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0. Introduction

By a paramedial groupoid we mean a groupoid satisfying the equation xy · zu =
uy · zx. As is easy to see, the equational theory of paramedial groupoids, as well as
the equational theory based on any balanced equation, is decidable.

In this paper we are going to investigate the equational theory of paramedial can-
cellation groupoids; by this we mean the set of all equations satisfied by paramedial
cancellation groupoids. (By a cancellation groupoid we mean a groupoid satisfying

both xz = yz → x = y and zx = zy → x = y.) Clearly, the equational theory
of paramedial cancellation groupoids is just the least cancellative equational theory

containing the paramedial law. We will show that this equational theory is also
decidable (Theorem 4.1), that it is a proper extension of the equational theory of

paramedial groupoids (Theorem 4.3), and that whenever two terms are unrelated
with respect to this equational theory, then their squares are also unrelated (Theo-

rem 4.7).
The results can be compared with those of [2] and [3] for medial groupoids.

1. The free monoid

We denote byM the free monoid over {1, 2}. The elements ofM are called words.
The empty word is the unit of M ; it will be denoted by o.
A word f is said to be a subword of a word e if e = gfh for some words g and h.

Two words e and f are called comparable if either e is a beginning of f or f is a
beginning of e. In all other cases, the two words are incomparable.

While working on this paper both authors were partially supported by the Grant Agency
of Czech Republic, grant No. 201/96/0312.
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The congruence of M generated by 〈11, 22〉 will be denoted by α. Clearly, e α f
implies that the words e, f have the same length. By an α-derivation we mean a finite
sequence e0, . . . , ek of words such that each ei+1 is obtained from ei by replacing a
subword 11 with 22, or by replacing a subword 22 with 11. By an α-derivation of f

from e we mean an α-derivation e0, . . . , ek such that e0 = e and ek = f . It is easy
to see that e α f if and only if there exists an α-derivation of f from e.

Lemma 1.1. α is a cancellative congruence of M .

�����. We shall prove only that α is left cancellative, and for this it is sufficient

to prove that ae α af implies e α f , where a ∈ {1, 2}. Denote by b the element of
{1, 2} − {a}. There exists an α-derivation e0, . . . , ek with e0 = ae and ek = af . We

shall proceed by double induction, the outer on the length of ae and the inner on k.
If either e = o or k � 1, everything is clear. Let k � 2. The word e1 is obtained from
ae by replacing either 11 with 22, or 22 with 11. If the replacement is done inside e,
then e1 = ag for some g α e; by the inner induction applied to e1, . . . , ek we get

g α f and hence e α f . So, we can assume that ae = aap for some p and e1 = bbp.
Quite similarly, we can assume that af = aaq for some q and ek−1 = bbq. By the

inner induction applied to e1, . . . , ek−1 we get bp α bq. Now bp is shorter than ae, so
by the outer induction we obtain p α q. So, e = ap α aq = f . �

For two blocksB1 andB2 of α, we denote byB1B2 the block of the words congruent

with ef modulo α, where e ∈ B1 and f ∈ B2. This does not depend on the choice
of e and f . However, B1B2 is not necessarily equal to the set of words that can be
decomposed into the product ef with e ∈ B1 and f ∈ B2. For example, {1}{1} =
{11, 22}.
For a subset B of M , we put

B(1) = {e ∈M : 1e ∈ B};
B(2) = {e ∈M : 2e ∈ B};
B[1] = {e ∈M : e α 1f for some f ∈ B};
B[2] = {e ∈M : e α 2f for some f ∈ B}.

Lemma 1.2. Let B be a block of α. Then:

(1) each of B(1) and B(2) is either empty or a block of α;
(2) each of B[1] and B[2] is a block of α;

(3) B[1](1) = B and B[2](2) = B.

�����. If e, f ∈ B(1), then 1e ∈ B and 1f ∈ B, so that 1e α 1f ; by Lemma 1.1,
e α f . If e ∈ B(1) and e α f , then 1f α 1e ∈ B, so 1f ∈ B and f ∈ B(1). We have
proved that B(1) is either empty or a block of α.

26



We have B[1] = {1}B, so B[1] is a block of α.
The following are equivalent for a word e:

e ∈ B[1](1);
1e ∈ B[1];
1e α 1f for some f ∈ B;
e α f for some f ∈ B (by Lemma 1.1);
e ∈ B.

This means that B[1](1) = B. The other statements can be proved dually. �

2. Terms

By a term we mean a groupoid term, i.e., an element of the absolutely free groupoid

over the infinite countable set X of variables.

Let t be a term. By induction on the complexity of t we define a finite subset
O(t) of M , and for each e ∈ O(t) a term t[e], as follows: If t ∈ X , then O(t) = {o};
t[o] = t. If t = uv, then O(t) = {o} ∪ {1e : e ∈ O(u)} ∪ {2e : e ∈ O(v)}; t[o] = t,
t[1e] = u[e] and t[2e] = v[e]. The elements of O(t) are called occurrences in t. If
e ∈ O(t) and t[e] = w, we say that e is an occurrence of a subterm w in t. We denote
by OX(t) the (finite) set of occurrences of variables in t.

Let t be a term, e be an occurrence of a subterm in t, and w be a term. There exists
a unique term t′ such that t′[e] = w and t′[f ] = t[f ] for any f ∈ OX(t) incomparable

with e. This term t′ will be denoted by Re:w(t); it can be called the term obtained
from t by replacing the occurrence of subterm at e with w.

Let t be a term and e, f be two incomparable occurrences of subterms in t. There

exists a unique term t′ such that t′[e] = t[f ], t′[f ] = t[e] and t′[g] = t[g] for any
g ∈ OX(t) incomparable with both e and f . This term t′ will be denoted by τe,f (t);

it can be called the term obtained from t by transposing the subterms at e and f .

Let t be a term, x be a variable and B be a subset of M . We denote by PB(x, t)
the set of the occurrences of x in t that belong to B.

Lemma 2.1. Let u, v be two terms, x be a variable and B be a block of α. Then

|PB(x, uv)| = |PB(1)(x, u)|+ |PB(2)(x, v)|.

�����. It is easy. �
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Lemma 2.2. Let t be a term, x be a variable and ϕ be a substitution (i.e., an
endomorphism of the groupoid of terms). Let B be a block of α. Then

|PB(x, ϕ(t))| =
∑

y∈X
B1B2=B

|PB1(y, t)||PB2(x, ϕ(y))|.

�����. For each triple y,B1, B2, where y ∈ X and B1, B2 are blocks of α with
B1B2 = B, define a mapping Hy,B1,B2 of PB1(y, t) × PB2(x, ϕ(y)) into PB(x, ϕ(t))
by Hy,B1,B2(e, f) = ef . One can easily check that these mappings are injective, that

their ranges are pairwise disjoint and that PB(x, ϕ(t)) is the union of their ranges.
�

3. The relation β

We denote by E the equational theory of paramedial cancellation groupoids.

Define a binary relation β on the set of terms as follows: u β v if and only if
|PB(x, u)| = |PB(x, v)| for all variables x and all blocks B of α.

Lemma 3.1. β is a cancellative congruence of the groupoid of terms. Moreover,

β is fully invariant, and thus β is an equational theory.

�����. Clearly, β is an equivalence. It follows from Lemma 2.1 that β is a

congruence. Applying 2.1 and 1.2, we see that β is cancellative. It is a consequence
of 2.2 that β is fully invariant, i.e., u β v implies ϕ(u) β ϕ(v) for any substitution ϕ.

�

Lemma 3.2. E ⊆ β.

�����. Clearly, E is just the least cancellative equational theory containing
the paramedial law. It is easy to check that the paramedial law belongs to β, so the

result is a consequence of 3.1. �

Lemma 3.3. Let t be a term and let e, f ∈ OX(t) be such that f can be obtained
from e by replacing a subword 11 with 22, or a subword 22 with 11. Then t E τe,f (t).

�����. By induction on the length of e (which is the same as the length of f).

If e is of length at most 1, there is nothing to prove. Let e be of length at least 2, and
let t = uv. If e = 1e′ and f = 1f ′ for some e′ and f ′, then by induction u E τu′,v′(u),

so that uv E τu′v′(u)v, i.e., t E τe,f (t). If both e and f begin with 2, the proof is
similar. So, we can assume without loss of generality that e = 11h and f = 22h
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for some h. If h is empty, then t = xp · qy and τe,f (t) = yp · qx for some variables
x, y and terms p, q, and clearly xp · qy E yp · qx. So, without loss of generality we
can assume that h begins with 1. We can write e = 111g and f = 221g for some g.
Put t = (t1t2 · t3)(t4 · t5t6), x = t[e] = t1[g] and y = t[f ] = t5[g]. Put t′1 = Rg:y(t1)

and t′5 = Rg:x(t5), so that τe,f (t) = (t′1t2 · t3)(t4 · t′5t6). Take an arbitrary quadruple
p, q, r, s of terms. In the sequence of terms

(t1t2 · t3)(t4 · t5t6) · (pt′1 · q)(t′5r · st′5);
(t′5r · st′5)(t4 · t5t6) · (pt′1 · q)(t1t2 · t3);
(t5t6 · st′5)(t4 · t′5r) · (t3q)(t1t2 · pt′1);
(t′5t6 · st5)(t4 · t′5r) · (t3q)(t′1t2 · pt1);
(t′5r · st5)(t4 · t′5t6) · (pt1 · q)(t′1t2 · t3);
(t′1t2 · t3)(t4 · t′5t6) · (pt1 · q)(t′5r · st5);
(t′1t2 · t3)(t4 · t′5t6) · (pt1 · q)(t5r · st′5);
(t′1t2 · t3)(t4 · t′5t6) · (st′5 · q)(t5r · pt1);
(t′1t2 · t3)(t4 · t′5t6) · (st′5 · q)(t′5r · pt′1);
(t′1t2 · t3)(t4 · t′5t6) · (pt′1 · q)(t′5r · st′5)

each two neighbors constitute an equation belonging to E. In all but one cases this
is clear, because the equation is a simple consequence of the paramedial law; the
only exception is the one relating the eighth and the ninth terms of the sequence.

In the 8-related-to-9 case, we need to show that t5r · pt1 E t′5r · pt′1. This follows by
induction, since t′5r · pt′1 = τ11g,22g(t5r · pt1) and 11g is shorter than e = 111g.
So, the first and the last term in the sequence of the above ten terms are related

modulo E. Since E is cancellative, we get (t1t2 · t3)(t4 · t5t6) E (t′1t2 · t3)(t4 · t′5t6),
i.e., t E τe,f (t). �

Lemma 3.4. Let t be a term such that for some nonnegative integer n, all

occurrences of variables in t are of length n. Let e, f ∈ OX(t) be such that e α f .

Then u E τe,f (t).

�����. Let e0, . . . , ek be an α-derivation of f from e. By 3.3, t is E-related

with the term

τe0,e1τe1,e2 . . . τek−2,ek−1τek−1,ek
τek−2,ek−1 . . . τe0,e1(t).

This term is equal to τe,f (t), as is easy to see. �
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Lemma 3.5. Let t be a term and let e, f ∈ OX(t) be such that e α f . Then

u E τe,f (t).

�����. Put x = t[e] and y = t[f ]. Denote by n the common length of the words
e and f . Let u be a term such that u[e] = y, u[f ] = x and a word belongs to OX(u)

if and only if it is of length n. (Clearly, there is at least one such term u.) Take
arbitrarily two terms p and q. Applying 3.3 twice we get tp · qu E τ11e,22e(tp · qu) =
Re:y(t)p · qRe:x(u) E τ11f,22f (Re:y(t)p · qRe:x(u)) = τe,f (u)p · qτe,f (u). By 3.4 we
have τe,f (u) E u, so tp · qu E τe,f (u)p · qτe,f (u) E τe,f (u)p · qu and by cancellation
t E τe,f (u). �

Lemma 3.6. β ⊆ E.

�����. Denote by C(u, v) the set of the occurrences e ∈ OX(u) such that

either e /∈ OX(v) or u[e] �= v[e]. Let u β v. We shall prove u E v by induction
on |C(u, v)| + |C(v, u)|. If this number is zero, then clearly u = v and we are
through. Now let e be a shortest word in C(u, v)∪C(v, u). Without loss of generality,
e ∈ C(u, v). Put x = u[e]. By the minimality of e, the word e belongs to O(v).
(Otherwise, a proper beginning of e would belong to OX(v), and this beginning

would then belong to C(v, u).) Put w = v[e]. We have w �= x. Denote by B the
block of α containing e. Since u β v, we have |PB(x, u)| = |PB(x, v)|. Now e belongs
to PB(x, u)− PB(x, v). Consequently, PB(x, v)− PB(x, u) is also nonempty. Take a
word f ∈ PB(x, v) − PB(x, u). Hence we do not have u[f ] = x. By the minimality

of e, the word f belongs to O(u). Put w′ = u[f ], so that w′ �= x. Put u′ = Rf :z(u),
where z is a variable not occurring in u. By 3.5 we have u′ E τe,f (u′). Denote by ϕ

the substitution acting as the identity on every variable except for ϕ(z) = w′. Then
ϕ(u′) E ϕ(τe,f (u′)), i.e., u E t where t = τe,f (u). By 3.2 we get u β t, and hence

t β v.

Let g ∈ C(t, v). If g is incomparable with both e and f , then t[g] = u[g] and hence
g ∈ C(u, v). If g is comparable with e, then g = eg′ for some g′ and fg′ ∈ C(u, v).

Finally, g cannot be comparable with f . From this it follows that |C(t, v)| � |C(u, v)|.
It is easy to see that C(v, t) ⊂ C(v, u) (we have f ∈ C(v, u) − C(v, t)). Hence

|C(t, v)| + |C(v, t)| < |C(u, v)| + |C(v, u)|. Since t β v, we get t E v by induction.

But then, u E v. �
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4. The equational theory

Theorem 4.1. An equation 〈u, v〉 belongs to the equational theory of paramedial
cancellation groupoids if and only if |PB(x, u)| = |PB(x, v)| for all variables x and
all blocks B of α. Consequently, the equational theory is decidable.

�����. It follows from 3.2, 3.6 and the definition of β. �

The following is a reformulation:

Corollary 4.2. An equation 〈u, v〉 belongs to the equational theory of parame-
dial cancellation groupoids if and only if there is a bijection F of OX(u) onto OX(v)

such that e α F (e) and u[e] = v[F (e)] for all e ∈ OX(u).

Theorem 4.3. The equational theory of paramedial groupoids is properly con-
tained in the equational theory of paramedial cancellation groupoids.

�����. Of course, if an equation is satisfied in all paramedial groupoids, then it
is satisfied in all paramedial cancellation groupoids. By Theorem 4.1, the equation

〈(xy · z)(u · vw), (vy · z)(u · xw)〉

belongs to the equational theory of paramedial cancellation groupoids. On the other

hand, this equation does not belong to the equational theory of paramedial groupoids.
In fact, it is easy to see that {(xy ·z)(u·vw), (vw·z)(u·xy)} is a block of the equational
theory of paramedial groupoids. �

For any n � 0, we define two words In and Jn by induction in the following way:

I0 = J0 = o (the empty word); for n odd, In = 1In−1 and Jn = 2Jn−1; for n > 0
even, In = 2In−1 and Jn = 1Jn−1. For example, I4 = 2121 and J7 = 2121212.

Lemma 4.4. Let n � 0. The following are true:
(1) whenever e α In, then e = In; whenever e α Jn, then e = Jn;

(2) for n odd we have In1 α 2Jn and Jn2 α 1In; for n even we have In1 α 1Jn

and Jn2 α 2In.

�����. (1) is clear, since the words In and Jn contain neither 11 nor 22 as

a subword. Let us prove (2) by induction on n. For example, if n is odd, then
In1 = Jn−111 α Jn−122 α 2In−12 = 2Jn. �
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For a subset B of M put B〈1〉 = B[1](2), so that e ∈ B〈1〉 if and only if 2e α 1f for

some f ∈ B. If B is a block of α, then B〈1〉 is either a block of α or the empty set.
By induction, we define B〈n〉 for n � 0 as follows: B〈0〉 = B; B〈n+1〉 = B〈n〉〈1〉.

Lemma 4.5. Let B be a block of α and n be a nonnegative integer. If e ∈ B〈n〉,

then Jne α Inf for some f ∈ B.

�����. By induction on n. For n = 0 it is clear. Let e ∈ B〈n+1〉, so that
2e α 1f for some f ∈ B〈n〉. By induction, Jnf α Ing for some g ∈ B. According

to 4.4(2) we have Jn+1e = In2e α In1f α aJnf α aIng = In+1g, where a = 1 if n is
even and a = 2 if n is odd. �

Lemma 4.6. For every block B of α there exists a positive integer n such that
B〈0〉, . . . , B〈n−1〉 are pairwise different blocks of α and B〈n〉 is empty.

�����. Suppose that for some i > 0, there exists a word e ∈ B ∩B〈i〉. By 4.5
we have Jie α Iif for some f ∈ B. Then e α f , and we get Jie α Iif α Iie. By 1.1,

it follows that Ji α Ii. By 4.4(1) we get Ji = Ii, a contradiction with i > 0.

So, if B〈0〉, . . . , B〈i〉 are all nonempty, then they are pairwise disjoint. All these

blocks of α contain words of the same length, so their number cannot be arbitrarily
large. �

Theorem 4.7. Let u, v be two terms such that the equation 〈uu, vv〉 belongs
to the equational theory of paramedial cancellation groupoids. Then the equation

〈u, v〉 also belongs to the equational theory.

�����. By Theorem 4.1 we have |PB(x, uu)| = |PB(x, vv)| for any variable x
and any block B of α. Let a variable x be given. Let us call a block B of α good if
|PB(x, u)| = |PB(x, v).

By 1.2 and 2.1 we have

|PB(x, u)|+ |PB〈1〉(x, u)| = |PB[1](1)(x, u)|+ |PB[1](2)(x, u)|
= |PB[1](x, uu)|
= |PB[1](x, vv)|
= |PB[1](1)(x, v)| + |PB[1](2)(x, v)|
= |PB(x, v)| + |PB〈1〉(x, v)|,

so that |PB(x, u)| = |PB(x, v)| if and only if |PB〈1〉(x, u)| = |PB〈1〉(x, v)|. This means
that B is good if and only if B〈1〉 is either good or empty. By 4.6, there exists an
n such that B〈n〉 is empty and B〈0〉, . . . , B〈n−1〉 are blocks of α. Hence B〈n−1〉 is
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good, so that B〈n−2〉 is also good, etc., and the block B = B〈0〉 is good. Since B

and x were arbitrary, by Theorem 4.1 the equation 〈u, v〉 belongs to the equational
theory. �

Corollary 4.8. Let G be a free groupoid in the variety generated by paramedial
cancellation groupoids. Then the transformation a 
→ aa of G is injective.

5. Quasigroup envelopes

In this section we will make use of 4.8 to solve a question formulated in [1]. In fact,

we are going to show that every paramedial cancellative groupoid has a quasigroup
envelope which is unique up to isomorphism. First, we have to recall a few notions

introduced in [1].

Let H be a subgroupoid of a paramedial groupoid G. Then Mul(G,H) is the

transformation semigroup (acting on G) generated by the left and right translations
Lx and Rx, for all x ∈ H . By 4.2 of [1], Mul(G,H) is a left uniform semigroup.

Further, we denote by [H ]G,c the set of all a ∈ G such that f(a) ∈ H for at least one
f ∈Mul(G,H).

Lemma 5.1. Let H be a subgroupoid of a paramedial cancellative groupoid G
and K = [H ]G,c. Then:

(1) H ⊆ K and K is a subgroupoid of G;

(2) every cancellative congruence of H can be extended in a unique way to a
cancellative congruence of K;

(3) if G is a quasigroup, then K is so.

�����. See 4.10 and 4.11 of [1]. �

Let a paramedial (cancellative) groupoid G be a subgroupoid of a paramedial

quasigroup Q. We say that Q is a quasigroup envelope of G if A = Q whenever A is
a subquasigroup of Q such that G ⊆ A.

Lemma 5.2. Let G be a subgroupoid of a paramedial quasigroup Q. Then Q is
a quasigroup envelope of G if and only if Q = [G]Q,c.

�����. The result follows easily from 5.1(3). �

Theorem 5.3. Every paramedial cancellative groupoid G has a quasigroup

envelope which is determined uniquely up to G-isomorphism.
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�����. A combination of 5.1(3), 4.8, and 5.4 and 5.5 of [1] yields the existence

of a paramedial quasigroup Q such that G is a subgroupoid of Q and Q = [G]Q,c,
i.e., Q is a quasigroup envelope of G by 5.2. Now, let ϕ : G → A be a reflexion of
G into the category of paramedial quasigroups and let B = [ϕ(G)]A,c. There is a

(uniquely determined) homomorphism ψ : A→ Q such that ψϕ is the identity on G.
Hence G ⊆ ψ(B) ⊆ Q and ψ(B) is a subquasigroup of Q. Consequently, ψ(B) = Q.

Moreover, the kernel of ψ|B is a (cancellative) congruence of B extending the kernel
of ψ|ϕ(G), i.e., extending the identity on ϕ(G). By 5.1(2), ψ|B is an isomorphism
of B onto Q. The rest is clear. �
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