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CONSTRUCTIONS FOR TYPE I TREES WITH

NONISOMORPHIC PERRON BRANCHES

Steve Kirkland,1 Regina

(Received October 31, 1996)

Abstract. A tree is classified as being type I provided that there are two or more Perron
branches at its characteristic vertex. The question arises as to how one might construct
such a tree in which the Perron branches at the characteristic vertex are not isomorphic.
Motivated by an example of Grone and Merris, we produce a large class of such trees, and
show how to construct others from them. We also investigate some of the properties of a
subclass of these trees. Throughout, we exploit connections between characteristic vertices,
algebraic connectivity, and Perron values of certain positive matrices associated with the
tree.

1. Introduction and preliminaries

A weighted graph G consists of an undirected graph, and a collection of positive
numbers such that each edge of the graph is associated with one of those positive

numbers; if e is an edge and is associated with the number θ > 0, we refer to θ as
the weight of e. In the case that all of the weights are equal to 1, G is called an

unweighted graph. For a weighted graph G on vertices labelled 1, . . . , n, the Laplacian
matrix of G is the n× n matrix L with

Lij =





−θ, if i �= j and i− j is an edge of G with weight θ,

0, if i �= j and i− j is not edge of G,

the sum of the weights of the edges incident with i, if i = j.

It is well-known that L is a symmetric positive semi-definiteM -matrix, and that if

G is connected (which we will henceforth take to be the case), then the nullity of L is
1, and the null space of L is spanned by the all ones vector, 1n. The second smallest
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eigenvalue of L is known as the algebraic connectivity of G (see [1]), and it has been

the object of a good deal of study over the last two decades (see, for example the
survey of Merris [5] for a list of references). The study of algebraic connectivity of
weighted trees has been especially fruitful, and in particular, Fiedler [2] provides the

following result, which classifies trees according to whether there is an eigenvector
corresponding to the algebraic connectivity which has a zero entry.

Proposition 1. (Fiedler [2]) Let T be a weighted tree, and let v be an eigenvector
corresponding to the algebraic connectivity of T . Then one of the following holds:

(i) Some entry of v is zero. In this case there is a unique vertex k with vk = 0 such

that k is adjacent to a vertex l with vl �= 0. Further, along any path starting at vertex
k, the corresponding entries in v are either increasing, decreasing, or identically 0.

In this case, T is called a Type I tree, and k is called the characteristic vertex of T .

(ii) No entry of v is zero. In this case there is a unique pair of adjacent vertices

i and j such that vi > 0 > vj . Further, along any path starting at vertex i and not

passing through vertex j, the corresponding entries in v are increasing, while along

any path starting at vertex j and not passing through vertex i, the corresponding

entries in v are decreasing. In this case, T is called a Type II tree, and the vertices
i and j are called the characteristic vertices of T .

Merris [6] has shown that in fact, the identification of both the tree type and its

characteristic vertices is independent of the choice of the eigenvector v.

Another approach to trees and their characteristic vertices is given by Kirkland,
Neumann and Shader [4] (indeed that is the approach which will be employed in

this paper). In order to describe it, we need some notation and terminology. We
will denote the k × k all ones matrix by Jk, suppressing the subscript whenever the

order is clear from the context. Let G be a connected weighted graph with Laplacian
matrix L. If C is a subset of the vertices of G, then L(C) denotes the principal

submatrix of L corresponding to the vertices of C. For a vertex v of a weighted tree
T , a branch at v is one of the connected components of L \ {v}. Note that if B is a
branch at v with vertex set C, then L(C)−1 is a positive matrix, so it has a Perron
eigenvalue, and we refer to that eigenvalue as the Perron value of B. For a rooted

tree T , we will also refer to the Perron value for a rooted branch T , by which we
mean the Perron value of the branch T at vertex x /∈ T , where x is adjacent to the

root vertex of T . A branch B at vertex v is called a Perron branch at v provided that
its Perron value is maximum amongst the Perron values of all of the branches at v.

The following result shows how both the type of a weighted tree and its characteristic
vertices can be discussed in terms of Perron branches.
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Proposition 2. (Kirkland, Neumann and Shader [4]) Suppose that T is a

weighted tree with Laplacian matrix L. T is a type I tree if and only if there is
a unique vertex k at which there are two or more Perron branches. Moreover in

that case, k is the characteristic vertex, and the algebraic connectivity of T is the

reciprocal of the Perron value of any Perron branch at k. T is a type II tree if and
only if there are adjacent vertices i and j such that the unique Perron branch at

vertex i is the branch containing j and the unique Perron branch at vertex j is the

branch containing i. Moreover, in that case, vertices i and j are the characteristic

vertices of T . Let Ci be the vertex set of the Perron branch at i, let Cj be the vertex

set of the Perron branch at j, and let the weight of the edge i− j be θ. There is a

γ ∈ (0, 1) such that the Perron values of L(Ci)−1 − γ/θJ and L(Cj)−1 − (1− γ)/θJ

are the same, and their common value is the reciprocal of the algebraic connectivity.

In order to apply Proposition 2, it is necessary to compute the Perron value of
a branch B at vertex v. Thus, we need to find L(C)−1, where C is the vertex set

of B (in [4], L(C)−1 is called the bottleneck matrix for the branch B at vertex v).
Fortunately, the following result shows how that can be done graph-theoretically.

Proposition 3. (Kirkland, Neumann and Shader [4]) Suppose that T is a

weighted tree, and for each edge e in T , denote its weight by w(e). Let B be a

branch of T at vertex v, and label the vertices of B from 1, . . . , k, say. Then the

(i, j) entry of the bottleneck matrix for B is equal to
∑

e∈Pi,j

1/w(e), where Pi,j denotes

the collection of edges in T on both the path from i to v and the path from j to v.

From Proposition 2, it is easy to see that the following construction will yield a
type I tree: Take two copies of a weighted tree which is rooted at a pendant vertex,

and form a new tree by identifying the two copies of the root vertex into a single
vertex, v. The resulting tree is type I with characteristic vertex v, since there are

just two branches at v, which, since they are isomorphic, must necessarily have the
same Perron value. This creates a type I weighted tree with two isomorphic Perron

branches at the characteristic vertex.
The question naturally arises then: can we construct type I trees having noniso-

morphic Perron branches at the characteristic vertex? This question is perhaps too
easy in the weighted case, since we can take any two rooted trees, identify their

root vertices into a single vertex v, and then by adjusting the weights on the edges,
ensure that both branches at v have the same Perron value. So we might revise our

question and ask whether there are unweighted type I trees having nonisomorphic
Perron branches at the characteristic vertex. The answer to this question is “yes”,

as following example of Grone and Merris [3] shows; indeed much of the work in this
paper is motivated by this example.
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Example 1. (Grone and Merris [3]). Let T be the unweighted tree pictured in

Figure 1. Then T is a type I tree with algebraic connectivity 0.139194 and character-
istic vertex 6. Evidently the two (Perron) branches at vertex 6 are not isomorphic.

1

2

3

4

5 6 7 8

9

10
�

Figure 1

In this paper, we show how Example 1 fits into an entire class of unweighted type

I trees having nonisomorphic Perron branches at the characteristic vertex. Further,
we give a construction which enables us to take one such tree and produce another

one. Finally, we investigate properties possessed by some of these special type I trees.

2. A Construction for Unweighted Type I Trees

We begin with a useful preliminary result. Recall that for an m×n matrix A and
any matrix B, their Kronecker product, A⊗B is given by

A⊗B =




a11B . . . a1nB
...

...

am1B . . . amnB


 .

Lemma 1. Let G be a connected weighted graph with Laplacian matrix L, and

let C be a proper subset of vertices of G. Suppose that C1 ⊆ C and that the vertices

of G are numbered so that those in C1 come those before those in C \C1. Partition

L(C)−1 as L(C)−1 =

[ C1 C\C1

C1 L1 L2

C\C1 LT
2 L3

]
. Now form a new graph as follows: for each

vertex v of C1, add j new pendant vertices adjacent to v, giving each new edge a

weight of 1. Let A denote the set of new vertices, and let L̂ be the Laplacian matrix

of the new graph. Then L̂(A ∪ C)−1 is permutationally similar to




A C1 C\C1

A I + L1 ⊗ Jj L1 ⊗ 1j L2 ⊗ 1j
C1 L1 ⊗ 1Tj L1 L2

C\C1 LT
2 ⊗ 1Tj LT

2 L3


.
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�����. We have L(C) =

[
U V

V T W

]
say, and by suitably labelling the vertices

of A, we can suppose that

L̂(A ∪ C) =




A C1 C\C1

A I −I ⊗ 1j 0

C1 −I ⊗ 1Tj U + jI V

C\C1 0 V T W


.

Using the fact that [
U V

V T W

][
L1 L2

LT
2 L3

]
= I,

it is now straightforward to verify that



I −I ⊗ 1j 0

−I ⊗ 1Tj U + jI V

0 V T W







I + L1 ⊗ Jj L1 ⊗ 1j L2 ⊗ 1j
L1 ⊗ 1Tj L1 L2

LT
2 ⊗ 1Tj LT

2 L3


 = I.

�

Given positive integers k1, . . . , km, let T (k1, . . . , km) be the unweighted rooted tree

formed by the following inductive procedure: Start with a root vertex v, say; then
T (k1) is just the star on k1 + 1 vertices with center vertex v. To get T (k1, . . . , kj+1)

from T (k1, . . . , kj), take each pendant vertex p �= v of T (k1, . . . , kj), and add in
kj+1 new pendant vertices, each adjacent to p. Figure 2 illustrates the construction.

Notice that in Figure 1, the branch at vertex 6 containing vertex 5 is T (2, 1), while
the branch at vertex 6 containing vertex 7 is T (1, 2).

v

k1

k2
k3

�
Figure 2
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We now discuss how adding T (k1, . . . , km) to each vertex of a branch affects the

bottleneck matrix.

Theorem 1. Let M be the bottleneck matrix of a branch B at vertex a in some

weighted tree. Modify B as follows: for each vertex x of B, take a distinct copy of

T (k1, . . . , km), and identify its root vertex with x. Then the bottleneck matrix of the

modified branch at a can be described as an (m+1)×(m+1) symmetric block matrix,
where the (i, i) block is I+{(. . . ((I+M⊗Jk1)⊗Jk2+I)⊗Jk3 . . .+I)}⊗Jki , 1 � i � m,

the (i, j) block is I+{(. . . ((I+M⊗Jk1)⊗Jk2+I)⊗Jk3 . . .+I)}⊗Jki⊗1ki+1⊗. . .⊗1kj ,

1 � i < j � m, and where the (i, m+ 1) block is M ⊗ 1k1 ⊗ 1k2 ⊗ . . .⊗ 1ki .

�����. We use induction on m, and note that when m = 1, the modified bot-

tleneck matrix is permutationally similar to

[
I +M ⊗ Jk1 M ⊗ 1k1

M ⊗ 1Tk M

]
by Lemma

1. Now suppose that the result holds for m0 � 1. Note that carrying through the
construction with a copy of T (k1, . . . , km0 , km0+1) at every vertex of B is the same

as first using the construction with a copy of T (k1, . . . , km0) at every vertex of B,
then adding km0+1 new pendant vertices adjacent to every pendant vertex of each

of the new copies of T (k1, . . . , km0). Appealing to the induction step and Lemma 1
now yields the desired block form for the modified bottleneck matrix. �

Corollary 1.1. Let B be a branch at vertex a in a weighted tree, and let

the Perron value of B be �. Modify B as described in the statement of Theo-

rem 1. Let f(k1, . . . , ki) = �ki . . . k1 + ki . . . k2 + . . . + ki + 1 and form the ma-
trix A of order m + 1 whose entries in the i-th column on and above the diag-

onal are f(k1, . . . , km+1−i), 1 � i � m, whose entry in the (i, j) position where
1 � j < i � m is km+1−j . . . km+2−if(k1, . . . , km+1−i), and whose entries in the

(m + 1, i) and (i, m + 1) positions are �km+1−i . . . k1 and �, respectively. Then the

Perron value of the modified branch at a is the same as the Perron value of A.

�����. Let v be the Perron vector for the bottleneck matrix for B, and let

[a1 . . . am+1]T be a Perron vector for A. From the block formula given in Theorem 1,

we find that the vector




a1v ⊗ 1k1...km

...

amv ⊗ 1k1
am+1v


 is a Perron vector for the bottleneck matrix

of the modified branch, and that its Perron value is the same as that of A. �

Our next result establishes an intriguing connection between T (k1, . . . , km) and
T (km, . . . , k1).
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Theorem 2. The Perron value of the rooted branch T (k1, . . . , km) is equal to the

Perron value of the rooted branch T (km, . . . , k1).

�����. From Corollary 1.1, the Perron value of the rooted branch T (k1, . . . , km)
is the same as that of the matrix A whose entries are described in that corollary, and

where the value of � is 1. It now follows that A can be factored as XY1, where

X =




1 1 . . . 1

0 1 . . . 1
...

. . .
...

0 0 . . . 1


 and Y1 =




1 0 . . . 0 0
km 1

kmkm−1 km−1
. . .

...
...

... 1 0
km . . . k1 km−1 . . . k1 k1 1




.

Similarly, the Perron value of the rooted branch T (k1, . . . , km) is the same as that
of XY2, where

Y2 =




1 0 . . . 0 0

k1 1

k1k2 k2
. . .

...
...

... 1 0

k1 . . . km k2 . . . km km 1




.

But note that each of XY1, Y T
1 XT and XT Y T

1 has the same Perron value. Further, if
P is the permutation matrix with 1’s on the back diagonal, then that common Perron

value coincides with the Perron value of PXT PT PY T
1 PT . But PXT PT = X and

PY T
1 PT = Y2, so we see that XY1 and XY2 have the same Perron value. �

The following result shows that Example 1 is part of a larger class of type I trees

with nonisomorphic Perron branches at the characteristic vertex.

Corollary 2.1. Suppose that k1, . . . , km ∈ �. Form an unweighted tree T by

taking a vertex x and making it adjacent to the root vertices of both T (k1, . . . , km)
and T (km, . . . , k1). Then T is a type I tree with characteristic vertex x, and the

Perron branches at x are nonisomorphic if and only if ki �= km−i+1 for some 1 �
i � m.

�����. The result follows directly from Proposition 2 and Theorem 2. �

Remark. Consider the tree T constructed in Corollary 2.1. The argument given

in the proof of Theorem 2 shows that in fact, the bottleneck matrices for the two
branches at x share m+1 eigenvalues, namely the eigenvalues of the matrix XY1. It

now follows that the reciprocal of any eigenvalue of XY1 is necessarily an eigenvalue
of the Laplacian matrix of T .
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We now look at the effect of adding copies of a weighted tree S at every vertex of

a branch B.

Theorem 3. Let B be a branch of a weighted tree at vertex v having bottleneck

matrix M . Suppose we have another rooted weighted tree S with root r, and let A

be the direct sum of bottleneck matrices for the branches of S at r. Form a new

branch B′ from B as follows: for each vertex x of B, take a distinct copy of S and

identify its root vertex with x. Label and partition the vertices of B′ by putting

all vertices corresponding to the same vertex of S \ {r} into the same subset of the
partition, and all of the vertices of B into the same subset. Then the bottleneck

matrix for B′ at v is

[
A 0

0T 0

]
⊗ I + J ⊗ M (here the identity matrix is the same

order as M , and the order of J is one more than that of A).

�����. Suppose that vertices i1 and j1 of B′ are on branches at vertices i0

and j0 (respectively) in B, and that neither branch contains v. If i0 �= j0, then from
Proposition 3 the (i1, j1) entry of the bottleneck matrix for B′ is just Mi0j0 . On

the other hand, if i0 = j0 then by Proposition 3 the (i1, j1) entry of the bottleneck
matrix for B′ is Aij +Mi0i0 , where i1 and j1 correspond to vertices i and j of S,

respectively. The formula now follows. �

For a square positive matrix M , we let r(M) denote its Perron value.

Corollary 3.1. Suppose that we have a weighted tree T with algebraic connec-

tivity µ and let S be another rooted weighted tree with root r. Form a new tree T ′ as

follows: for each vertex x of T , take a distinct copy of S and identify its root vertex

with x. Then the type of tree and characteristic vertices of T ′ are the same as those

of T . Further, if the A is the direct sum of bottleneck matrices for the branches of

S at r, then the algebraic connectivity of T ′ is 1/r

([
A 0

0T 0

]
+ (1/µ)J

)
.

�����. By Theorem 3, for a branch B of T with bottleneck matrix M , the

corresponding branch of T ′ is

[
A 0

0T 0

]
⊗ I + J ⊗ M. In particular, if the Perron

value of B is �, then the Perron value of the corresponding branch in T ′ is easily seen

to be r

([
A 0

0T 0

]
+ �J

)
. Hence if there is a vertex of T with two or more Perron

branches (so that T is type I), that same vertex of T ′ also has two or more Perron
branches, so that T ′ is also type I, with the same characteristic vertex. The formula

for the algebraic connectivity now follows from Proposition 2 upon observing that
1/µ = �.
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Similarly, if T is type II, there are adjacent (characteristic) vertices u and v of

T such that for some γ ∈ (0, 1), r(M1 − γ/θJ) = � = 1/µ = r(M2 − (1 − γ)/θJ),
where M1 is the bottleneck matrix for the branch at u containing v, M2 is the
bottleneck matrix for the branch at v containing u, and θ is the weight of the edge

u − v. By Theorem 3, in T ′ the bottleneck matrix for the branch at u containing

v is

[
A 0

0T 0

]
⊗ I + J ⊗M1 while in T ′ the bottleneck matrix for the branch at v

containing u is

[
A 0

0T 0

]
⊗ I+ J ⊗M2. Since r

([
A 0

0T 0

]
⊗ I+ J ⊗M1− γ/θJ

)
=

r

([
A 0

0T 0

]
⊗ I + J ⊗ (M1 − γ/θJ)

)
= r

([
A 0

0T 0

]
+ (1/µ)J

)
= r

([
A 0

0T 0

]
⊗

I+J ⊗ (M2− (1−γ)/θJ)

)
= r

([
A 0

0T 0

]
⊗ I+J ⊗M1− (1−γ)/θJ

)
, we see that

u and v are the characteristic vertices of the (type II) tree T ′, and that the algebraic

connectivity of T ′ is the reciprocal of r

([
A 0

0T 0

]
+ (1/µ)J

)
. �

Corollary 3.2. Let T be a weighted tree with algebraic connectivity µ, and

modify it as follows: at each vertex x of T add in j new pendant vertices, each

adjacent to x, with weight 1 for each of the new pendant edges. Then the algebraic

connectivity of the new tree is 2µ/{j + 1 + µ+
√
(j − 1)2 + 2µ(j + 1) + µ2}.

�����. From the hypotheses, we see that we are in the situation of Corollary
3.1, where S is the unweighted star on j+1 vertices, rooted at the center vertex. Thus

A is the identity matrix of order j, and so by Corollary 3.1, the algebraic connectivity

of the new tree is the reciprocal of the Perron value of

[
I 0

0T 0

]
+ (1/µ)J. This last

partitioned matrix has constant row sums in each block of the partitioning, and so it

follows that the Perron value of

[
I 0

0T 0

]
+ (1/µ)J is the same as the Perron value

of

[
j/µ+ 1 1/µ

j/µ 1/µ

]
. The result now follows by direct computation. �

Remark. Corollaries 2.1 and 3.1 together give us a way to construct many type I
unweighted trees with nonisomorphic Perron branches. Start with a tree T having a
vertex v at which there are just two branches: T (k1, . . . , km) and T (km, . . . , k1), with

v adjacent to each of the appropriate root vertices. Now at each vertex of T , identify
that vertex with the root vertex of a distinct copy of some rooted unweighted tree

S. By Corollary 2.1, T is type I with characteristic vertex v, and hence by Corollary
3.1, the modified tree is also type I with characteristic vertex v. However, the Perron
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branches at v in the modified tree are not isomorphic provided that ki �= km−i+1

for some i. Note also that the construction of Corollary 3.2 can be iterated with
a number of trees S1, . . . , Sn, yielding even more type I trees with nonisomorphic
Perron branches at the characteristic vertex.

3. Perron Properties of T (l, l, . . . , l, k, l, . . . , l)

In this section we compare Perron values for certain type of branches in unweighted

trees.

Lemma 2. Let � be the Perron root of the rooted branch T (k1, . . . , km). Then

det




1− � �k1 0 0 0 . . . 0
1 1− � �k2 0 0 . . . 0

1 1 1− � �k3 0 . . . 0
...

. . .

1 1 . . . 1 1− � �km

1 1 . . . 1 1 1− �




= 0.

�����. It follows from Theorem 2 that � satisfies det(XY − �I) = 0, where

X =




1 1 . . . 1

0 1 . . . 1
...

. . .
...

0 0 . . . 1


 and Y =




1 0 . . . 0 0
km 1

kmkm−1 km−1
. . .

...
...

... 1 0

km . . . k1 km−1 . . . k1 k1 1




.

Consequently, det(Y − �X−1) = 0, and a straightforward computation shows that




1− � �k1 0 0 0 . . . 0
1 1− � �k2 0 0 . . . 0

1 1 1− � �k3 0 . . . 0
...

. . .

1 1 . . . 1 1− � �km

1 1 . . . 1 1 1− �




= D−1(Y − �X−1)D,

whereD is the diagonal matrix whose first diagonal entry is 1 and whose i-th diagonal
entry is k1, . . . , ki−1, 1 � i � m+ 1. �

626



Fix 1 � i � m, and let

fm+1,i(�) = det




1− � �k1 0 0 0 . . . 0
1 1− � �k2 0 0 . . . 0

1 1 1− � �k3 0 . . . 0
...

. . .

1 1 . . . 1 1− � �km

1 1 . . . 1 1 1− �




where ki = k and kj = l for all j �= i. Similarly let

gm+1,i(�) = det




1 �k1 0 0 0 . . . 0
1 1− � �k2 0 0 . . . 0

1 1 1− � �k3 0 . . . 0
...

. . .

1 1 . . . 1 1− � �km

1 1 . . . 1 1 1− �




where ki = k and kj = l for all j �= i. Let

Dm+1(�) = det




1− � �l 0 0 0 . . . 0

1 1− � �l 0 0 . . . 0
1 1 1− � �l 0 . . . 0
...

. . .

1 1 . . . 1 1− � �l

1 1 . . . 1 1 1− �




and let

Am+1(�) = det




1 �l 0 0 0 . . . 0
1 1− � �l 0 0 . . . 0

1 1 1− � �l 0 . . . 0
...

. . .

1 1 . . . 1 1− � �l

1 1 . . . 1 1 1− �




,

where the order of each matrix is m+ 1.

Lemma 3. Suppose that m � 3 and that 1 � i � (m − 1)/2. Then fm+1,i(�) −
fm+1,i+1(�) = �2i+1li(k−l)Am−2i and gm+1,i(�)−gm+1,i+1(�) = �2ili−1(k−l)Dm−2i.

�����. We will proceed by induction on i. So suppose that i = 1. Expanding
fm+1,1 and fm+1,2 along the first row, we have fm+1,1 − fm+1,2 = (1 − �)Dm −

627



�kAm− (1−�)fm,1+�lgm,1. Since the matrices corresponding to Dm and fm,1 differ

only in the first row, it follows that

Dm − fm,1

= det








1− � �l 0 0 0 . . . 0

1 1− � �l 0 0 . . . 0

1 1 1− � �l 0 . . . 0
...

. . .

1 1 . . . 1 1− � �l

1 1 . . . 1 1 1− �



−




1− � �k 0 0 0 . . . 0

1 1− � �l 0 0 . . . 0

1 1 1− � �l 0 . . . 0
...

. . .

1 1 . . . 1 1− � �l

1 1 . . . 1 1 1− �








= det




0 �(l − k) 0 0 0 . . . 0

1 1− � �l 0 0 . . . 0

1 1 1− � �l 0 . . . 0
...

. . .

1 1 . . . 1 1− � �l

1 1 . . . 1 1 1− �




= (k − l)�Am−1.

Similarly,

−kAm + lgm,1

= det




l �lk 0 0 0 . . . 0

1 1− � �l 0 0 . . . 0

1 1 1− � �l 0 . . . 0
...

. . .

1 1 . . . 1 1− � �l

1 1 . . . 1 1 1− �



− det




k �lk 0 0 0 . . . 0

1 1− � �l 0 0 . . . 0

1 1 1− � �l 0 . . . 0
...

. . .

1 1 . . . 1 1− � �l

1 1 . . . 1 1 1− �




= det




l − k 0 0 0 0 . . . 0

1 1− � �l 0 0 . . . 0

1 1 1− � �l 0 . . . 0
...

. . .

1 1 . . . 1 1− � �l

1 1 . . . 1 1 1− �




= (l − k)Dm−1.
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Thus we see that

fm+1,1 − fm+1,2 = (k − l)�((1− �)Am−1 −Dm−1) = (k − l)�

×





det




1− � (1− �)�l 0 0 0 . . . 0

1 1− � �l 0 0 . . . 0

1 1 1− � �l 0 . . . 0
...

. . .

1 1 . . . 1 1− � �l

1 1 . . . 1 1 1− �



− det




1− � �l 0 0 0 . . . 0

1 1− � �l 0 0 . . . 0

1 1 1− � �l 0 . . . 0
...

. . .

1 1 . . . 1 1− � �l

1 1 . . . 1 1 1− �








= (k − l)� det




0 −�2l 0 0 0 . . . 0

1 1− � �l 0 0 . . . 0

1 1 1− � �l 0 . . . 0
...

. . .

1 1 . . . 1 1− � �l

1 1 . . . 1 1 1− �



= �3l(k − l)Am−1.

Now expanding gm+1,i and gm+1,i+1 along the first row, we find that

gm+1,i(�)− gm+1,i+1(�) = Dm − fm,1 + �lgm,1 − �kAm

= �(k − l)Am−1 − �(k − l)Dm−1 = (k − l)�

×





det




1 �l 0 0 0 . . . 0

1 1− � �l 0 0 . . . 0

1 1 1− � �l 0 . . . 0
...

. . .

1 1 . . . 1 1− � �l

1 1 . . . 1 1 1− �



− det




1− � �l 0 0 0 . . . 0

1 1− � �l 0 0 . . . 0

1 1 1− � �l 0 . . . 0
...

. . .

1 1 . . . 1 1− � �l

1 1 . . . 1 1 1− �








= (k − l)� det




� 0 0 0 0 . . . 0

1 1− � �l 0 0 . . . 0

1 1 1− � �l 0 . . . 0
...

. . .

1 1 . . . 1 1− � �l

1 1 . . . 1 1 1− �



= (k − l)�2Dm−1.

This establishes the basis for the induction.

Next we suppose that i+1 � (m−1)/2, and that the induction hypothesis holds for
i. Expanding along first rows as above, and then applying the induction hypothesis,
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we find that

fm+1,i+1 − fm+1,i+2 = (1− �){fm,i − fm+i−1} − �l{gm,1 − gm,i+1}
= (1− �){�2i+1li(k − l)Am−1−2i} − �l{�2ili−1(k − l)Dm−1−2i}
= �2i+1li(k − l){(1− �)Am−1−2i −Dm−1−2i}
= �2i+3li+1(k − l)Am−2−2i.

Proceeding similarly, we have

gm+1,i+1 − gm+1,i+2 = {fm,i − fm,i+1} − �l(gm,i − gm,i+1}
= {�2i+1li(k − l)Am−1−2i} − �l(�2ili−1(k − l)Dm−1−2i}
= �2i+1li(k − l){Am−1−2i −Dm−1−2i} = �2i+2li(k − l)Dm−2−2i.

This completes the induction step, and the proof. �

Suppose that m � 3, i � (m− 1)/2 and that k, l ∈ � with l �= k. Let r(m, i, l, k)

be the Perron root of the rooted branch T (k1, . . . , km), where ki = k and kj = l for
all 1 � j � m with j �= i. Our final result describes the behaviour of r(m, i, l, k) for

different values of i.

Theorem 4. Suppose that m � 3. If k > l, then r(m, i, l, k) < r(m, i + 1, l, k)

for all i such that i � (m− 1)/2. If k < l, then r(m, i, l, k) > r(m, i+ 1, l, k) for all i
such that i � (m− 1)/2.

�����. Note that by Lemma 3, r(m, i, l, k) is the maximum positive solution
to the equation fm+1,i(�) = 0. From Lemma 4, we find that for i � (m − 1)/2,
fm+1,i(�) − fm+1,i+1(�) = �2i+1li(k − l)Am−2i. We next claim that sgn(Ap) =
(−1)p−1 whenever � exceeds the maximum positive root of Dp(�) = 0. Note that in

fact the maximum positive root of Dp(�) = 0 is, by Lemma 2, the same as r(XY ),
where X and Y are the p× p matrices




1 1 . . . 1

0 1 . . . 1
...

. . .
...

0 0 . . . 1


 and




1 0 . . . 0 0

l 1

l l
. . .

...
...
... 1 0

l l l 1




,

respectively. Consequently, we find that the maximum positive root of Dp(�) = 0 is
increasing in p.
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We prove our claim by induction on p, and note that when p = 1, Ap = 1 > 0.

Suppose now that the induction hypothesis holds for p � 1 and that � exceeds the
maximum positive root of Dp+1(�) = 0. Then certainly � exceeds the maximum
positive root of Dp(�) = 0. Expanding Ap+1 along the top row we have Ap+1 =

Dp − �lAp. Since Dp is a polynomial of degree p in � with leading coefficient (−1)p,
and since � is larger than the maximum positive root ofDp, it follows that sgn(Dp) =

(−1)p. Further, by the induction hypothesis, sgn(Ap) = (−1)p−1, so we find that
sgn(Ap+1) = (−1)p, completing the proof of the claim.
Suppose now that k > l, and note that r(m, i, l, k) exceeds the maximum positive

root of Dm−2i. Evaluating fm+1,i(�)− fm+1,i+1(�) at � = r(m, i, l, k), we have that
sgn(fm+1,i(�) − fm+1,i+1(�)) = − sgn(fm+1,i+1(�)) = sgn(�2i+1li(k − l)Am−2i) =

(−1)m−1, so that sgn(fm+1,i+1(�)) = (−1)m. But the leading coefficient in the
polynomial fm+1,i+1(�) is (−1)m+1, so by the Intermediate Value Theorem, fm+1,i+1

must have a root larger than r(m, i, l, k). Thus r(m, i, l, k) < r(m, i + 1, l, k). The
proof of the statement for k < l is analogous. �

Remark. Theorem 2 and 4 together give us complete information on the ordering
of the values r(m, i, l, k) as i runs from 1 to m. From Theorem 2 we find that
r(m, i, l, k) = r(m, m + 1 − i, l, k), and so applying Theorem 4, we have for k > l,

r(m, 1, l, k) = r(m, m, l, k) < r(m, 2, l, k) = r(m, m−1, l, k) < . . . < r(m, m/2, l, k) =
r(m, (m + 2)/2, l, k) if m is even, and r(m, 1, l, k) = r(m, m, l, k) < r(m, 2, l, k) =

r(m, m − 1, l, k) < . . . < r(m, (m − 1)/2, l, k) = r(m, (m + 3)/2, l, k) < r(m, (m +
1)/2, l, k) if m is odd. Similarly, if k < l, r(m, 1, l, k) = r(m, m, l, k) > r(m, 2, l, k) =

r(m, m − 1, l, k) > . . . > r(m, m/2, l, k) = r(m, (m + 2)/2, l, k) if m is even, and
r(m, 1, l, k) = r(m, m, l, k) > r(m, 2, l, k) = r(m, m − 1, l, k) > . . . > r(m, (m −
1)/2, l, k) = r(m, (m+ 3)/2, l, k) > r(m, (m + 1)/2, l, k) if m is odd.

Suppose that we are given natural numbers k1, . . . , km, and are asked to extrem-
ize the Perron value of T (k

�(1), . . . , k�(m)) over all permutations � of {1, . . . , m}. We
suspect that the maximizing permutation will have the property that k

�(i) is nonde-
creasing in i for values of i which are less than or equal to some j, then nonincreasing

in i for values of i beyond j. Similarly, we also suspect that the minimizing permu-
tation will have k

�(i) nonincreasing in i for values of i which are less than or equal to

some h, then nondecreasing in i for values of i beyond h. Theorem 4 supports these
suspicions under restrictive hypotheses on the ki’s but we are unable to say much

about the general case at present.
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