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Czechoslovak Mathematical Journal, 49 (124) (1999), 657–672

ON UNIFORMLY GÂTEAUX SMOOTH C(n)-SMOOTH NORMS ON

SEPARABLE BANACH SPACES

Marián Fabian* and Václav Zizler,† Praha

(Received December 10, 1996)

Abstract. Every separable Banach space with C(n)-smooth norm (Lipschitz bump func-
tion) admits an equivalent norm (a Lipschitz bump function) which is both uniformly
Gâteaux smooth and C(n)-smooth. If a Banach space admits a uniformly Gâteaux smooth
bump function, then it admits an equivalent uniformly Gâteaux smooth norm.

Let (X, ‖ · ‖) be a separable Banach space. Then it is easy to construct an equiv-
alent uniformly Gâteaux smooth norm on it. Indeed, let {xj : j ∈ �} be a countable
set contained and dense in the unit ball of X . Then

|||x∗|||2 = ‖x∗‖2 +
∞∑

j=1

x∗(xj)2/2j, x∗ ∈ X∗,

is easily seen to be an equivalent, dual, and weak∗ uniformly rotund norm on X∗.

Hence the corresponding norm ||| · ||| on X is uniformly Gâteaux smooth. For more
details see [DGZ, Section II.6]. Now assume that X admits an equivalent C(n)-

smooth norm. A natural question then is whether X admits an equivalent norm
such that this norm would be both uniformly Gâteaux smooth and C(n)-smooth. If

n = 1, then X∗ is separable [Ph, Corollary 4.15, Theorem 2.19] and we can assume
that the dual norm ‖ · ‖ on X∗ is locally uniformly rotund. Then the norm ||| · ||| on X
constructed above is both uniformly Gâteaux smooth and C(1)-smooth. However, if
n > 1, we seriously doubt that ||| · ||| would be C(n)-smooth provided that ‖ · ‖ is.
The aim of this note is to construct such a norm:

* Supported by grants AV 101-97-02 and GAČR 201-98-1449
† Supported by grant GAUK 1/1998, GAUK 186, and GAČR 201-98-1449
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Theorem 1. Let (X, ‖ · ‖) be a separable Banach space admitting an equivalent
C(n)-smooth norm, where n ∈ {1, 2, . . .}∪{∞}. Then X admits an equivalent norm
which is both uniformly Gâteaux smooth and C(n)-smooth.

We start with some preliminaries. The sets of positive integers, and real numbers

are denoted by �, and �, respectively. Let (X, ‖ · ‖) and (Y, ‖ · ‖) be Banach spaces
and n ∈ �. The symbol L n(X,Y ) denotes the (Banach) space of n-linear bounded
mappings from X to Y endowed with the norm

‖L‖ = sup{‖L(h1, . . . , hn)‖ : h1, . . . , hn ∈ BX}, L ∈ L n(X,Y ).

If n = 1 we write L (X,Y ). If Y = � we simply write L n(X) = L (X,�). We use

the symbol X∗ instead of L 1(X). The closed and open unit balls in X are denoted
by BX and B̊X respectively.

Let f be a mapping from X to Y and x ∈ X . We say that f is Gâteaux differen-
tiable at x if there exists L ∈ L (X,Y ) such that

∥∥∥ 1
τ
[f(x+ τh)− f(x)]− L(h)

∥∥∥ → 0 as τ → 0

for every h ∈ X . Then we denote f ′(x) = L. Let Ω be an open subset in X . We
say that f is uniformly Gâteaux smooth on Ω if f is Gâteaux differentiable at every

point in Ω and for every h ∈ X
∥∥∥1
τ
[f(x+ τh)− f(x)]− f ′(x)(h)

∥∥∥ → 0 as τ → 0

uniformly for x ∈ Ω. It is easy to check that if f is Lipschitz on Ω, then f is uniformly
Gâteaux smooth on Ω if and only if f is Gâteaux differentiable at every point of Ω
and for every ε > 0 and every h ∈ X there exists δ > 0 such that

∥∥f ′(x)(h) − f ′(z)(h)
∥∥ < ε

whenever x, z ∈ Ω and ‖x− z‖ < δ. We say that the norm ‖ · ‖ is uniformly Gâteaux
smooth if it is uniformly Gâteaux smooth on the set {x ∈ X : ‖x‖ > r} where r is
some (actually any) positive number.

We say that f is 1-times Fréchet differentiable at x if it is Gâteaux differentiable
at x and ∥∥∥1

τ
[f(x+ τh)− f(x)]− f ′(x)(h)

∥∥∥ → 0 as τ → 0

uniformly for h ∈ BX . Now let n ∈ {2, 3, . . .} and assume that we have al-
ready defined the (n− 1)-times Fréchet differentiability and the symbol f (n−1)(x) ∈
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L (n−1)(X,Y ). Assume that the mapping f is defined and (n− 1)-times Fréchet dif-
ferentiable at the points of a neighbourhood of x and let there exist L ∈ L (n)(X,Y )
such that

∥∥∥1
τ

[
f (n−1)(x+ τh1)(h2, . . . , hn)− f (n−1)(x)(h2, . . . , hn)

]
− L(h1, . . . , hn)

∥∥∥ → 0
as τ → 0

uniformly for h1, h2, . . . , hn ∈ BX . Then we say that f is n-times Fréchet differen-
tiable at x and we denote f (n)(x) = L. (It is known that f (n)(x) is then symmetric

with respect to the variables h1, . . . , hn ∈ X [C, Chapitre 1, Théorème 5.3.1]. But
we shall not need this fact.)

Let Ω ⊂ X be an open set and n ∈ �. We say that the mapping f is C(n)-
smooth on Ω if it is n-times Fréchet differentiable at every x ∈ Ω and the mapping
x �→ f (n)(x) from Ω to L n(X,Y ) is continuous on Ω. We can easily check that f is
C(n)-smooth on Ω if and only if it is n-times Fréchet differentiable at every point of

Ω and for every x ∈ Ω and every ε > 0 there is δ > 0 such that
∥∥∥1
τ

[
f (n−1)(z + τh1)(h2, . . . , hn)− f (n−1)(z)(h2, . . . , hn)

]
− L(h1, . . . , hn)

∥∥∥ < ε

whenever 0 �= τ ∈ (−δ, δ), z ∈ Ω, ‖z − x‖ < δ, and h1, . . . , hn ∈ BX . We say that f
is C∞-smooth on Ω if it is C(n)-smooth on Ω for every n ∈ �. The 0-smoothness

means just the continuity of f and we put f (0) = f .

����� of Theorem 1. A rough scheeme of the proof: Applying integral convo-
lutions on the norm ‖ · ‖ on X countably many times (see [FWZ, Theorem 3.1]), we
construct a convex uniformly Gâteaux smooth function f . If ‖ · ‖ is C(n)-smooth,
then f will also be C(n)-smooth. Now an implicit function theorem produces from
f a C(n)-smooth norm. However we are affraid that the implicit function theorem

does not work for the uniform Gâteaux smoothness in general. Hence we need more
work: From f we construct, via an integration, a new, better function g. Applying

then the implicit function theorem to g, we get a norm which satisfies the conclusion
of our theorem.

Step 1. Basic construction. Let {xj : j ∈ �} be a countable set which is contained
and dense in the unit ball of X . Denote

T =
[
− 1
4 ,
1
4

]
×

[
− 1
8 ,
1
8

]
×

[
− 1
16 ,

1
16

]
× . . . ,

Q = [−1, 1]�, and

K =

{ ∞∑

j=1

tjxj : t = (t1, t2, . . .) ∈ T
}
.
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Note that T , Q and K are compact spaces. Let ϕ : � → [0,+∞) be a C1-smooth
function, with support in [− 12 , 12 ] and such that

∫
�
ϕ = 1. For m ∈ �, and t =

(t1, t2, . . .) ∈ Q we define

ψm(t) =
m∑

j=1

tjxj and ϕm(t) = 2ϕ(2t1)4ϕ(4t2) . . . 2mϕ(2mtm).

Let µ be the product of countable many Lebesgue measures on [−1, 1]. For m ∈ �

we define

fm(x) =
∫

Q

‖x− ψm(t)‖ϕm(t) dµ(t), x ∈ X.

Note that the integrand here is continuous on (the compact) Q. Hence fm(x) is well

defined for every x ∈ X . Observe also that fm is a convex function and that

|fm(x)− fm(y)| � ‖x− y‖
∫

Q

ϕm(t) dµ(t) = ‖x− y‖ for all x, y ∈ X.

Observe further that

|fm1(x)− fm2(x)| �
∫

Q

∥∥∥∥
m2∑

j=m1+1

tjxj

∥∥∥∥ϕm2(t) dµ(t)

�
m2+1∑

j=m1+2

2−j → 0 as m1 � m2 →∞

uniformly for x ∈ X . Hence we can put

f(x) = lim
m→∞

fm(x), x ∈ X.

This is a convex 1-Lipschitz function on X and ‖ · ‖ − 1
2 � f � ‖ · ‖+ 12 . �

Step 2. For a function g : X → �, x ∈ X , and h ∈ X we put

Dg(x)(h) = lim
τ→0
1
τ
[g(x+ τh) − g(x)]
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if this limit exists and is finite. Fix x ∈ X and i,m ∈ �, i � m. Then

Dfm(x)(xi) = lim
τ→0
1
τ
[fm(x+ τxi)− fm(x)]

= lim
τ→0
1
τ

[∫

Q

∥∥∥∥x−
m∑

j �=i

tjxj − (ti − τ)xi

∥∥∥∥2ϕ(2t1)4ϕ(4t2) . . . 2mϕ(2mtm) dµ(t)

−
∫

Q

∥∥∥∥x−
m∑

j �=i

tjxj − tixi

∥∥∥∥2ϕ(2t1)4ϕ(4t2) . . . 2mϕ(2mtm) dµ(t)
]

= lim
τ→0

∫

Q

∥∥∥∥x−
m∑

j=1

tjxj

∥∥∥∥2ϕ(2t1) . . . 2i−1ϕ(2i−1ti−1)2i
1
τ

[
ϕ(2i(ti + τ)) − ϕ(2iti)

]

× 2i+1ϕ(2i+1ti+1) . . . 2mϕ(2mtm) dµ(t)

=
∫

Q

‖x− ψm(t)‖ϕi
m(t) dµ(t),

where

ϕi
m(t) = 2ϕ(2t1) . . . 2

i−1ϕ(2i−1ti−1)22iϕ′(2iti)2i+1ϕ(2i+1ti+1) . . . 2mϕ(2mtm),

t = (t1, t2, . . .). Here we used the substitution ti − τ �→ ti, the fact that ϕ is a
C(1)-smooth function and the Lebesgue dominated convergence theorem. �

Step 3. Fix x ∈ X and i ∈ � and denote I = (−1, 1). Put

ϕ(s) = f(x+ sxi), s ∈ I,

ϕm(s) = fm(x+ sxi), s ∈ I, m ∈ �.

Then

ϕm(s)− ϕ(s) = fm(x+ sxi)− f(x+ sxi)→ 0 as m→∞

(uniformly) for s ∈ I. Also, since ϕm
′(s) = Dfm(x + sxi)(xi), we have, by Step 2,

that

∣∣ϕm1
′(s)− ϕm2

′(s)
∣∣ �

m2+1∑

j=m1+2

2−j · 22i
∫

�

|ϕ′(2iti)|dti → 0 as i � m1 � m2 →∞

uniformly for s ∈ I. By a well known theorem from real analysis we then get that ϕ
is a C(1)-smooth function on I and that

ϕ′(s) = lim
m→∞

ϕm
′(s) for s ∈ I.
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Thus, in particular,

Df(x)(xi) = ϕ′(0) = lim
m→∞

ϕm
′(0)

= lim
m→∞

∫

Q

‖x− ψm(t)‖ϕi
m(t) dµ(t).

From this and the definition of ϕi
m it follows that the function x �→ Df(x)(xi) is

Ci-Lipschitz, where Ci = 2i
∫
�
|ϕ′(s)| ds. �

Step 4. Fix x ∈ X and take any h ∈ BX and any ε > 0. We find i ∈ � so that
‖h− xi‖ < ε/2. Since f is 1-Lipschitz, we have

lim sup
τ,τ ′→0

∣∣∣1
τ
[f(x+ τh)− f(x)]− 1

τ ′
[f(x+ τ ′h)− f(x)]

∣∣∣

� lim sup
τ,τ ′→0

∣∣∣1
τ
[f(x+ τxi)− f(x)]− 1

τ ′
[f(x+ τ ′xi)− f(x)]

∣∣∣+ 2‖h− xi‖ < ε.

Hence Df(x)(h) exists. Now, since f is convex and Lipschitz, we conclude that f is
Gâteaux differentiable at x. �

Step 5. Fix h ∈ BX . Then for x, y ∈ X we have by Step 3

|f ′(x)(h) − f ′(y)(h)| < |f ′(x)(xi)− f ′(y)(xi)|+
(
‖f ′(x)‖ + ‖f ′(y)‖

)
‖h− xi‖

< Ci‖x− y‖+ 2‖h− xi‖.

So, if i ∈ � is such that ‖h− xi‖ < ε/4 and if ‖x− y‖ < ε/(2Ci), we get |f ′(x)(h)−
f ′(y)(h)| < ε. From this it follows that f is uniformly Gâteaux smooth on all of X .

�

Step 6. Using an implicit function theorem, we could produce an equivalent norm
from f . However, we are not quite sure if such a norm would keep the uniform

Gâteaux smoothness. (For a better understanding of our worries, see Step 9.) In
what follows we “improve” f . Let η : � → [0,+∞) be a C1-smooth function with
support in [1, 2] and such that

∫
�
η = 1. Put

g(x) =
∫

�

f(sx)η(s) ds, x ∈ X.

We can easily check that the function g is well defined on all of X , and that g is
convex and 2-Lipschitz. Moreover, as ‖ · ‖ − 1

2 � f � ‖ · ‖+ 12 , we have

‖x‖ − 1
2

� g(x) � 2‖x‖+ 1
2
, x ∈ X.

�

662



Step 7. Fix x ∈ X and put

L(h) =
∫

�

f ′(sx)(h)sη(s) ds, h ∈ X.

It is easy to verify that L(h) is well defined and that L is a linear bounded functional

on X , with |L(h)| � ‖h‖
∫
�
sη(s) ds � 2‖h‖, h ∈ X . Fix any ε > 0 and any h ∈ BX .

Since f is uniformly Gâteaux smooth (Gâteaux differentiability is actually enough),

there is δ > 0 so that

|f ′(sx+ z)(h)− f ′(sx)(h)| < ε/2 whenever s ∈ [1, 2] and z ∈ X, ‖z‖ < 2δ.

Thus for 0 �= τ ∈ (−δ, δ) we have
∣∣∣1
τ
[g(x+ τh)− g(x)]− L(h)

∣∣∣

=

∣∣∣∣
∫

�

(1
τ
[f(s(x+ τh))− f(sx)]− f ′(sx)(h)s

)
η(s) ds

∣∣∣∣

=

∣∣∣∣
∫

�

∫ 1

0
[f ′(sx + θsτh)(h)− f ′(sx)(h)] dθsη(s) ds

∣∣∣∣

<

∫

�

(ε/2)sη(s) ds < 2ε/2 = ε.

This means that g is Gâteaux differentiable at x and

g′(x)(h) =
∫

�

f ′(sx)(h)sη(s) ds, x ∈ X, h ∈ X.

Now, since f is uniformly Gâteaux smooth on X , the above formula yields that g is
also uniformly Gâteaux smooth on X . Moreover, integrating by parts, we obtain

(∗) g′(x)(x) = −
∫

�

f(sx)(sη′(s) + η(s)) ds, x ∈ X.

�

Step 8. Consider the set

U = {x ∈ X : g(x) � 1}.

From the properties of g we can easily deduce that U is a convex, closed, and bounded
set. Since g(0) = f(0) � 1/2, the interior of U contains 0. Let p denote Minkowski’s
functional of U . Then p will be positively homogeneous, convex, continuous, and
p(x) = 0 if and only if x = 0.
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In what follows we shall show that p is Gâteaux differentiable and we shall derive

a formula for p′. We shall proceed as in [BF]. Fix x ∈ X , with p(x) = 1 and let ξ
be an element of the subdifferential ∂p(x). Note that then g(x) = 1. Let h ∈ X be
such that ξ(h) = 0. Then p(x + τh) � p(x) = 1 for τ > 0. Take any r > 1. Then

p(r(x + τh)) = rp(x + τh) > 1 and hence r(x + τh) �∈ U , i.e., g(r(x + τh)) > 1
for all r > 1 and all τ > 0. Thus g(x + τh) � 1 (= g(x)) for all τ > 0. It follows

g′(x)(h) � 0. This holds for every h ∈ X satisfying ξ(h) = 0. Therefore ξ = λg′(x)
for a suitable λ ∈ �. But

1 = p(x) = ξ(x) = λg′(x)(x),

so ξ = [g′(x)(x)]−1g′(x). Hence ξ is uniquely determined, which means that p is
Gâteaux differentiable at x and p′(x) = ξ. Thus, for every 0 �= x ∈ X we have

(∗∗) p′(x) =
[
g′

( x

p(x)

)( x

p(x)

)]−1
g′

( x

p(x)

)
.

�

Step 9. It remains to prove that p is uniformly Gâteaux smooth outside of a

neighbourhood of the origin, say on Ω = {x ∈ X : p(x) > r}, where r is a fixed
positive number. So fix h ∈ X and consider any x, y ∈ Ω. Write x̃ = x

p(x) , ỹ =
y

p(y) .

Then p(x̃) = p(ỹ) = 1 = g(x̃) = g(ỹ),

g′(x̃)(x̃) � g(x̃)− g(0) � 1
2 , g′(ỹ)(ỹ) � 1

2 ,

and

p′(x)(h) − p′(y)(h) =
[
g′(x̃)(x̃)

]−1
g′(x̃)(h) −

[
g′(ỹ)(ỹ)

]−1
g′(ỹ)(h)

=
[
g′(x̃)(x̃)

]−1[
g′(x̃)(h)− g′(ỹ)(h)

]

+
[
g′(x̃)(x̃)g′(ỹ)(ỹ)

]−1[
g′(ỹ)(ỹ)− g′(x̃)(x̃)

]
g′(ỹ)(h)

� 2
∣∣g′(x̃)(h) − g′(ỹ)(h)

∣∣+ 4
∣∣(g′(ỹ)(ỹ)− g′(x̃)(x̃)

∣∣∣∣g′(x̃)(h)
∣∣.

Recall that |g′(x̃)(h)| � 2‖h‖. Also, from (∗) we get
∣∣g′(ỹ)(ỹ)−g′(x̃)(x̃)

∣∣ � k‖ỹ− x̃‖,
where k = 2

∫
Q |sη′(s) + η(s)| ds. Thus

p′(x)(h) − p′(y)(h) � 2
∣∣(g′(x̃)(h) − g′(ỹ)(h)

∣∣+ 8k‖x̃− ỹ‖.

Now, recalling that g is uniformly Gâteaux smooth on X , it is enough to show that
‖x̃− ỹ‖ is majorized by a multiple of ‖x− y‖. From the definition of p we know that
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it has all features of an equivalent norm but the symmetry. So there are constants

a, b > 0 such that a‖ · ‖ � p � b‖ · ‖. Thus for x, y ∈ Ω we have

‖x̃− ỹ‖ =
∥∥∥ x

p(x)
− y

p(y)

∥∥∥ � ‖x− y‖
p(x)

+
‖y‖
p(x)

|p(y)− p(x)|
p(y)

� 1
r
‖x− y‖+ b

ar
‖x− y‖.

Therefore p is uniformly Gâteaux smooth on Ω.

Putting |||x||| = p(x) + p(−x), x ∈ X , we get an equivalent uniformly Gâteaux

smooth norm on X . �

Step 10. From now on fix n ∈ � and assume that our original norm ‖ · ‖ on X is
C(n)-smooth . We shall show that the norm ||| · ||| defined in the previous step is in
fact C(n)-smooth .

Claim. The functions fm, m ∈ �, from Step 1 are C(n)-smooth on X \ 12BX and

f (n)m (x)(h1, . . . , hn) =
∫

Q

‖ · ‖(n)(x− ψm(t))(h1, . . . , hn)ϕm(t) dµ(t)

for x ∈ X \ 12BX and h1, . . . , hn ∈ X .

�����. Surely, the claim is true for n := 0. Assume that the claim was verified
for n− 1. Fix x ∈ X , with ‖x‖ > 1/2, and for m ∈ � put

Lm(h1, . . . , hn) =
∫

Q

‖ · ‖(n)(x− ψm(t))(h1, . . . , hn)ϕm(t) dµ(t), h1, . . . , hn ∈ X.

Note that the integrand here is equal to 0 for all t ∈ Q \ T . Further x − ψm(t) �= 0
for all t ∈ T . And, since ‖ · ‖(n) is continuous on X \ {0}, Lm(h1, . . . , hn) is well
defined and Lm ∈ L n(X).

Let ε > 0 be given. From the compactness of K and from the continuity of ‖ · ‖(n)
we find δ ∈ (0, 12‖x‖ − 1

4 ) so that

∥∥∥‖ · ‖(n)(z − ψm(t))− ‖ · ‖(n)(x− ψm(t))
∥∥∥ < ε

whenever z ∈ X , ‖z − x‖ < 2δ, m ∈ �, and t ∈ T .
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Now take any 0 �= τ ∈ (−δ, δ), h1, . . . , hn ∈ BX , m ∈ �, and y ∈ X with

‖y − x‖ < δ. Then, by the induction assumption,

∣∣∣1
τ

[
f (n−1)m (y + τh1)(h2, . . . , hn)− f (n−1)m (y)(h2, . . . , hn)

]
− Lm(h1, . . . , hn)

∣∣∣

=

∣∣∣∣
∫

Q

(1
τ

[
‖ · ‖(n−1)(y + τh1 − ψm(t))(h2, . . . , hn)

− ‖ · ‖(n−1)(y − ψm(t))(h2, . . . , hn)
]
− ‖ · ‖(n)(x − ψm(t))(h1, . . . , hn)

)
ϕm(t) dµ(t)

∣∣∣∣

=

∣∣∣∣
∫

Q

∫ 1

0

[
‖ · ‖(n)(y + θτh1 − ψm(t))(h1, . . . , hn)

−‖ · ‖(n)(x− ψm(t))(h1, . . . , hn)
]
dθϕm(t) dµ(t)

∣∣∣∣ < ε.

(Here we used the continuity of ‖ · ‖(n) and the integral mean value theorem.) This
means that fm is C(n)-smooth at x and that

f (n)m (x)(h1, . . . , hn) =
∫

Q

‖ · ‖(n)(x− ψm(t))(h1, . . . , hn)ϕm(t) dµ(t).

�

Step 11. Claim. The function f defined in Step 1 is C(n)-smooth on X \ 12BX

and

‖f (n)m (x) − f (n)(x)‖ → 0 as m→∞

for every x ∈ X , with ‖x‖ > 1/2.
�����. Surely, the claim is true for n := 0. Assume that the claim was verified

for n−1. Fix x ∈ X \ 12BX . From the compactness of K and the continuity of ‖ ·‖(n)
we get that

∥∥∥‖ · ‖(n)(x − ψm1(t))− ‖ · ‖(n)(x− ψm2)(t))
∥∥∥ → 0 as m1,m2 →∞

uniformly for t ∈ T . Hence, by Step 10,
∥∥∥f (n)m1

(x)− f (n)m2
(x)

∥∥∥ → 0 as m1,m2 →∞.

Thus, we can define L = lim
m→∞

f
(n)
m (x) and L belongs to L n(X).

Fix ε > 0 and let δ be that chosen in Step 10. Take 0 �= τ ∈ (−δ, δ), h1, . . . , hn ∈
BX , and y ∈ X , with ‖y − x‖ < δ. Then, according to Step 10, we have

∣∣∣∣
1
τ

[
f (n−1)m (y + τh1)(h2, . . . , hn)− f (n−1)m (y)(h2, . . . , hn)

]
− f (n)m (x)(h1, . . . , hn)

∣∣∣∣ < ε
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for all m ∈ �. Now let m go to ∞. By the induction assumption, we thus get that
∣∣∣∣
1
τ

[
f (n−1)(y + τh1)(h2, . . . , hn)− f (n−1)(y)(h2, . . . , hn)

]
− L(h1, . . . , hn)

∣∣∣∣ � ε.

This means that f is C(n)-smooth at x and that f (n)(x) = L (= lim
m→∞

f
(n)
m (x)). �

Step 12. Claim. The function g defined in Step 6 is also C(n)-smooth on X\ 12BX

and

g(n)(x)(h1, . . . , hn) =
∫

�

f (n)(sx)(h1, . . . , hn)snη(s) ds

for all x ∈ X \ 12BX and all h1, . . . , hn ∈ BX .

�����. Surely, the claim is true for n := 0. Assume that the claim was verified
for n− 1. Fix x ∈ X \ 12BX and put

L(h1, . . . , hn) =
∫

�

f (n)(sx)(h1, . . . , hn)snη(s) ds, h1, . . . , hn ∈ X.

As earlier, we can check that L is well defined and that L ∈ L n(X). Let ε > 0 be
given. We find δ ∈ (0, 12‖x‖ − 1

4 ), δ < 1, such that

‖f (n)(sz)− f (n)(sx)‖ < ε2−n whenever z ∈ X, ‖z − x‖ < 2δ, and s ∈ [1, 2].

Then for 0 �= τ ∈ (−δ, δ), y ∈ X , ‖y − x‖ < δ and h1, . . . , hn ∈ BX we have

∣∣∣1
τ

[
g(n−1)(y + τh1)(h2, . . . , hn)− g(n−1)(y)(h2, . . . , hn)

]
− L(h1, . . . , hn)

∣∣∣

=

∣∣∣∣
1
τ

[∫

�

f (n−1)(s(y + τh1))(h2, . . . , hn)s
n−1η(s) ds

−
∫

�

f (n−1)(sy)(h2, . . . , hn)sn−1η(s) ds

]
−

∫

�

f (n)(sx)(h1, . . . , hn)snη(s) ds

∣∣∣∣

=

∣∣∣∣
∫

�

∫ 1

0

[
f (n)(sy + θsτh1))(h1, . . . , hn)− f (n)(sx)(h1, . . . , hn)

]
dθsnη(s) ds

∣∣∣∣

<

∫

�

ε2−nsnη(s) ds < ε.

This means that g is C(n)-smooth at x. �

Step 13. Claim. The function p defined in Step 8 is C(n)-smooth on X \ {0}.
�����. From the formula (∗∗) we can see that the mapping p′ is a composition

of g, g′ and some elementary mappings. More carefully:

(∗∗∗) p′ = δ ◦ {α ◦ γ ◦ [g′ ◦ β ◦ (α ◦ p, id), β ◦ (α ◦ p, id)], g′ ◦ β ◦ (α ◦ p, id)},
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where

α(t) =
1
t
, 0 �= t ∈ �,

β(t, x) = tx, t ∈ �, x ∈ X,
γ(ξ, x) = ξ(x), ξ ∈ X∗, x ∈ X,
δ(t, ξ) = tξ, t ∈ �, ξ ∈ X∗,

id(x) = x, x ∈ X,

and “◦” means the composition of two mappings. We note that the mappings α, β,
γ, δ, id are C∞-smooth while g′ is C(n−1)-smooth. The formula (∗∗∗) guarantees
that p is C(1)-smooth on X \ {0}. If n > 1, then (∗∗∗) together with [C, Chapitre
1, Théorème 5.4.2] subsequently gives that p is C(2)-smooth, C(3)-smooth, . . ., C(n)-

smooth on X \ {0}.
Finally, the C(n)-smoothness of p trivially implies the C(n)-smoothness of the norm

||| · |||.
If the original norm ‖ · ‖ is C∞-smooth, then our norm ||| · ||| will be C(n)-smooth

for every n ∈ �, and hence C∞-smooth. �

Remark. We note that in Steps 1–9 we did not need any smoothness of the norm
‖ · ‖. If ‖ · ‖ is at least C(1)-smooth, then we can save some work in Steps 3 and 4.
Also, in Step 9, we can use the standard implicit function theorem [C, Chapitre 1,

Théorème 4.7.1].

A function f on a Banach space X is called a bump if its support supp f := {x ∈
X : f(x) �= 0} is nonempty and bounded.

Checking Steps 1–5, 10, and 11, we get

Theorem 2. Let a separable Banach space X admit a Lipschitz bump which is
C(n)-smooth, where n ∈ � ∪ {∞}. Then X admits a Lipschitz bump which is both
uniformly Gâteaux smooth and C(n)-smooth.

In its proof we just must pay more attention to showing the linearity of the function
h �→ Df(x)(h) in Step 4. This can be guaranteed if we require in Step 1 that the set

{xj : j ∈ �} is closed under making convex combinations with rational coefficients.
The above remark also applies to this proof.

By putting together the proof of [FWZ, Theorem 3.2] and Steps 6–9, we get, in a
different way, a recent result due to Tang [T]:
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Theorem 3. If a Banach space X admits a uniformly Gâteaux smooth bump b,
then X admits an equivalent uniformly Gâteaux smooth norm.

�����. Step 1. We shall first show that b is a bounded function.
Find c > 0 such that b(x) = 0 whenever x ∈ X and ‖x‖ > c. Find then h ∈ X

such that ‖h‖ > 2c. Since b is uniformly Gâteaux smooth, there is m ∈ � so that

∣∣∣m
[
b
(
x+

1
m
(±h)

)
− b(x)

]
− b′(x)(±h)

∣∣∣ < 1 for all x ∈ X.

Fix any x0 ∈ X with b(x0) �= 0. Then ‖x0‖ � c and so b(x0 + h) = 0. Put

tj = b
(
x0 +

j

m
h
)
, sj = b′

(
x0 +

j

m
h
)
(h), j = 0, 1, . . . ,m− 1.

Then we have

∣∣m
(
tj+1 − tj

)
− sj

∣∣ < 1 and
∣∣m

(
tj − tj+1

)
+ sj+1

∣∣ < 1, j = 0, 1, . . . ,m− 1.

Thus, for j = 0, 1, . . . ,m− 1 we have
∣∣sj

∣∣ �
∣∣sj+1 − sj

∣∣+
∣∣sj+1

∣∣ < 1 + 1 +
∣∣sj+1

∣∣,
∣∣sj

∣∣ � 2 +
∣∣sj+1

∣∣ < 4 +
∣∣sj+2

∣∣ < . . . < 2m+
∣∣sm

∣∣ = 2m,

and further,

m
∣∣tj

∣∣ < 1 +
∣∣sj

∣∣+m
∣∣tj+1

∣∣ < 1 + 2m+m
∣∣tj+1

∣∣

< 2(1 + 2m) +m
∣∣tj+2

∣∣ < . . . < m(1 + 2m) +m
∣∣tm

∣∣ = m(1 + 2m).

So, in particular, m
∣∣t0

∣∣ < m(1+ 2m), and hence
∣∣b(x0)

∣∣ =
∣∣t0

∣∣ < 1+ 2m. We proved
that sup

x∈X
|b(x)| < 1+2m. (We note that b is then Lipschitz, see [MV, Remark 2.1(a)].

But we shall not use this fact.)

Step 2. Replacing our b by x �→ αb(βx+z)+6, x ∈ X , with suitable α, β ∈ � and
z ∈ X , we get a new uniformly Gâteaux smooth function, denoted again by b, such
that b : X → [0,+∞), b(0) < 1/3, and b(x) = 6 whenever x ∈ X and ‖x‖ � 1/2.
For x ∈ 6BX put

f(x) = inf

{ m∑

j=1

αjb(xj) : α1, . . . , αm � 0, x1, . . . , xm ∈ 6BX ,

m∑

j=1

αj = 1,
m∑

j=1

αjxj = x, m ∈ �

}
.
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It is immediate to check that 0 � f(0) < 1/3 and that f(x) = 6 if and only if x ∈ X
and ‖x‖ = 6. Further it is standard to verify that f is a convex function on 6BX .
Take 0 �= x ∈ 6BX . Then x =

(
1− ‖x‖

6

)
0 + ‖x‖

6
6x
‖x‖ and the definition of f gives

f(x) �
(
1− ‖x‖

6

)
b(0) +

‖x‖
6
b
( 6x
‖x‖

)
<
1
3
+ ‖x‖.

Also, if ‖y‖ < 1
2 , then b(y) � 0 � ‖y‖ − 1

2 , and if
1
2 � ‖y‖ � 6, then b(y) = 6 � ‖y‖.

Therefore f(x) � ‖x‖ − 1
2 . Summarizing up, we get that

‖x‖ − 1
2

� f(x) � 1
3
+ ‖x‖ for all x ∈ 6BX .

We shall show that f is Lipschitz on 5BX . Take x, y ∈ 5BX . We find t � 1 such
that z := (1− t)x+ ty has norm 6. Then y = 1

t z + (1− 1
t )x and from the convexity

of f we get

f(y) � 1
t
f(z) +

(
1− 1

t

)
f(x) =

6
t
+ f(x)− 1

t
f(x) � 6

t
+ f(x).

hence f(y)− f(x) � 6
t . On the other hand

1 � ‖z‖ − ‖x‖ � ‖z − x‖ = t‖y − x‖.

Therefore

f(y)− f(x) � 6‖y − x‖ whenever x, y ∈ 5BX .

Step 3. We claim that f is uniformly Gâteaux smooth on 4B̊X . Fix h ∈ BX and

ε > 0. We find δ ∈ (0, 16 ) such that

(∗) 1
t

[
b(x+ th)− b(x)− b′(x)(h)

]
<
ε

8
whenever x ∈ X and t ∈ (0, 6δ).

Fix for a while any x ∈ 4B̊X and any t ∈ (0, δ). Then f(x) � 1/3+ ‖x‖ < 5. Find
ε′ ∈ (0, ε/4) so that f(x) + ε′t < 5. We find α1, . . . , αm � 0 and x1, . . . , xm ∈ 6BX

satisfying
m∑

j=1
αj = 1 and

m∑
j=1

αjxj = x, and such that
m∑

j=1
αjb(xj) < f(x) + ε′t. We

may, and do assume that b(x1) � b(x2) � . . . � b(xm). Let k be the largest j such

that b(xj) < 6. Then, putting α =
k∑

j=1
αj , we have α = 1 if k = m, and

5 >
m∑

j=k+1

αjb(xj) = (1− α) · 6
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otherwise. Hence α > 1
6 . We note that

x± th =
k∑

j=1

αj

(
xj ±

t

α
h
)
+

m∑

j=k+1

αjxj

and ∥∥∥xj ±
t

α
h
∥∥∥ � ‖xj‖+

t

α
<
1
2
+ 6δ < 6 for j = 1, . . . , k.

(Recall that b(xj) < 6 implies ‖xj‖ < 1/2.) Also t
α < 6δ. Thus, using (∗), we have

1
t

[
f(x+ th) + f(x− th)− 2f(x)

]

<

k∑

j=1

αj
1
t

[
b
(
xj + t

αh
)
+ b

(
xj − t

αh
)
− 2b(xj)

]
+ 2ε′

<

k∑

j=1

αj · 2
ε

8
+ 2

ε

4
< ε.

This holds for every x ∈ 4B̊X and for every t ∈ (0, δ). Hence f is uniformly Gâteaux
smooth on 4B̊X .

Step 4. Define

g(x) = 3
∫

�

f(sx)η(s) ds, x ∈ 2B̊X ,

where η is the function from Step 6. Then g is a convex Lipschitz function on 2B̊X .

Step 5. As in Step 7, we can check that g is uniformly Gâteaux smooth on 2B̊X and
that the function x �→ g′(x)(x) is Lipschitz on 2B̊X . Moreover g(x) � 3

2 whenever

x ∈ X and ‖x‖ = 1 (as f � ‖ · ‖ − 1
2 ) and g(0) = 3f(0) < 1.

Step 6. It remains to apply the lemma below; its proof is contained in Steps 8
and 9. �

Lemma. Assume that there exists a convex, Lipschitz, uniformly Gâteaux smooth
function g : 2B̊X → �, with g(0) < 1 and g(x) � 3

2 whenever x ∈ X and ‖x‖ = 1.
Assume moreover that the function x �→ g′(x)(x) is uniformly continuous on 2B̊X .

Then X admits an equivalent uniformly Gâteaux smooth norm.
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