ z2 = sup{c0 ∧ pi : i ∈ I} = 0. �

Under the assumptions as in 1.1 let us denote the greatest element of the set

{c ∈ C : c � z1, c ∧ z2 = 0} by z1 − z2.

Lemma 1.2. Let the assumptions of 1.1 be satisfied and let, moreover, (iii) hold.
Then each c ∈ C can be expressed as c = z1 − z2 for some z1, z2 ∈ Z, z1 � z2.

�����. Let c ∈ C. Denote z1 = ↓c, z2 = sup{p ∈ P : p � z1, p ∧ c = 0}
(by sup ∅ the element 0 is meant). Evidently z2 � z1, c � z1, c ∧ z2 = 0, so that
z1 − z2 � c. Now we are going to show, using (iii), that z1 − z2 � c holds, too.

The inequalities c � z1 − z2 � z1 imply ↓c � ↓(z1 − z2) � ↓z1 = z1 = ↓c, so that
↓(z1 − z2) = z1 = ↓c. Let p ∈ P, p � ↓(z1 − z2) = z1 and p ∧ c = 0. Then p � z2 and

consequently p ∧ (z1 − z2) = 0, since z2 ∧ (z1 − z2) = 0. The condition (iii) yields
z1 − z2 � c. �

Notice that the elements z1, z2 in 1.2 are not determined uniquely. E.g., 1− 1 =
0− 0 = 0.

Lemma 1.3. Let the assumptions of 1.2 be satisfied and let, moreover, (iv) hold.
Then the lattice � = (C, �) is isomorphic to (Conv(P, �),⊆) (the partial order in P

being inherited from that in C).

�����. Let us define a mapping ϕ from C into the system of subsets of P

by c ∈ C, c = z1 − z2, z1, z2 ∈ Z, z1 � z2 =⇒ ϕ(c) = {p ∈ P : p � z1, p �� z2}.
First we will show that this definition is correct. Let c ∈ C, c = z1 − z2 = z′1 − z′2
for some z1, z2, z

′
1, z

′
2 ∈ Z, z1 � z2, z′1 � z′2. Let p ∈ P , p � z1, p �� z2. Using

(iv) we obtain p ∧ c > 0, p � ↓c. Obviously ↓c � z′1, hence p � z′1. If p � z′2
held, we would have p ∧ c = 0, since z′2 ∧ c = 0, a contradiction. We have proved
{p ∈ P : p � z1, p �� z2} ⊆ {p ∈ P : p � z′1, p �� z′2}. The converse inclusion can be
proved analogously.
Notice that if c = z1 − z2 for some z1, z2 ∈ Z, z1 � z2, then sup{p ∈ P : p �

z1, p ∧ c > 0} = ↓c. Namely, we have z1 = sup{p ∈ P : p � z1, p ∧ c = 0} ∨ sup{p ∈
P : p � z1, p∧ c > 0}, which implies c = c∧ z1 = c∧ sup{p ∈ P : p � z1, p∧ c > 0} �
sup{p ∈ P : p � z1, p ∧ c > 0} by (i). Now using (iv) we obtain sup{p ∈ P : p �
z1, p ∧ c > 0} � ↓c and consequently sup{p ∈ P : p � z1, p ∧ c > 0} = ↓c.
It is easy to see that ϕ(c) is a convex subset of P. We are going to show that ϕ

is onto. Let Q be any convex subset of P. Set X = {x ∈ P : x � q for some q ∈
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Q}, Y = X − Q. Further, let z1 = supX , z2 = supY . Obviously z1, z2 ∈ Z,

z1 � z2.We are going to show that ϕ(z1 − z2) = Q. First, let p � z1, p �∈ Q. The
relation p � z1 yields p ∈ X , since p is totally irreducible, so that p ∈ Y . But then
p � z2. Thus {p ∈ P : p � z1, p �� z2} ⊆ Q. Now let p ∈ Q. Then p ∈ X , which

implies p � z1. Assume that p � z2. Then p � y for some y ∈ Y . But as Y ⊆ X ,
there exists q ∈ Q with y � q. We have p � y � q, p, q ∈ Q, which implies y ∈ Q, a

contradiction.
It remains to prove that if c, c′ ∈ C, then

c � c′ if and only if ϕ(c) ⊆ ϕ(c′).

Let c, c′ ∈ C. Take z1 = ↓c, z′1 = ↓c′, z2 = sup{p ∈ P : p � z1, p ∧ c = 0},
z′2 = sup{p ∈ P : p � z′1, p ∧ c′ = 0}. We know that c = z1 − z2, c′ = z′1 − z′2. Now
suppose that c � c′. Then evidently z1 � z′1. Take any p ∈ P with p � z1, p �� z2.

We have p � z′1, p ∧ c > 0 and consequently p ∧ c′ > 0, which implies p �� z′2. We
have proved ϕ(c) ⊆ ϕ(c′). Conversely, let ϕ(c) ⊆ ϕ(c′). First we will show that

z1 � z′1. As we have noticed, we have sup{p ∈ P : p � z1, p ∧ c > 0} = ↓c = z1,
sup{p ∈ P : p � z′1, p ∧ c′ > 0} = ↓c′ = z′1. Since {p ∈ P : p � z1, p ∧ c > 0} =
{p ∈ P : p � z1, p �� z2} ⊆ {p ∈ P : p � z′1, p �� z′2} = {p ∈ P : p � z′1, p ∧ c′ > 0},
we have z1 � z′1. Further, ϕ(c) ⊆ ϕ(c′) implies also that if p � z1, p ∧ c′ = 0, then

p ∧ c = 0. Using (iii) we infer c � c′. The proof is complete. �

Now we are going to prove the converse.
Let � = (A, �) be any partially ordered set. Let us recall that C = (Conv � ,⊆)

is a complete lattice, ∅ is its least, A the greatest element. If {Ci : i ∈ I} ⊆ Conv � ,
then

∧{Ci : i ∈ I} = ⋂{Ci : i ∈ I}, ∨{Ci : i ∈ I} = [⋃{Ci : i ∈ I}]. Consider the
system Z of all Z ⊆ A which are down-closed, i. e. fulfil the condition

x � y, y ∈ Z =⇒ x ∈ Z.

It is easy to see that Z ⊆ Conv � and that (Z,⊆) is a complete sublattice of C
containing ∅ and A. By the way, if {Zi : i ∈ I} ⊆ Z, then ∨{Zi : i ∈ I} = ∪{Zi : i ∈
I}. It si also easy to verify that nonempty totally irreducible elements of (Z,⊆) are
just the sets (a〉 = {x ∈ A : x � a} for all possible a ∈ A and that each Z ∈ Z is the
join of all (z〉, z ∈ Z. So we have proved

Lemma 1.4. The complete sublattice (Z,⊆) of (Conv � ,⊆) is a z-lattice.

Denote by P the system of all (a〉, a ∈ A.

Now it is clear that

(1) if C ∈ Conv � , {ai : i ∈ I} ⊆ A, then C ∩ (∪{(ai〉 : i ∈ I}) = ∨{C ∩ (ai〉 : i ∈
I}; and
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(2) if a ∈ A, {Cj : j ∈ J} ⊆ Conv � , (a〉∩Cj = ∅ for each j ∈ J , then (a〉∩(∨{Cj :

j ∈ J) = ∅.
If C ∈ Conv � , then evidently ↓C = {x ∈ A : there exists c ∈ C with x � c}. If
Z1, Z2 ∈ Z, Z1 ⊇ Z2, then the greatest element of the system {C ∈ Conv � : C ⊆
Z1, C ∩ Z2 = ∅} is Z1 − Z2 (in the set theoretical meaning). The following can be

proved easily:

(3) if C, C′ ∈ Conv � , ↓C ⊆ ↓C′ and a ∈ A, (a〉 ⊆ ↓C, (a〉 ∩ C′ = ∅ imply
(a〉 ∩ C = ∅, then C ⊆ C′; and

(4) if Z1, Z2 ∈ Z, Z1 ⊇ Z2, a ∈ Z1, then (a〉 ∩ (Z1 − Z2) = ∅ implies (a〉 ⊆ Z2
and (a〉 ∩ (Z1 − Z2) �= ∅ implies (a〉 ⊆ ↓(Z1 − Z2).

The above results can be summarized as follows:

Lemma 1.5. If � = (A, �) is a partially ordered set, C = (Conv � ,⊆), Z and
P are as above, then the conditions (i)–(iv) are satisfied.

Combining 1.3 and 1.5 we obtain the following theorem.

Theorem 1.6. Let � = (C, �) be a complete lattice, cardC � 2. Then � is

isomorphic to (Conv � ,⊆) for a partially ordered set � if and only if � has a complete
sublattice Z containing the least and the greatest elements of C, which is a z-lattice,

with the conditions (i)–(iv) being satisfied.

2. Direct decomposition

If a lattice � = (L,∧,∨, �) is isomorphic to Conv � for a nonempty partially
ordered set � , we will refer to it as a c-lattice.

Theorem 2.1. The direct product of any nonempty system of c-lattices is a

c-lattice.

�����. Let {� i : i ∈ I} be any nonempty system of partially ordered sets. Let �
be their cardinal sum. It is easy to see that the mapping X(∈ Conv � ) 
→ (X∩Ai)i∈I

is an isomorphism of the lattice Conv � onto the direct product of the lattices Conv � i

(i ∈ I). �

Let � = (A,�) be any partially ordered set. Denoting by S the set of all couples

(u, v) ∈ A×A such that u ∈ Min � , v ∈ Max � and v covers u, define

a �c b(a, b ∈ A)⇔ a � b, (a, b) /∈ S.
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It is easy to see that �c is a partial order in A and Conv(A,�) = Conv(A,�c). The

order �c will be said to be the c-order corresponding to �.

Theorem 2.2. Let � = (A,�) be any partially ordered set. The lattice Conv �
is directly irreducible if and only if the partially ordered set (A,�c) is connected.

�����. If (A,�c) is disconnected, then there exist nonempty subsets B, C of

A such that (A,�c) is the cardinal sum of (B,�c) and (C,�c). But then Conv � =
Conv(A,�c) is isomorphic to Conv(B,�c)×Conv(C,�c), so that Conv � is directly

reducible.
Conversely, let Conv � be directly reducible, i.e. there exist lattices �1 ,�2 , each

containing at least two elements, and an isomorphism ϕ : Conv � → �1 × �2 . Ev-
idently �1 , �2 are complete atomic lattices. ϕ maps atoms of the lattice Conv �

into atoms of the direct product �1 × �2 . Set A1 = {a ∈ A : ϕ({a}) = (p, 0) for
an atom p of �1}, A2 = {a ∈ A : ϕ({a}) = (0, q) for an atom q of �2}. Evidently
A1, A2 �= ∅, A1 ∪ A2 = A. Let � 1 and � 2 be A1 and A2, respectively, with the
order inherited from (A,�c). The aim is to show that (A,�c) is the cardinal sum

of � 1 and � 2 , which will imply that (A,�c) is disconnected. We have to prove
that if a1 ∈ A1, a2 ∈ A2, then a1, a2 are incomparable in (A,�c). Let a1 ∈ A1,

a2 ∈ A2, ϕ({a1}) = (p1, 0), ϕ({a2}) = (0, q1). As ϕ([{a1, a2}]) = ϕ({a1} ∨ {a2}) =
ϕ({a1}) ∨ ϕ({a2}) = (p1, 0) ∨ (0, q1) = (p1, q1) and (p1, 0), (0, q1) are the only atoms
in �1 × �2 which are less than (p1, q1), the elements a1, a2 are incomparable or one
of them covers the other in (A,�c). Assume, e.g., that a2 covers a1. By the de-

finition of �c there exists a ∈ A such that either a �c a1, a �= a1, or a2 �c a,
a �= a2. Let, e.g., the first possibility occur. Then {a1} ⊂ [{a, a2}], which implies
(p1, 0) = ϕ({a1}) < ϕ([{a, a2}]) = ϕ({a}) ∨ ϕ({a2}). Now ϕ({a}) is of the form
(p, 0) or (0, q), so that (p1, 0) < (p, q1) or (p1, 0) < (0, q1 ∨ q2), respectively. The

first inequality implies p1 = p, which contradicts a �= a1. The latter case is also
impossible. So a1, a2 are incomparable and the proof is complete. �

Theorem 2.3. Every c-lattice is the direct product of directly irreducible c-

lattices.

�����. Let � = (A,�) be any partially ordered set, �c the c-order correspond-

ing to �. Let � i = (Ai,�c) (i ∈ I) be maximal connected subsets of (A,�c). Then
the lattice Conv � = Conv(A,�c) is isomorphic to the direct product of Conv � i and

all Conv � i are directly irreducible c-lattices by 2.2. �
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