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ON OZEKI’S INEQUALITY FOR POWER SUMS

Horst Alzer, Waldbröl

(Received May 7, 1997)

Abstract. Let p ∈ (0, 1) be a real number and let n � 2 be an even integer. We determine
the largest value cn(p) such that the inequality

n∑

i=1

|ai|p � cn(p)

holds for all real numbers a1, . . . , an which are pairwise distinct and satisfy min
i�=j

|ai−aj | = 1.
Our theorem completes results of Ozeki, Mitrinović-Kalajdžić, and Russell, who found the
optimal value cn(p) in the case p > 0 and n odd, and in the case p � 1 and n even.

MSC 2000 : 26D15

In 1968, N. Ozeki [2] published without proof the following inequality for power

sums.
Let p > 0, and let a1, . . . , an be different real numbers which satisfy the condition

min
i�=j

|ai − aj | = 1. Then

(1)
n∑

i=1

|ai|p � αn(p),

where

αn(p) =





2
(n−1)/2∑

i=1
ip, if n is odd,

2
n/2∑
i=1
(i − 1

2 )
p, if n is even.

In 1980, D.S. Mitrinović and G. Kalajdžić [1] proved Ozeki’s inequality for all positive
real numbers p. However, their proof contains an error as was pointed out by D.C.
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Russell [3] in 1984. He remarked that inequality (1) holds for p � 1, but it is in
general not valid if p ∈ (0, 1). Indeed, if we choose, for instance, n = 2, p ∈ (0, 1),
a1 = 0, a2 = 1, then inequality (1) is false.
In the same paper Russell established a new version of Ozeki’s inequality which is

valid for all p > 0.
Let p > 0 be a real number and let ep = min{1, 21−p}. If a1, . . . , an are different

real numbers with min
i�=j

|ai − aj | = 1, then

(2)
n∑

i=1

|ai|p � βn(p),

where

βn(p) =





2
(n−1)/2∑

i=1
ip, if n is odd,

ep

n/2∑
i=1
(2i − 1)p, if n is even.

Since the sign of equality holds in (2) for n = 2m + 1, p > 0, ai = i − m − 1
(i = 1, . . . , 2m + 1), and for n = 2m, p � 1, ai = i − m − 1

2 (i = 1, . . . , 2m), we
conclude that the value βn(p) provides the best possible lower bound for the sum
n∑

i=1
|ai|p, if n is odd and p > 0, and if n is even and p � 1.

Thus, it remains to determine the largest lower bound for
n∑

i=1
|ai|p in the case

that n is even and p ∈ (0, 1). It is the aim of this note to solve this problem. The

following theorem reveals that Russell’s bound
n/2∑
i=1
(2i− 1)p (ep = 1) can be replaced

by a larger term.

Theorem. Let p > 0 be a real number and let n � 2 be an integer. If a1, . . . , an

are different real numbers which satisfy min
i�=j

|ai − aj | = 1, then

n∑

i=1

|ai|p � cn(p),

where the best possible lower bound is given by

cn(p) =





2
(n−1)/2∑

i=1
ip, if n is odd,

2
(n/2)−1∑

i=1
ip + (12n)

p, if n is even and 0 < p < 1,

2
n/2∑
i=1
(i − 1

2 )
p, if n is even and p � 1.
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�����. It remains to consider the case that n is even and p ∈ (0, 1). We set
n = 2m and define

S =
{
a = (a1, . . . , a2m) ∈ �

2m | a1 < . . . < a2m, min
1�i�2m−1

(ai+1 − ai) = 1
}
.

Then we have to show that the inequality

(3) f(a) :=
2m∑

i=1

|ai|p � 2
m−1∑

i=1

ip +mp

holds for all a ∈ S.
Let a = (a1, . . . , a2m) ∈ S; we may assume that at mostm of the values a1, . . . , a2m

are negative. Hence, there exists an integer k ∈ {1, . . . , m+ 1} such that

a1 < . . . < ak−1 < 0 � ak < . . . < a2m.

We consider two cases.

Case 1. ak � 1.
Since ai+1 − ai � 1 (i = 1, . . . , 2m− 1), we get

−ai � k − i − ak � 0 (i = 1, . . . , k − 1)

and

ai � i − k + ak � 0 (i = k, . . . , 2m).

This leads to

f(a) =
k−1∑

i=1

(−ai)
p +

2m∑

i=k

ap
i

�
k−1∑

i=1

(k − i − ak)p +
2m∑

i=k

(i − k + ak)p

=
m∑

i=1

(i − ak)p +
m−1∑

i=0

(i+ ak)p

+
m∑

i=k

(
(i+m− k + ak)p − (i − ak)p

)
.

Since 0 � ak � 1 and 1 � k � i � m imply i+m− k + ak � i − ak � 0, we get

f(a) �
m∑

i=1

(i − ak)p +
m−1∑

i=0

(i+ ak)p.
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A simple calculation yields that the function

g(x) =
m∑

i=1

(i − x)p +
m−1∑

i=0

(i+ x)p

is increasing on [0, 12 ] and decreasing on [
1
2 , 1]. Since g(0) = g(1) = 2

m−1∑
i=1

ip +mp,

we obtain

f(a) � g(ak) � 2
m−1∑

i=1

ip +mp.

Case 2. ak > 1.
Let

a′ = (a1, . . . , ak−1, 1, 2, ak+2, . . . , a2m).

Since 1 − ak−1 > 1 and ak+2 − 2 � ak+1 − 1 � ak > 1, we conclude that a′ ∈ S.

From

f(a)− f(a′) = ap
k + ap

k+1 − 1− 2p � ap
k + (ak + 1)p − 1− 2p > 0

and the result we have proved in Case 1 we get

f(a) > f(a′) � 2
m−1∑

i=1

ip +mp.

This completes the proof of inequality (3). �

Finally, we note that the sign of equality holds in (3) if we set ai = i − m (i =
1, . . . , 2m). Therefore, the given lower bound is the best possible.
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[1] D.S. Mitrinović and G. Kalajdžić: On an inequality. Univ. Beograd. Publ. Elektrotehn.
Fak. Ser. Mat. Fiz. 678–715 (1980), 3–9.

[2] N. Ozeki: On the estimation of inequalities by maximum and minimum values. J. College
Arts Sci. Chiba Univ. 5 (1968), 199–203. (In Japanese.)

[3] D.C. Russell: Remark on an inequality of N. Ozeki. General Inequalities 4 (W. Walter,
ed.). Birkhäuser, Basel, 1984, pp. 83–86.

Author’s address: Morsbacher Str. 10, 51545 Waldbröl, Germany.

102


		webmaster@dml.cz
	2020-07-03T12:28:13+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




