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Abstract. Certain generalizations of Sister Celine’s polynomials are given which include
most of the known polynomials as their special cases. Besides, generating functions and
integral representations of these generalized polynomials are derived and a relation between
generalized Laguerre polynomials and generalized Bateman’s polynomials is established.

Keywords: Ultraspherical type generalization of Bateman’s polynomials, ultraspheri-
cal type generalization of Pasternak’s polynomials, Jacobi type generalization of Bate-
man’s polynomials, Jacobi type generalization of Pasternak’s polynomials. Sister Celine’s
polynomial, Hahn polynomial, Generalized Hermite polynomial, Krawtchouk’s polynomial,
Meixner’s polynomial, Charlier polynomial, Sylvester’s polynomial, Gottlieb’s polynomial,
Konhauser’s polynomial, generating functions, integral relations

1. INTRODUCTION

In 1947, Sister Celine (Fasenmyer [2]) concentrated on polynomials generated by

Qs .-, 0p; 00 at, ..., 0p;
11) Q- LE (;il—f)tz = an x| t",
bl,...,bq; n=0 bl,...,bq;
which yields
A1y, 0p; —n,n+1a1,...,ap;
(1.2) In x| = py2Fyt2 T
bi,...,bg; 1, %, b1, ..., bg;

Her polynomials include as special cases Legendre’s polynomials P, (1 — 2z),
some special Jacobi polynomials, Rice’s H, (¢, p,v), Bateman’s Z,(z) and F,(z)
and Pasternak’s F*(z) which is a generalization of Bateman’s F,,(z). The simple
Bessel’s polynomial is also included.
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In this paper a generalization of (1.2) is given which includes Legendre’s poly-
nomials P, (z), Gegenbauer’s polynomials C¥(x), ultraspherical polynomials, Rice’s
polynomials H,, (¢, p,v), Bateman’s polynomials Z,(z) and F,,(z), Pasternak’s poly-
nomials F"*(z), simple Bessel’s polynomials y,(z), and provides ultraspherical type
generalizations of Bateman’s polynomial Z,,(z) and F),(z) and Pasternak’s polyno-
mial F"(z).

Of these generalizations, the one for Z,,(x) was given by Bateman himself but
those of F,,(z), F"(z) are believed to be new in literature.

A generating function for this generalized polynomial and some other interesting
results have been obtained.

A further generalization has also been established which in addition to all poly-
nomials included in the above generalization, also includes Jacobi’s polynomials
pis )(x), generalized Rice’s polynomials aP )(5 ,p,v) due to Khandekar [3], gen-
eralized Bessel’s polynomials y,(a,b, z) and Hahn’s polynomials @, (z;«, 3, N) and
provides Jacobi type generalizations of Bateman’s polynomials Z,(z) and F,(z) and
Pasternak’s polynomials F"*(z) which are believed to be new in literature.

Still another generalization include also Konhauser’s polynomials Z%(z; k) which
are not included in the above mentioned two generalizations.

A special case of this generalization has also been studied which includes Laguerre
polynomials L%a)(x), Hermite polynomials H,(x), generalized Hermite polynomials
9 (x, h) due to Gould and Hopper, Krawtchouk’s polynomial K, (z;p, N), Meixner’s
polynomials M, (x; 3, ¢), Charlier polynomials C’y(La), Sylvester’s polynomials ¢, ()
and Gottlieb’s polynomials £, (x; \).

2. (GENERALIZED POLYNOMIALS

Consider the polynomials defined by
(2.1)
Ak, —n),n+ A a1, ..., ap;

(ks Nar, .. ap; by, by @) = prkrr Pkt x
A(k+1,0),b1,. .., by;

For particular values of the parameters and special arguments, the polynomial
(2.1) reduces to the following known as well as new polynomials:

(2.2) (1) fu(l,15a1,...,ap;01, ..., bg; )
-n,n+1,a1,...,ap;

= p+2Fyto x
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which is Sister Celine’s polynomial (1.2),

—n,n+1;
(2.3) (i) fu(l1555—45%) =2/ 5
L
which is Legendre’s polynomials P, (z),
—n, 2V + n; |
24) (i) fu(1,2050— 55) = o Ry e | = 2 ov(g)
1 (2v)n
v+ 35
where C¥(x) is Gegenbauer’s polynomial,
—n,n+ 2a+1;
(2.5) (V) fu(l, 142050+ 55— 15%) =211 la
a+1;
n!
= —— Plaa)(y
where P{®® (z) is ultraspherical polynomial,
-n,n + ]-, 57 v
(2.6) (V) fa(L, 156, 33p50) = 3F -
which is Rice’s polynomial H, (&, p,v),
—n,n+1;
(2.7) (vi) fa(l, 155 52) =25 x
1, 1;
which is Bateman’s polynomial Z, (z),
—n,n+1, %(1 + 2);
(2.8) (vi)) fu(l, 15, B35 151) = 3 1
L1
which is another Bateman’s polynomial F,,(z),
—n,n + 2v;
(2.9) (viil)  fu(1,2v5051 4 b5t) = o F3 t
v+ %, 1+ b
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which is a generalization of Bateman’s polynomial Z,,(z) and was given by Bateman
himself. We shall adopt for it the symbol Z(V)(b, t). For v = %, b = 0 it reduces to
Zn(1);

(2.10) (ix) fu(1,14 200+ 1, 2p;1)
-n,n+2a+1, %(1 + 2);
=3k 1
1+ a,p;

which is an ultraspherical type generalization of Bateman’s polynomial F,,(z) and is
believed to be new. We adopt for it the symbol F{*e) (p,z). Fora=0,p=11
reduces to Bateman’s polynomial F,(z);

—n,n+ 1,%(1+z+m);
211) () fo(l, 15, 25 m+ 151) = 5 F 1
1, m+1;

which is Pasternak’s polynomial F"(z),

(2.12)  (xi) fo(1,1420;0+ 3, H2Em0m 4+ 1;1)
—n,n+2a+1,%(1+z+m);
=3k 1
l1+a, m+1;

which is an ultraspherical type generalization of Pasternak’s polynomial and is be-

lieved to be new. We adopt for it the symbol F,(Lama)(z) For a = 0 it reduces to
Pasternak’s polynomial F*(z);

—n,n+1;
(213) (Xll) fn( 717%717_;_%) ZQFO —T

which is simple Bessel’s polynomial y, (z).
Next, consider the following generalization of (2.1):

(2.14) falk, N a1, .. ap; b1, ..., bg; )
Alk,—n),n+ A a1, ..., ap;
= prh+1Fgrrm T
A(k+1,p),b1,...,bg;

For p = A, (2.14) becomes (2.1) and hence (2.14) includes as special cases all
polynomials which are included in (2.1).
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Besides, (2.14) includes some more known as well as new polynomials as special
cases which are not included in (2.1). These are as given below:

(2.15)  (xiil) fo(L1+a+ 8,1+ 200+ 3;—;15%)

—-n,n+aoa+pG+1; l

= 1z | _ " p(a)p)
—2h = P (x)
1+ o i (1+a)n
where P{*? is Jacobi’s polynomial,
(2.16) (xiv) fu(L,14+a+F,14 208, a+ %;p; v)
—n,n+a+B+1,§ o
=3k v = mHy(La’ﬁ)(@p, U)
n

1+ a,p;

where HT(LO"B )(f ,p,v) is the generalized Rice’s polynomial due to Khandekar [1],

(2.17) (xv) fa(Ll+a+B,1420a+ 31+b;2)
—-n,n+aoa+p3+1;
=5 x
a+1,b+1;

which is a Jacobi type generalization of Bateman’s polynomial Z, () and is believed
to be new. Fora = 3 = v — % it reduces to (2.9). Also, for a = =0 =0 it
becomes Bateman’s polynomial Z,(x). We adopt the symbol zZ{eP )(b, x) to denote
the polynomial (2.17).

(2.18) (xvi) fo(L,14a+ 6,14 2050+ 5, 225 p; 1)
—nn+a+8+1,5(1+2);
= 3Fy 1
1+ a,p;

which is a Jacobi type generalization of Bateman’s polynomial F,,(z) and is believed
to be new. For § = « it reduces to (2.10). Also, for « = 8 = 0, p = 1 it becomes
F,(z). We adopt the symbol Fle?) (p, z) to denote the polynomial (2.18).

(2.19) (xvii) fo(lL,1+a+ 83,1420 a+ 5, H52m +1;1)
—n,n+a+B+1,3(1+2+m);
=3k 1
1+a, m+1;

531



which is a Jacobi type generalization of Pasternak’s polynomial F"(z) and is believed
to be new. For ao = (3 it reduces to (2.12) and for o = = 0 it becomes Pasternak’s
polynomial F*(z). We adopt the symbol Fy(f/n'@)(z) to denote the polynomial (2.19).

—n,a—1+n;
(2.20) (xviii) fn(l,a—1,1;3,1;—;—%) = 93 F _

Sallcd

)

which is a generalized Bessel’s polynomial y,,(a, b, z);

(2.21) (xix) fo(lL,14+a+ 8,14 2050+ 5, —2;—N;1)
—n,n+a+pG+1,—x;
=3k 1
1+ a,—N;

which, for o, 8 > —1, n,2 =0,1,2,..., N, is Hahn’s polynomial @, (z;«, 3, N).
Finally, consider the following generalization of (2.14):

(2.22) falryss A a1, ... ap; b1, ..., bg; 1)
Ar,—n),n+ A\ a1, ..., ap;
= ptr+1fgrst1 x
A(s+1,p), bi,...,bg;

For r = s = k, (2.22) becomes (2.14) and hence all polynomials which are included
in (2.14) are also included in (2.22) as special cases. Besides, a special case of (2.22)
includes Konhauser’s polynomial Z¢ (x; k) which is not included in the similar special
case of (2.14).

We now consider special cases of (2.14) and (2.22). To this end we first replace x

x

by § and let |\ — oo in (2.14), obtaining

(2.23) fulk, psar, ... ap; b1, ..., by x)
Ak, —n),a1,...,ap;
= prhl otk z
A(k+1,p),b1,...,bg

The polynomial (2.23) includes as special cases the following polynomials:

_n
' !
(2.24) (xx) fu(li— =31+ a5z) =171 T | = ﬁ[/%‘l)(a:)
14+ o "
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where L%a)(x) is Laguerre polynomial;

—n+1. 1

x2

(225)  (xxi) fn(z;_;_;_;_L)ZQFO{_%’T’ _F]: ' H.(2)

)

where H,,(z) is Hermite’s polynomial;

(2.26)  (xxii)  fu(ms = — = h(=F)"™)
N

)

where ¢g*(z, h) is Gould and Hopper’s generalization of Hermite’s polynomial;

—n, —;
(2.27) (xxiii)  fo(1; = —2;—N;p ") = 2 Fy p!

which, for 0 < p <1, 2=0,1,..., N, is Krawtchouk’s polynomial K, (x;p, N);

—n, —I;
(2.28) (xxiv)  fu(l;—; —2;8;1 —c 1) =2 F 1—ct
B;

which, for 5> 0,0<c<1,2=0,1,2,..., is Meixner’s polynomial M, (x; 3, c);

—n, —;
(2.29) (xxv)  fu(l;—;—x;—; —%) =,F —% = (—%)"Cﬁa) (x)
where O (z) is Charlier’s polynomial;
—n,x; |
. _ n!
(230) (xxvi)  ful(ls =25 =5 —a271) =2 Ky i—at | = —en()
where ¢, () is Sylvester’s polynomial;
—n, —x;
(2.31) (xxvii)  fu(l;—;—2;1;1 —et) = o Fy 1—et
L
="M, (x; )

where ¢,,(x; \) is Gottlieb’s polynomial.
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We now replace x by § and let |A\| — oo in (2.22), obtaining

(2.32) fa(r,syps a1, ..., ap;b1,. .., bg; )
A(r,—n), a1, ..., ap;

= ptrFytst1 z
A(s+1,p0),b1,...,bg;

For r = s = k, (2.32) becomes (2.23) and hence all polynomials included in (2.23)
are also included in (2.32) as special cases.

Further, (2.32) includes as special case Kounhauser’s polynomial Z%(z; k) which
is not included in (2.23):

—n;
ek N
(2.33) (xxviil) fn(l,k—1a+1;—;—; (E)k) =1F (E)
Ak, o+ 1);
n!
— (62 . k
(a+1)kn n(xa )
where Z%(x; k) is Konhauser’s polynomial.
3. GENERATING FUNCTIONS
Let ¥(u) have a formal power-series expansion
(3.1) T(u) =Y yau", 30 #0.
n=0
Define polynomials f,(k;x) by
g (CDFEF DMt SN
(3.2) 1-1) \11( T ) =3 fulks ).
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Theorem 1. The polynomials f,(k;x) defined by (3.1) and (3.2) have the fol-
lowing properties:

(33)  falkiz) =

&
= )
(3.4)  kafl(k;x) —n fo(k; )

A +n—=1fo1(k;z) —af,_(k;z), n>1,
(35)  afy(kiz) —n fu(k;z)

n—1 n—1 n
=AY flkia) =20 3 fllkia) - (k= V)2 Y filka), n>1,
r=0 r=0 r=0

(3.6) xf, (k;z) —n fn(k;z)

Proof. To obtain (3.3), consider

S fulka =3 [(—1)k(1<; )R gk .

k —_ )+ (E r
= K } (1 — £) M +D)

[(—1)’“(k; :kl)k“xtk} r% Z A+ (k+ 1)r),t™

p"qg

n!
r=0 n=0
_ i i (N nt (k1) Ve [(fl)k(k + 1)k+1x}rtn+kr
== Nernen! k*

.—‘i
_‘O

n+r’Yr<_1)errtn

tnqg

n=0r=0 +1)7"<zﬂ) (%)r(n - kr)!kkr
_ Z ()\)n[ K (_z)r...(%)r()\—i—n)r%x }t"
n=0 n! r=0 (k_il)r(%)r (%)T
from which (3.3) follows by equating coefficients at ¢™.
In order to derive (3.4), (3.5), and (3.6), put
1 g (EDHE+ DM
(3.7) F=(1-1) \I/( g )
Then
OF B (71)k(k+ 1)k+1tk
: —=01-t?
(3:8) ox ( ) kR (1 — t)kt+1 ’
oF ety (CDFE DR (k4 )t
(3.9) i A1 —1t) U+ e NG
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From (3.7), (3.8) and (3.9) we obtain that F' satisfies the partial differential equa-
tion

OF oF
(3.10) xz(k + t)% —t(1—t)— i —tF.

Equation (3.10) can be put in the forms

OF  OF OF  OF
A1 Lt = NMF -2 gt
(3:-11) e L T
OF  OF At 2t OF (k- 1)z OF
12 S e R O A—
(3.12) Yor Yot T T1-t 1—toxr 1-t oz’
OF OF M 2% OF (k- 1)z OF

O ot 1+t 1+t ot 1+t Oz’

o0
Since F'= Y fo(k;z)t", equation (3.11) yields

n=0

o0
> [k fy (ks ) = nfu(k; )"
n=0
f)\an(k:;x)t"“ =) nfalkyz)tntt — Z ! (ks )ttt
n=0 n=0 n=0

i)\+nflfn1kx i

which leads to (3.4).
Equation (3.12) yields

o

Z [zf! (k;2) —n fo(k;z)]t"

n=0

= - A(it”“) <§:fr(k;;x)tr) - 2x(§t”+1> (iﬂ(k‘;x)tr)
() (S

n=0
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oo n

— AR Y At -2 33 fisa)e

n=0r=0 n=0r=0
— (k=1 > (k)
n=0r=0
co n—1 co n—1
= =AY el =22y > fi(ksa)t”
n=1r=0 n=1r=0
—(k=1a Y > i)
n=0r=0

which leads to (3.5).
From (3.13) we obtain

g o fulbs ol
- A(i(l)”t”“) (fjw;xw) - 2(2(1)”%*1) (i:j ks )
coe) )

(1) fo (s )ttt — 222 )" ok )ttt

[=)

T
R

n=0r=0 n=0r=0
—(k—1)z ZZ YV (e )t
n=0r=0
:ZZ VT A 20) fr (K )t —Dz Yy )T ()t
n=1r=0 n=0r=0

which gives (3.6).
Thus if ¥(u) is a generalized hypergeometric function

bl,...,bq;

then the functions f,(k; z) defined by (3.2) but without the factor ()‘)" are precisely
the polynomials f,,(k,A;a1,...,ap;b1,...,bg;2) given by (2.1). It is necessary to
note that in using the generating function we implicitly demand that the parameters
a; and b; be independent of n.
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Thus for (2.1) we have the generating relation
ai, ..., Gp;

— _1\k k+1 k
(3.14) (1= t)7F, e
bl, ey bq;

oo
Z n' (kyXjaq,. .. ap;by, ... bg;x)t".
ol

The generating relation for (2.14) is
Alk+1,)0),a1,...,ap;
_ _\k k1 4k
(3:15) (1 =8) " prwr1Fyrnt B
A(k+1,p),b1,...,bg;

(ks A a1, ..., ap;b1, ..., by )t

The generating relation for (2.22) is
Alr+1,X),a1,...,ap;
— —1D)"(r 7‘+lz r
(3.16) (1 =) prri1Fyrst %
A(s+1,0),b1,...,bg;

(rys; A a1, ..., ap; b1, ..., by )t".

Since the proofs of (3.15) and (3.16) proceed along similar lines we prove (3.16)
only briefly. O

Proof of (3.16). The right hand side of (3.16) equals

oo (2] ,
S EPR (e (e ( Itk (a1)k - - (ap)pz*t"
nz;ok:o k! (k) (5 ) (kb - (b

o [%]
4 —1)kr (A ap ok
_ Zkzo (=D N)ntr(a)k - - - (ap)k

k
(n— Tk)'“’“k'(J:) (RO - (bg)

n=0 k= s+1
ii T n+(r+1 ( 1)k ( ) gtk
=0 k=0 ”'”kk' Fk - (k01 - - (bg)

ktrk( t)—)\—(r-‘rl)k

)k (01)k - (bq)k

= (—1 r+1)k (01 (ap)r
e Ol (o)

+1
Kl (i )k(%)

(5
A(r+1,X),a
S (D" ()™t
= ( ) ot Farstt T |

A(s+1,p0),b1,...,bg;
which completes the proof of (3.16).
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A generating function for (2.23) is

1,02, ...,0p;
k k
(3.17) e pFyth+1 .
A(k+1,p),b1,...,bg
oo tn
= an(k;lu‘;al,-~-,ap;bla"',bq;$)_"
= n!
Similarly, a generating function for (2.32) is
a1,0a2,...,0p;
(3.18) S (L)t

A(s+1,p0),b1,...,bg;

fn(r,s;ﬂ;ala"'aap;bl,“-

I
3
I M8
o
“@‘
2.
2
N~—
-
3

Proof of (3.17) and (3.18) are easy and hence are omitted. O
4. INTEGRAL RELATIONS
It is easy to obtain the following integral relations for (2.22):
i 5 1.t 1
(4.1) Qﬁ/ (=) 2e " fulr,s; A s 5,01,y ap; by, oo by — ) dt
(oo}
= fn(ras;)‘,ﬂ;ala ceey Ups bl, .. .,bq;.’ﬂ),
1 o0
(42) ﬁA tiéeitfn(ras;/\,ﬂ;al,-~-aaP;%,bl,“-,bq;‘xt)dt
= fu(r,s; A\ s a1, ... ap; b1, .., bg; @),
(4.3)
I1(b1) ! -1 bi—a1—1
_ t T (1 — )" S A2, .y Gy bay L by at) di
F(a1)11(blfa1)/0 ( ) fn(rasa s 15 42, 7ap7 2 ) qax)
= fu(r,s; A s a1, ... ap; b1, .., by; ).
As an immediate generalization of (4.1) and (4.2) we obtain
i (0+) .
4.4 - —t) Ve~ S ib1,..., by —2)dt
( ) 2SinVTEF(].*V)LO ( ) € fn(rasa s M3V, an, aapa 1, sy Vg t)

= fn(ra3§A>M§a17~ e 7a‘p;b17' . .7bq;.’13),
1 oo
(4.5) o) / ' re Tt fu(r s\ s ag, . L ap; Vb1, ..., by at) dt
0

= fo(r,s; A a1, ... ap; b1, ... bg; ).
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Putting r = s = k in (4.1), (4.2), (4.3), (4.4) and (4.5), we get the corresponding
integral relations for (2.14), while by putting r = s = k and A = p in (4.1), (4.2),
(4.3), (4.4) and (4.5) the corresponding integral relations for (2.1) are obtained.

Some special cases of interest are:

1 oo
(4.6) F(y)/ e (1, L an, ..y ap; vy by, by at) dt
0
—n,n+1a1,...,ap;
= pr2lgy2 T
1,%, bl,...,bq;
which is Sister Celine’s polynomial,
i (0+) —n,n—l—l,al,...,ap;
4.7 —_—— —t) Vel LoF, —Z | dt
(47) 2sinvnl(1 —v) /oc (07 ok 1 !
]., bR bl,...,bq;

= fn(1,1;a1,...,ap;0,b1,...,bg; ),

(4.8) %/OOC t73e tfu(1,1; —; —; at) dt = P, (1 — 22),

(4.9) 2%/;“)(— St (P dr = (11550,

1 > v—1_— e
(4.10) W/o " le £, (1,205 —; —; ot) dt
nl
_ (2U)n0n(1 —21),
i O L 2x+t
(411) 2sinvnl(1 — v) /OC (=t)"e tC"( t )dt
(21/) fn(l 2u;—; —; o),
1 a—% —t e
n!
— (a,0) (1 _
= ara B (1-22),
i (0+) ol —t plaa) 2z +1t)
(4.13) 2sin(a + 3)nl'(3 — ) /oo (=) e Py ( t ) di
an(l 20+ 15— —; 2),
(4.14) f/ (L 156 pyot) dt = Hy(€,p,v),
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i (0+) .
(4.15) ﬁ/oo (—t)"2e " Hu(&p, —7)dt
= fn(1, ;& p30),
(4.16) L /00 tre T (1,1 — Lyat) dt = Z, (),
VT Jo

P () .
@i g [0z -5t = £ 1),
(4.17a) f/ e fo(L L+ L5t dt = Fo(2),
(4.18) m/0 t e £ (1,205 —; 1+ by at) dt

=2 (b, @),
(4.19) m /oio+)(t)”etZ§L”)(b,§)dt

= fu(1,2v; —; 14+ by ),

¥/Oota_%e_tf (L2a+ 1; 1 4+ Lz;pyt) dt
Tla+3) Jo ! 7

= i (p,2),

(4.20)

o0
(4.21) ﬁ/ t_%e_tfn(l,l,;-l- 1, mm+1 1 dt
0
= F"(2),
1 © ., S
m/o 172 fu(1,20 4 155 + 32 4+ gmym+ 11) dt
= F{%9(2),

1 o0
(4.23) ﬁ/ tiéeitfn(lalala ) 2xt)dt:yn(x),
0

(4.22)

i o ,
@) o [ e @ d = £ ),

1 o0
(425) WA ty_le_tfn(l,a — 17 2U, 14 + %, - _%xt) dt
= yn(a,b, )
i ©+) t bx
4.2 _ —t) Ve "yn(a,b, 2£)dt
(4.26) ZSinchF(l—y)/oC (=) e ynla: 5, %)

= fu(l,a=1,2v50 + 35— 2),

1 o L
- taffe*t 1705"’ +1,20{+1,—,b+ 1,xt dt
D(a+ 1) /0 n( 4] )
= 2,29 (b,2),

(4.27)
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. B Loty
e AU A L

:fn(1,1+a+ﬁ, 2O‘+1‘*'b+1'$),

1 o0
(4:29) I1(047"‘%)/0 t*72e  fu(Lat A+ 1,20+ L5 + 3zpit)dt
= F{*(p, 2),
4.30 1 T
) - - a—1 —t
(4.30) r(a+%)/0 t*"Fet f(La+ B4+ 1,20+ L1 + Lo 4 Liym + 15¢) dt
= F{50(2),
(4 31) # > a—1 —¢
. F(Oz«k%)_/(; t e f”(1>a+ﬁ+1,204+1,—3}7_N’t)dt
= Qn(z;0, 3, N),
1 o
= " 1@
e ]
i (0+)
(4.33) . - / A P A )
2sm(a+l)n1"(%,a) - (=)~ LyV(=%)dt
(a+1),
:T)fn(l 200+ 15— —.T)
1 e —
(4.34) m/o e fu(23riv 4 L+ 2 - L) dt
1
i (0+)
4.35 - yv—v—2
( ) 2sinvnl(1 —v) /Oo (=17 2H"(\/%)dt
:(%)nfn(2§3y;7/+%,u+%;x)’
1 oo
4.36 i v—1_—t . -
( ) F(V)A t e fn(ma(m-f— )I/ V+m+1""’y+m—+1;h(_%)mt)dt
— 1 m
- xngn (‘T’h)a
i (0+)
4.36 v I 1
( ) 2sinmc1"(1—y)/ (=)~ mgrrln(*m*(%)m,h)dt
pry n
1{ mo(c BYZ A" fu(ms (m + 1) Vet g, v+ ),
(4.37) m/ tV*leftfn(l’2y;V+ %,7‘%; *N;pilt) dt
K”(x va)a
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(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

i (0+) , )
Ssinvnl(1— 1) —t) Ve Ky (z;—p~'t, N)dt
2sinvnl(1 — v) /Oo (=t)"e "Ky(z;—p t, N)

= fu(L; 2050 + %, —xz;—N;p),

1 > v—1_—t 1 1
) w2050+ 5, =25 05 (1 —
F(V)/O e (1200 4 5, —m; B (1 — ¢ )t dt
:Mn(x;ﬁ,c),
i (0+) , )
—t)""e” MTL N2 s
2sinun1"(1—y)/0 (=)™ (z; 8, 7)) dt

= fu(l;2v5v + %, —x; 35 ¢),

1 o0
F(V)/o t”_le_tfn(152y5”+%vx;—;—x_lt)dt
n!

= x_n(pn(w)a

1 oo v—1_—t 1.2 . 1 . . 1 d
Ty fy 1 2y g ) di
= (—3)"C\ (@),

i (0+) o

Py PR ) a dt
2sinvnl(1 —v) /OC (=1) Cy Y (z)

= (=3)" fa(L 2030 + §, =25 —; a),

1 > 1
— 2t E (101 =g —: (1 — e~ M) dt
7L e
= eﬂ)\en(x; )\)’

i /(0+)( ) l( )n t( ( )
— —t) 2(1+7) "e "n(z;—log(l+¢))dt
2V Joo ‘ f
= fu(L;1; =25 —5),

1 - volg—t . S AV
F(I/)/O e (L k= Lo+ 1; ,I/,(k) t)dt

n!

= —2Z, ;ka
T+ o) 2@ k)

i (0+) \ . 1 o
POy E—— —t) Ve ' Z% k(=2 % :
2sinvnl'(1 —v) /Oo (=t) e " Z5 (k( t) shk)dt

1 n
= ( 7+n?)k fn(Lk—La+1;— ;).
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5. LAGUERRE’S L\ () AND BATEMAN’S POLYNOMIAL z{b) (2)-

Using (4.5) we obtain at once that

1 (o)
= [ et fu(L14+ o5 H% v, 14 o 2®t) dt
F(V)/O € fn( bl +Oé, 2 1”? +Oé,.’1: )

(5.1) :fn(l,l—i—a;H‘Ta;l—i—a;xQ).

Ramanujan’s formula which gives the product of two 1 F}’s as an 9 F3 and which
was proved by Preece [6] reads as follows:

Q; a; a,— o
(52) 1F1 X 1F1 —T = 2F3
B3 B; 8,318,318+ 3;

ISES

It yields at once

1+ a),

63 L@ = {0V 11 a1 a2,

n!

However, Bateman’s fo)(b, t) which is a generalization of his polynomial Z,,(t) is
given by

(5.4) ZW (b, t) = fu(1,20;0;1 + bit).
With these results it is easy to write (5.1) in an interesting form

(

£33

N[

(e, 2?)
B (n!)?
" P+ ) P

oo
(5.5) / toe /AL (4 L) (—at) dt.
0

For a = 0, (5.5) reduces to

(5.6) Zn(2?) = % /0 h e /AL, (t) Ly (—at) dt

where L,(x) is the simple Laguerre polynomial. Formula (5.6) appears in Sister
Celine’s work, Fasenmyer [2].
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