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A NOTE ON PRINCIPAL IDEALS AND J -CLASSES IN THE
DIRECT PRODUCT OF TWO SEMIGROUPS

Imrich Fabrici, Bratislava

(Received April 11, 1997)

Let S1, S2 be two semigroups, a ∈ S1, b ∈ S2, S1 × S2 the direct product of these

semigroups. J(a) is a principal two-sided ideal in S1, J(b) is a principal two-sided
ideal in S2, J(a, b) is a principal two-sided ideal in S1×S2. Ja is a J -class containing
the element a in S1, Jb is a J -class containing the element b in S2, J(a,b) is a J -class
containing the element (a, b) in S1 × S2.

In the papers [2], [3] among other problems, conditions under which the equalities

J(a, b) = J(a)× J(b);(1)

J(a,b) = Ja × Jb(2)

hold in S1 × S2 have been studied. The following question arises: Does the validity
of (1) imply the validity of (2) and vice versa?

The aim of this note is to show that if (1) holds, then also (2) holds. However, if
(2) holds, then (1) need not hold.

The investigation of conditions under which the equality (1) holds is divided into
two cases:

I. a ∈ (S1a ∪ aS1 ∪ S1aS1) ∧ b ∈ (S2b ∪ bS2 ∪ S2bS2), but (a, b) /∈ [(S1a× S2b) ∪
(aS1 × bS2) ∪ (S1aS1 × S2bS2)];

II. (a, b) ∈ [(S1a× S2b) ∪ (aS1 × bS2) ∪ (S1aS1 × S2bS2)].

Case I may occur in the following ten cases, which are given in Lemma 3 [2]:

1. [a ∈ S1a ∧ a /∈ (aS1 ∪ S1aS1)] ∧ [b ∈ bS2 ∧ b /∈ (S2b ∪ S2bS2)];

2. [a ∈ aS1 ∧ a /∈ (S1a ∪ S1aS2)] ∧ [b ∈ S2b ∧ b /∈ (bS2 ∪ S2bS2)];

91



3. [a ∈ aS1 ∧ a /∈ (S1a ∪ S1aS1)] ∧ [b ∈ S2bS2 ∧ b /∈ (S2b ∪ bS2)];

4. [a ∈ S1a ∧ a /∈ (aS1 ∪ S1aS1)] ∧ [b ∈ S2bS2 ∧ b /∈ (S2b ∪ bS2)];

5. [a ∈ S1aS1 ∧ a /∈ (S1a ∪ aS1)] ∧ [b ∈ S2b ∧ b /∈ (bS2 ∪ S2bS2)];

6. [a ∈ S1aS1 ∧ a /∈ (S1a ∪ aS1)] ∧ [b ∈ bS2 ∧ b /∈ (S2b ∪ S2bS2)];

7. [a ∈ (S1a ∩ S1aS1) ∧ a /∈ aS1] ∧ [b ∈ bS2 ∧ b /∈ (S2b ∪ S2bS2)];

8. [a ∈ (aS1 ∩ S1aS1) ∧ a /∈ S1a] ∧ [b ∈ S2b ∧ b /∈ (bS2 ∪ S2bS2)];

9. [a ∈ aS1 ∧ a /∈ (S1a ∪ S1aS1)] ∧ [b ∈ (S2b ∩ S2bS2) ∧ b /∈ bS2];

10. [a ∈ S1a ∧ a /∈ (aS1 ∪ S1aS1)] ∧ [b ∈ (bS2 ∪ S2bS2) ∧ b /∈ S2b].

In [2] it has been proved that the equality (1) may occur only in cases 1 and 2 under

certain additional conditions. In all the remaining cases J(a, b) ⊂ J(a)× J(b) holds.
As we want to show that the equality (1) implies the equality (2), we consider from I
only cases 1 and 2 and the corresponding additional conditions for the equality (1).

Lemma 1. (See Theorem 1 and Theorem 2 in [2].) (a) Let

[a ∈ S1a ∧ a /∈ (aS1 ∪ S1aS1)] ∧ [b ∈ bS2 ∧ b /∈ (S2b ∪ S2bS2)].

Then J(a, b) = J(a)× J(b) iff

[aS1 = S1aS1 ∧ S1a = P1 ∪ {a}] ∧ [S2b = S2bS2 ∧ bS2 = P2 ∪ {b}].

(b) Let

[a ∈ aS1 ∧ a /∈ (S1a ∪ S1aS1)] ∧ [b ∈ S2b ∧ b /∈ (bS2 ∪ S2bS2)].

Then J(a, b) = J(a)× J(b) iff

[S1a = S1aS1 ∧ aS1 = P1 ∪ {a}] ∧ [bS2 = S2bS2 ∧ S2b = P2 ∪ {b}],

where P1 = S1a ∩ aS1, P2 = S2b ∩ bS2.

Lemma 2. (Theorem 2 of [3]) Let

(a, b) /∈ [(S1a× S2b) ∪ (aS1 × bS2) ∪ (S1aS1 × S2bS2)].

Then

J(a,b) = {(a, b)}.

Lemma 3. Let any one of cases (a) and (b) of Lemma 1 hold. Then Ja = {a} in
S1 and Jb = {b} in S2.

92



�����. (a) Suppose that J(a, b) = J(a)× J(b). Then

[aS1 = S1aS1 ∧ S1a = P1 ∪ {a}] ∧ [S2b = S2bS2 ∧ bS2 = P2 ∪ {b}].

As a ∈ S1a, we have aS1 ⊆ S1aS1 and J(a) = S1a ∪ aS1, a ∈ Ja. S1a = P1 ∪ {a}.
If Ja contained more than one element, e.g. if c ∈ Ja, c �= a, then we would have

c ∈ aS1. The relation a ∈ S1 a implies c ∈ S1aS1. Hence we get J(c) ⊆ S1aS1 and
since c ∈ Ja, we have J(c) = J(a) ⊆ S1aS1 = aS1. And because Ja ⊆ J(a) ⊆ aS1,

it implies a ∈ aS1, which contradicts the fact a /∈ (aS1 ∪ S1aS1). Consequently,
Ja = {a}. In a similar way we could show that Jb = {b}.
(b) The proof of this part is similar to that of part (a).

In Case II, if (a, b) ∈ [(S1a×S2b)∪ (aS1× bS2)∪ (S1aS1×S2bS2)], it is necessary
to consider several cases:

(i) (a, b) belongs to each component;

(ii) (a, b) belongs to two components only;

(iii) (a, b) belongs to just one component.

In (i) and (ii) and in (iii) provided (a, b) ∈ (S1aS1×S2bS2) we get (a, b) ∈ (S1aS2×
S2bS2) and by Theorem 5 in [2] we have J(a, b) = J(a)× J(b) while by Theorem 3
in [3], J(a,b) = Ja × Jb. Hence, from (iii) the following two possibilities remain:

1. (a, b) ∈ (S1a× S2b) ∧ (a, b) /∈ [(aS1 × bS2) ∪ (S1aS1 × S2bS2)];

2. (a, b) ∈ (aS1 × bS2) ∧ (a, b) /∈ [(S1a× S2b) ∪ (S1aS1 × S2bS2)].

The relation (a, b) /∈ [(aS1 × bS2) ∪ (S1aS1 × S2bS2)] includes the following possi-

bilities:

1. [a /∈ (aS1 ∪ S1aS1)] ∧ [b ∈ (bS2 ∩ S2bS2)];

2. [a ∈ (aS1 ∩ S1aS1)] ∧ [b /∈ (bS2 ∪ S2bS2)];

3. [a /∈ (aS1 ∪ S1aS1)] ∧ [d /∈ (bS2 ∪ S2bS2)];

4. [a ∈ aS1 ∧ a /∈ S1aS1] ∧ [b /∈ bS2 ∧ b ∈ S2bS2];

5. [a /∈ aS1 ∧ a ∈ S1aS1] ∧ [b ∈ bS2 ∧ b /∈ S2bS2].

However, 4 and 5 cannot occur, as (a, b) ∈ (S1a × S2b) and 4, a ∈ aS1 imply
S1a ⊆ S1aS1. Since a ∈ S1a ⊆ S1aS1 implies a ∈ S1aS1, we arrive at a contradiction

with a /∈ S1aS1. Case 5 can be verified similarly. Combining (a, b) ∈ (S1a × S2b)
with each of 1, 2, 3, we get the following three possibilities:

(�) [a ∈ S1a ∧ a /∈ (aS1 ∪ S1aS1] ∧ [b ∈ (S2b ∩ bS2 ∩ S2bS2)];

(�) [a ∈ (S1a ∩ aS1 ∩ S1aS1)] ∧ [b ∈ S2b ∧ b /∈ (bS2 ∪ S2bS2)];

(�) [a ∈ S1a ∧ a /∈ (aS1 ∪ S1aS1)] ∧ [b ∈ S2b ∧ b /∈ (bS2 ∪ S2bS2)]. �

Lemma 4. (See Theorems 6, 7, 8 in [2].) (a) Let [a ∈ S1a∧a /∈ (aS1∪S1aS1)]∧[b ∈
(S2b ∩ bS2 ∩ S2bS2)]. Then J(a, b) = J(a)× J(b) iff S2b = S2bS2.
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(b) Let [a ∈ (S1a ∩ aS1 ∩ S1aS1)] ∧ [b ∈ S2b ∧ b /∈ (bS2 ∪ S2bS2)]. Then J(a, b) =

J(a)× J(b) iff S1a = S1aS1.

(c) Let [a ∈ S1a ∧ a /∈ (aS1 ∪ S1aS1)] ∧ [b ∈ S2b ∧ b /∈ (bS2 ∪ S2bS2)]. Then

J(a, b) = J(a)× J(b) iff (aS1 ⊆ S1aS1 ⊂ S1a) ∧ (bS2 ⊆ S2bS2 ⊂ S2b).

Lemma 5. Let any one of (a), (b), (c) from Lemma 4 hold. Then

J(a,b) = Ja × Jb.

�����. (a) Let [a ∈ S1a ∧ a /∈ (aS1 ∪ S1aS1)] ∧ [b ∈ (S2b ∩ bS2 ∩ S2bS2)] and
S2b = S2bS2. From the relations a ∈ S1a, b ∈ S2bS2 we get J(a) = S1a∪S1aS1 in S1,

J(b) = S2bS2 in S2. Further, Ja ⊆ J(a) = S1a ∪ S1aS1, Jb ⊆ J(b) = S2bS2. Let c ∈
Ja. If c = a, then S1a = S1c. If c#a, then J(a) = S1a∪S1aS1 = S1c∪S1cS1 = J(c).

This implies c ∈ (S1a ∪ S1aS1) ∧ a ∈ (S1c ∪ S1cS1). c /∈ S1aS1, since if c ∈ S1aS1,
then S1c ⊆ S1aS1 and S1cS1 ⊆ S1aS1. So J(c) = S1c ∪ S1cS1 ⊆ S1aS1. However,

J(a) = J(c), so a ∈ S1aS1, which is a contradiction. Similarly, a /∈ S1cS1. It remains
a single possibility: a ∈ S1c ∧ c ∈ S1a. From it we have S1a ⊆ S1c ∧ S1c ⊆ S1a.
This implies S1c = S1a. Then Ja ⊆ S1a and Jb ⊆ S2bS2. Let (c, d) ∈ Ja × Jb. If we

want to show that J(a,b) = Ja × Jb, it is sufficient to show that J(a,b) = J(c,d). Since
(c, d) ∈ Ja×Jb = Jc×Jd, then (a, b) ∈ Jc×Jd. (c, d) ∈ Ja×Jb ⊆ (S1a×S2bS2). This

implies (S1c×S2d) ⊆ (S1a×S2bS2), (cS1×dS2) ⊆ (S1aS1×S2bS2), (S1cS1×S2dS2) ⊆
(S1aS1 × S2bS2). Then

J(c, d) ⊆ (S1a×S2bS2)∪(S1aS1×S2bS2) = (S1a×S2b)∪(S1aS1×S2bS2) = J(a, b).

From the relation (a, b) ∈ Jc × Jd ⊆ (S1c × S2dS2) we get in a similar way that
J(a, b) ⊆ J(c, d). The last relation together with the relation J(c, d) ⊆ J(a, b) gives

J(c, d) = J(a, b) and J(a,b) = J(c,d), hence Ja×Jb ⊆ J(a,b). And because we generally
have J(a,b) ⊆ Ja × Jb (Theorem 1 in [3]), we conclude that

J(a,b) = Ja × Jb.

(b) The proof is analogous to that of case (a).

(c) Let [a ∈ S1a ∧ a /∈ (aS1 ∪ S1aS1)] ∧ [b ∈ S2b ∧ b /∈ (bS2 ∪ S2bS2)] and
moreover (aS1 ⊆ S1aS1 ⊂ S1a) ∧ (bS2 ⊆ S2bS2 ⊂ S2b). Then J(a) = S1a in

S1, J(b) = S2b in S2, Ja ⊆ J(a) = S1a, Jb ⊆ J(b) = S2b. Let (c, d) ∈ Ja × Jb,
then (a, b) ∈ Jc × Jd ⊆ J(c) × J(d) and J(a) = J(c) in S1, J(b) = J(d) in S2.

If (c, d) ∈ Ja × Jb ⊆ J(a) × J(b) = (S1a × S2b), then (S1c × S2d) ⊆ (S1a × S2b),
(cS1 × dS2) ⊆ (S1aS1 × S2bS2), (S1cS1 × S2bS2) ⊆ (S1aS1 × S2bS2) ⊆ (S1a× S2b),
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so J(c, d) ⊆ (S1a × S2b) = J(a, b), and hence J(c, d) ⊆ J(a, b). From the relation

(a, b) ∈ Jc × Jd ⊆ (S1c× S2d) we can obtain in a similar way that J(a, b) ⊆ J(c, d).
Both these relations imply J(a, b) = J(c, d), so Ja × Jb ⊆ J(a,b). And because the
inclusion J(a,b) ⊆ Ja × Jb holds in general, we have

J(a,b) = Ja × Jb.

From the possibility 2,

[(a, b) ∈ (aS1 × bS2) ∧ (a, b) /∈ (S1a× S2b) ∪ (S1aS1 × S2bS2)],

and from the relation (a, b) /∈ [(S1a × S2b) ∪ (S1aS1 × S2bS2)] we can obtain in a
similar way the following three similar cases:

(�′) [a ∈ aS1 ∧ a /∈ (S1a ∪ S1aS1)] ∧ [b ∈ (S2b ∩ bS2 ∩ S2bS2)];

(�′) [a ∈ (S1a ∩ aS1 ∩ S1aS1)] ∧ [b ∈ bS2 ∧ b /∈ (S2b ∪ S2bS2)];

(�′) [a ∈ aS1 ∧ a /∈ (S1a ∪ S1aS1)] ∧ [b ∈ bS2 ∧ b /∈ (S2b ∪ S2bS2)]. �

Lemma 6. (See Theorems 9, 10, 11 in [2].) Let
(a) [a ∈ aS1 ∧ a /∈ (S1a ∪ S1aS1)] ∧ [b ∈ (S2b ∩ bS2 ∩ S2bS2)].

Then J(a, b) = J(a)× J(b) iff bS2 = S2bS2.

(b) [a ∈ (S1a ∩ aS1 ∩ S1aS1)] ∧ [b ∈ bS2 ∧ b /∈ (S2b ∪ S2bS2)].

Then J(a, b) = J(a)× J(b) iff aS1 = S1aS1.

(c) [a ∈ aS1 ∧ a /∈ (S1a ∪ S1aS1)] ∧ [b ∈ bS2 ∧ b /∈ (S2b ∪ S2bS2)].

Then J(a, b) = J(a)× J(b) iff (S1a ⊆ S1aS1 ⊂ aS1) ∧ (S2b ⊆ S2bS2 ⊂ bS2).

Lemma 7. Let any one of (a), (b), (c) from Lemma 6 hold. Then

J(a,b) = Ja × Jb.

The proof is analogous to that of Lemma 5.

From Lemmas 3, 5 and 7 we obtain

Theorem 1. Let (a, b) ∈ S1 × S2. If J(a, b) = J(a)× J(b), then

J(a,b) = Ja × Jb.

Now we are going to show that the equality (2) does not imply the validity of the
equality (1).
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Example 1. Let S1 = {a1, a2, a3, a4}, S2 = {b1, b2, b3, b4} be two semigroups and
let binary associative operations be given by the following tables:

a1 a2 a3 a4
a1 a1 a2 a1 a2
a2 a2 a1 a2 a1
a3 a1 a2 a1 a2
a4 a2 a1 a2 a3

b1 b2 b3 b4
b1 b1 b1 b1 b1
b2 b1 b1 b1 b1
b3 b1 b1 b1 b1
b4 b1 b1 b1 b2

J(a4) = {a1, a2, a3, a4} in S1, Ja4 = {a4}, J(b4) = {b1, b2, b4} in S2, Jb4 = {b4}. For
the element (a4, b4) we have (a4, b4) /∈ [(S1a4 × S2b4) ∪ (a4S1 × b4S2) ∪ (S1a4S1 ×
S2b4S2)], hence J(a4,b4) = {(a4, b4)} and Ja4 × Jb4 = {(a4, b4)}, therefore J(a4,b4) =
Ja4 × Jb4 . But J(a4, b4) = (a4, b4) ∪ (S1a4 × S2b4) ∪ (a4S1 × b4S2) ∪ (S1a4S1 ×
S2b4S2) = {(a1, b1), (a1, b2), (a2, b1), (a2, b2), (a3, b1), (a3, b2), (a4, b4)} and J(a4) ×
J(b4) = {a1, a2, a3, a4} × {b1, b2, b4}, so J(a4, b4) ⊂ J(a4) × J(b4). In this example

Ja4 × Jb4 = {(a4, b4)}.
Let us suppose that |Ja×Jb| > 1. The question if at least in this case the validity

of the equality (2) does not imply the validity of the equality (1). We will show that
even in this case it need not be so.

Example 2. Let S1 = {a1, a2, a3, a4}, S2 = {b1, b2, b3, b4} be two semigroups and
let binary associative operations be given by the following tables:

a1 a2 a3 a4
a1 a1 a1 a1 a1
a2 a1 a1 a1 a2
a3 a1 a1 a1 a1
a4 a1 a1 a3 a4

b1 b2 b3 b4
b1 b1 b2 b2 b2
b2 b1 b2 b2 b2
b3 b1 b2 b3 b4
b4 b1 b2 b4 b3

a3 ∈ S1a3, J(a3) = {a1, a3}, Ja3 = {a3}, b4 ∈ S2b4, J(b4) = {b1, b2, b3, b4}, Jb4 =
{b3, b4}, so |Ja3 × Jb4 | > 1 and J(a3,b4) = Ja3 × Jb4 . However,

J(a3, b4) = {a1, a3} × {b2, b3, b4} ∪ {a1} × {b1, b2, b3, b4} =
= {a1, a3} × {b2, b3, b4} ∪ {(a1, b1)},

J(a3)× J(b4) = {a1, a3} × {b1, b2, b3, b4}.

(a3, b1) ∈ J(a3)× J(b4), but (a3, b1) /∈ J(a3, b4), hence

J(a3, b4) ⊂ J(a3)× J(b4).

Finally, we would like to show what are the answers to the above questions in the

case of one-sided principal ideals and the corresponding classes. We will consider left
principal ideals and L -classes.
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Lemma 8. (Theorem 1 of [4]) Let (a, b) ∈ S1 × S2. Then L(a, b) = L(a) × L(b)

iff at least one of the following conditions is satisfied:

1. S1a = {a};
2. S2b = {b};
3. a ∈ S1a ∧ b ∈ S2b.

Lemma 9. (Theorem 3 of [4]) Let (a, b) ∈ S1 × S2. Then L(a,b) = La × Lb iff at

least one of the following conditions is satisfied:

1. La = {a} in S1, Lb{b} in S2;

2. a ∈ S1a ∧ b ∈ S2b.

Theorem 2. Let (a, b) ∈ S1×S2. If L(a, b) = L(a)×L(b), then L(a,b) = La×Lb.

�����. It is sufficient to show that if any one of the conditions of Lemma 8
holds, then at least one condition of Lemma 9 is satisfied. Let 1 of Lemma 8 hold,

so S1a = {a}. For b ∈ S2 there are only two possibilities: (i) b ∈ S2b, (ii) b /∈ S2b.
If b ∈ S2b and S1a = {a}, then a ∈ S1a ∧ b ∈ S2b, so 2 of Lemma 9 holds. If

b /∈ S2b, then by Lemma 2 [4] Lb = {b}. S1a = {a} implies that La = {a}. So
La × Lb = {(a, b)} and since L(a,b) ⊆ La × Lb, we get

L(a,b) = La × Lb.

If 2 of Lemma 8 holds, we can proceed analogously. If 3 of Lemma 8 holds, then 2

of Lemma 9 holds, as well.
However, if L(a,b) = La × Lb in S1 × S2, then in general the equality L(a, b) =

L(a)× L(b) need not hold. �

Example 3. Let S1 = {a1, a2, a3, a4}, S2 = {b1, b2, b3, b4} be two semigroups and
let binary associative operations be given by the following tables:

a1 a2 a3 a4
a1 a1 a1 a1 a1
a2 a1 a1 a1 a2
a3 a1 a1 a1 a1
a4 a2 a1 a3 a4

b1 b2 b3 b4
b1 b1 b1 b1 b1
b2 b1 b1 b1 b2
b3 b1 b1 b1 b3
b4 b1 b1 b1 b4

L(a2) = {a1, a2}, La2 = {a2}. L(b2) = {b1, b2}, Lb2 = {b2}. L(a2,b2) =
{(a2, b2)} = La2 × Lb2 . However, L(a2, b2) = (a2, b2) ∪ (S1a2 × S2b2) = {(a1, b1),
(a2, b2)} and

L(a2)× L(b2) = {a1, a2} × {b1, b2}, so
L(a2, b2) ⊂ L(a2)× L(b2).

97



However, unlike in the case of J -classes, for L -classes the following holds:

Theorem 3. Let L(a,b) = La × Lb in S1 × S2 and let |La × Lb| > 1. Then

L(a, b) = L(a)× L(b).

�����. Let L(a,b) = La × Lb and |La × Lb| > 1. We shall consider three cases:
1. |La| > 1,∧|Lb| > 1;
2. |La| > 1,∧|Lb| = {b};
3. |La| = {a} ∧ |Lb| > 1.
If 1 holds then Theorem 4 [4] implies a ∈ S1a ∧ b ∈ S2b and by Lemma 8 we have

L(a, b) = L(a)× L(b).
If 2 holds, then b /∈ S2b cannot occur, since in this case La × Lb is the union

of at least two mutually different L -classes (Theorem 5 [4]), which contradicts our
hypothesis. So b ∈ S2b must hold and together with a ∈ S1a this that 3 of Lemma

8 is satisfied, so
L(a, b) = L(a)× L(b).

If 3 holds, we proceed analogously. �
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