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SPECTRAL ASYMPTOTICS FOR NONLINEAR MULTIPARAMETER

PROBLEMS WITH INDEFINITE NONLINEARITIES

Tetsutaro Shibata, Hiroshima

(Received August 7, 1996)

1. Introduction

In order to explain the basic ideas of this paper, let us consider the nonlinear

multiparameter eigenvalue problem with the coefficients ak(x) (1 � k � n) changing
sign:

(1.1)

u′′(x) +
n∑

k=1

µkak(x)upk (x) = λa0(x)uq(x), x ∈ I := (−1, 1),

u(x) > 0, x ∈ I := (−1, 1),
u(−1) = u(1) = 0,

where µ = (µ1, µ2, . . . , µi−1, µi . . . , µn) ∈ �i−1
+ × �

n−i+1
+ , λ ∈ � are parameters,

(1.2) 1 � q � p1 � p2 � . . . � pi−1 < pi � . . . � pn < 2q + 3,

ak ∈ C1(I) satisfies ak(−x) = ak(x) for x ∈ I and

(1.3)

a′k(x) � 0, x ∈ [0, 1] (1 � k � i− 1),
a′k(x) � 0, x ∈ [0, 1], ak(0) > 0 (i � k � n),

a′0(x) � 0, a0(x) > 0, x ∈ [0, 1].

We do not assume any sign conditions for ak(x) (1 � n � i−1), and ak(x) (i � k � n)
are allowed to change sign in I. A nonlinear term such as ak(x)upk is called an

indefinite nonlinearity, since for a fixed u, it may change sign as a function of x.
Our main interest is to study the asymptotic behavior of the variational eigenvalue

λ, which is obtained by Ljusternik-Schnirelman theory on the general level set as
µi →∞.
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Nonlinear multiparameter problems arise in various areas of semilinear elliptic

problems, which are derived from some physical and biological models in a bounded
and an unbounded domain D ⊂ �

N :

�u+ f(x, u) = 0 in D.

It should be especially mentioned that to consider the asymptotic behavior of λ →∞
in our problem is related to singular perturbation problems of the type

−ε2�u = f(x, u) in D,

through scaling and change of variables, where 0 < ε � 1.
Our problems are also motivated by linear multiparameter problems, especially,

of finding “asymptotic directions of eigenvalues” (asymptotic behavior of the ratio
of two eigenvalues). Related topics for linear problems can be found, for instance,

in Faierman [2], Turyn [5]. Our problems are regarded as the nonlinear version of
finding “asymptotic directions” of eigenvalues.
Recently, in Shibata [4], the simplest case of (1.1), namely,

(1.4)

u′′(x) + µa(x)up(x) = λb(x)uq(x), x ∈ I := (−1, 1),
u(x) > 0, x ∈ I := (−1, 1),

u(−1) = u(1) = 0,

and a(x) ≡ b(x) ≡ 1, the definite type, was treated and the following precise asymp-
totic formula for λ(µ, α) was obtained by using Ljusternik-Schnirelman (LS) theory
on the general level set Mµ,α due to Zeidler [6], where α > 0 is a fixed parameter.

Assume that 1 < q < p < q + 2. Then as µ →∞,

(1.5) λ(µ, α) = C1(αµ
q+3
2(p−q) )

2(p−q)
p+3 + o((αµ

q+3
2(p−q) )

2(p−q)
p+3 )

where

(1.6) C1 =





(
q + 1
p+ 1

) q+3
2(p−q) (p+ 3)(q + 1)(p− q)

2(2q − p+ 3)

√
2

�(q + 1)

Γ
(

p+3
2(p−q)

)

Γ
(

q+3
2(p−q)

)





2(p−q)
p+3

.

Therefore, for nonlinear problems with several parameters, by adopting this varia-
tional approach, whole arguments seem to be nicely developed.

In this paper we shall study the effects of nonlinearities changing sign on the
asymptotic behavior of eigenvalues for nonlinear multiparameter problems. More
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precisely, we shall extend the asymptotic formula for variational eigenvalues (1.5) to

fairly wide class of nonlinear equations including (1.1). We mention here the main
difficulty. If we assume, for instance, a simple condition on µi, such as µi →∞ with
µi ∼ µj , then it turns out that the dominant parameter should be µ1 automatically,

since the maximum norm of the corresponding eigenfunction tends to 0. Therefore
we need additional assumptions for µ to obtain the asymptotic formula dominated

by µi. In this paper we give optimal conditions for µ under which µi dominates the
asymptotic formula for the variational eigenvalue λ.

2. Main result

In what follows, we consider the nonlinear multiparameter problem

(2.1)

u′′(x) +
n∑

k=1

µkfk(x, u(x)) = λg(x, u(x)), x ∈ I := (−1, 1),

u(x) > 0, x ∈ I := (−1, 1),
u(−1) = u(1) = 0,

where µ = (µ1, µ2, . . . , µi−1, µi, . . . , µn) ∈ �
i−1
+ × �

n−i+1
+ , λ ∈ � and �+ = [0,∞),

�+ := (0,∞). We explain the notation before stating our results. Let X :=W 1,2
0 (I)

be the usual real Sobolev space and L := �i−1
+ × �

n−i+1
+ × �+ . For u ∈ X , let

‖u‖2X :=
∫

I

u′(x)2 dx, ‖u‖d
d =

∫

I

|u(x)|d dx (d � 1), (u, v)2 :=
∫

I

u(x)v(x) dx,

‖u‖∞ := max
x∈I

|u(x)|, Fk(x, u) :=
∫ u

0
fk(x, s) ds, G(x, u) :=

∫ u

0
g(x, s) ds,

Φk(u) :=
∫

I

Fk(x, u(x)) dx, Ψ(u) :=
∫

I

G(x, u(x)) dx.

Furthermore, let C denote various positive constants independent of {(µ, α)}. Es-
pecially, for simplicity, all constants, which will appear in the computations, will be

denoted by the same character C provided they are independent of {(µ, α)}. We
assume the following conditions.

(A.1). fk(x, u), g(x, u) ∈ C1(I ×�) are even functions with respect to x and odd

functions with respect to u.

(A.2).

(2.3)

g(x, u) > 0 for (x, u) ∈ I × �+ ,

∂g(x, u)
∂x

� 0 for (x, u) ∈ [0, 1]× �+ ,
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and there exists a constant q � 1 such that for x ∈ I and u � 0

(2.4) C−1uq � g(x, u) � Cuq.

(A.3). There exist constants {pk}n
k=1 satisfying (1.2) and

|fk(x, u)| � C|u|pk for x ∈ I, u ∈ �,(2.5)

∂fk(x, u)
∂x

� 0 for (x, u) ∈ [0, 1]× �+ .(2.6)

In addition, there exists a compact interval J = [−x1, x1] ⊂ I (x1 > 0) such that for

x ∈ J and u � 0

(2.7) fi(x, u) � Cupi , fk(x, u) � 0 (k > i).

Furthermore, if Φi(u0) � 0 for u0 ∈ X , then

(2.8) (fi(x, u0), u0)2 − 2Φi(u0) � 0.

(A.4). There exists ak(x) ∈ C1(I) (1 � k � n) such that ak(−x) = ak(x) for
x ∈ I and as u ↓ 0,

(2.9)
fk(x, u)

upk
→ ak(x),

g(x, u)
uq

→ a0(x)

uniformly for x ∈ I, where ak(x) satisfies the condition (1.3). In addition, for

x ∈ [0, 1] and 0 � u � 1,

(2.10)
∂fk,0(x, u)

∂x
� 0, ∂g0(x, u)

∂x
� 0,

where

(2.11) fk,0(x, u) := fk(x, u)− ak(x)upk , g0(x, u) := g(x, u)− b0(x)uq .

It is easy to see that the equation (1.1) under the conditions (1.2) and (1.3) satisfies

(A.1)–(A.4). Another example of fk and g which satisfies (A.1)–(A.4) is

fk(x, u) =

{
cos �x(|u|pk−1u+ |u|pk−1+εu), |u| � 1,
cos �x(|u|pk−1u+ |u|pk−1−εu), |u| � 1,

g(x, u) = (1 + x2)|u|q−1u,
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where 0 < ε � 1 and {pk}n
k=1, q satisfy (1.2).

Now we define the variational eigenvalues. λ = λ(µ, α) is called a variational
eigenvalue of (2.1) when the associated eigenfunction uµ,α(x) ∈ Nµ,α satisfies the
following condition

(2.12)

{
(µ, α, λ(µ, α), uµ,α(x)) ∈ L× � ×Nµ,α satisfies (2.1),

Ψ(uµ,α) = β(µ, α) := inf
u∈Nµ,α

Ψ(u),

where

Nµ,α :=

{
u ∈ X : E(µ, u) :=

1
2
‖u‖2X −

n∑

k=1

µkΦk(u) = −α

}
,

and α > 0 is a parameter. λ(µ, α) is obtained as a Lagrange multiplier and explicitly
represented as follows:

(2.13) λ(µ, α) =
2α+

n∑
k=1

µk{(fk(x, uµ,α), uµ,α)2 − 2Φk(uµ,α)}

(g(x, uµ,α), uµ,α)2
.

Actually, multiplying (2.1) by uµ,α(x), we obtain by integration by parts that

(2.14) −‖uµ,α‖2X +
n∑

k=1

µk(fk(x, uµ,α), uµ,α)2 = λ(µ, α)(g(x, uµ,α), uµ,α)2;

this along with the fact that uµ,α ∈ Nµ,α implies (2.13).

We introduce the condition (B.1) for a sequence {(µ, α)}. A sequence {(µ, α)} ⊂ L

is said to satisfy the condition (B.1) if the following conditions hold:

(B.1)

αµ
2

pi−1
i →∞,(2.15)

αµ
−1/2
i → 0.(2.16)

Furthermore, for k �= i,

(2.17) µkα
2(pk−pi)

pi+3 µ
−pk+3

pi+3

i → 0.

Now we state our main result.

Theorem 2.1. Assume (A.1)–(A.4). Furthermore, assume that a sequence

{(µ, α)} ⊂ L satisfies (B.1). Then the following asymptotic formula holds:

(2.18) λ(µ, α) = C2a0(0)−1ai(0)
q+3

pi+3

(
αµ

q+3
2(pi−q)

i

) 2(pi−q)
pi+3 + o

((
αµ

q+3
2(pi−q)

i

) 2(pi−q)
pi+3

)
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where

(2.19)

C2 =





(
q + 1
pi + 1

) q+3
2(pi−q) (pi + 3)(q + 1)(pi − q)

2(2q − pi + 3)

√
2

�(q + 1)

Γ
(

pi+3
2(pi−q)

)

Γ
(

q+3
2(pi−q)

)





2(pi−q)
pi+3

.

It should be mentioned that the condition (B.1) is not technical but optimal to
obtain the formula (2.18). In fact, if q = p1, ak(x) ≡ −1 for 1 � k � i− 1, ak(x) ≡ 1
for i � k � n and the condition (2.17) fails for k = 1, namely, if there exists

a constant δ > 0 such that µ1α
2(pk−pi)

pi+3 µ
−pk+3

pi+3

i → δ, then we can obtain another
asymptotic formula depending on δ, which coincides with (2.18) when δ = 0.

The remainder of this paper is organized as follows. In Section 3, the existence
of variational eigenvalues is formulated. In Section 4 and Section 5, we will prepare

some fundamental tools. Section 6 is devoted to the proof of Theorem 2.1.

3. Existence of variational eigenvalues

In what follows, for a subsequence, we use the same notation as that of original
sequence for convenience. Furthermore, let ai(0) = ai+1(0) = . . . = an(0) = a0(0) =
1 for simplicity. In this section, we assume that (µ, α) ∈ L belongs to a sequence of

L which satisfies (B.1).

Lemma 3.1. Let (µ, α) ∈ L be fixed. Then Nµ,α �= ∅.

�����. We fix ϕ(x) ∈ C∞
0 (J) satisfying ϕ �≡ 0 and ϕ(x) � 0 for x ∈ J , where

J is a compact interval defined in (A.3). For t � 0 we put

(3.1) m(t) = m(t, µ, ϕ) :=
1
2
‖tϕ‖2X −

n∑

k=1

µkΦk(tϕ).

By (2.5) and (2.7) we obtain that for t � 0

(3.2) Φi(tϕ) � Ctpi+1‖ϕ‖pi+1
pi+1,

Φk(tϕ) � 0 (k > i),

|Φk(tϕ)| � Ctpk+1‖ϕ‖pk+1
pk+1 (1 � k � i− 1).
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Therefore, by (3.1) and (3.2), we obtain that as t →∞

(3.3) m(t) � 1
2
t2‖ϕ‖2X − µiΦi(tϕ) +

i−1∑

k=1

µk|Φk(tϕ)|

� t2
{
1
2
‖ϕ‖2X − Cµit

pi−1‖ϕ‖pi+1
pi+1 + C

i−1∑

k=1

µktpk−1‖ϕ‖pk+1
pk+1

}
→ −∞,

since pk < pi for 1 � k � i − 1 by (1.2). Since m(0) = 0, we obtain that there
exists t = t0 > 0 such that m(t0) = −α, namely, t0ϕ ∈ Nµ,α. Thus the proof is

complete. �

Lemma 3.2. Let (µ, α) ∈ L be fixed. Then β(µ, α) > 0.

�����. We assume that β(µ, α) = 0 and derive a contradiction. Let {ul} ⊂
Nµ,α be a minimizing sequence of (2.12), that is, as l →∞,

(3.4) Ψ(ul)→ β(µ, α) = 0.

By (2.4), we have for x ∈ I, s ∈ �+ and u ∈ X

(3.5) C−1sq+1 � G(x, s) � Csq+1, C−1‖u‖q+1
q+1 � Ψ(u) � C‖u‖q+1

q+1.

Furthermore, we know from (2.5) that for (x, s) ∈ I × �, u ∈ X and 1 � k � n

(3.6) |fk(x, s)| � C|s|pk , |Fk(x, s)| � C|s|pk+1, |Φk(u)| � C‖u‖pk+1
pk+1.

We recall here the Gagliardo-Nirenberg inequality for u ∈ X :

(3.7) ‖u‖pk+1
pk+1 � C‖u‖(1−ak)(pk+1)

q+1 ‖u‖ak(pk+1)
X ,

where ak = 2(pk − q)/{(q + 3)(pk + 1)}. Then by (3.5)–(3.7) we have

|Φk(ul)| � C‖ul‖pk+1
pk+1 � C‖ul‖(1−ak)(pk+1)

q+1 ‖ul‖
2(pk−q)

q+3

X(3.8)

� CΨ(ul)
(pk+1)(1−ak)

q+1 ‖ul‖
2(pk−q)

q+3

X .

Since ul ∈ Nµ,α, we obtain by (3.8) that

(3.9)
1
2
‖ul‖2X �

n∑

k=1

µk|Φk(ul)| � C

n∑

k=1

µkΨ(ul)
(pk+1)(1−ak)

q+1 ‖ul‖
2(pk−q)

q+3

X .

Since 2(pk − q)/(q + 3) < 2, we see from (3.4) and (3.9) that ‖ul‖X → 0 as l → ∞.
Hence, Φk(ul)→ 0 as l →∞ by (3.8). Then as l →∞,

−α =
1
2
‖ul‖2X −

n∑

k=1

µkΦk(ul)→ 0.

This is a contradiction. Thus the proof is complete. �
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Lemma 3.3. Let (µ, α) ∈ L be fixed. Furthermore, let {ul} ⊂ Nµ,α be a

minimizing sequence of (2.12), namely, Ψ(ul) → β(µ, α) as l → ∞. Then there
exists a subsequence of {ul} and u∞ ∈ Nµ,α such that ul → u∞ in X as l →∞.

�����. By (3.9) and Lemma 3.2 we see that {ul} ⊂ X is bounded. Then
by Sobolev’s embedding theorem, there exists a subsequence of {ul} and u∞ ∈ X

such that ul → u∞ weakly in X , ul → u∞ in C(I), Ld(I) for any d � 1 as l → ∞.
Therefore,

(3.10)
1
2
‖u∞‖2X � 1

2
lim inf
l→∞

‖ul‖2X = lim
l→∞

n∑

k=1

µkΦk(ul)− α =
n∑

k=1

µkΦk(u∞)− α.

We shall show that u∞ ∈ Nµ,α. To this end, by (3.10), we assume that

(3.11)
1
2
‖u∞‖2X <

n∑

k=1

µkΦk(u∞)− α

and derive a contradiction. We put m(t) = m(t, µ, u∞) for t � 0, where m(t) is a
function defined in (3.1). Since m(0) = 0 and m(1) < −α by (3.11), there exists

0 < t1 < 1 such that m(t1) = −α, namely, t1u∞ ∈ Nµ,α. Since g(x, u) > 0 is odd in
u, we have G(x, t1u∞) < G(x, u∞) for x ∈ I. Then by (2.12)

(3.12) β(µ, α) � Ψ(t1u∞) < Ψ(u∞) = β(µ, α).

This is a contradiction. Hence (3.11) is impossible, and we see from (3.10) that
u∞ ∈ Nµ,α. Moreover, it follows from (3.10) that there exists a subsequence of {ul}
such that

(3.13) ‖u∞‖2X = lim
l→∞

‖ul‖2X .

By (3.13), ul → u∞ in X as l →∞, and u∞ �≡ 0, since 0 < β(µ, α) = Ψ(u∞). Thus
the proof is complete. �

Lemma 3.4. For a fixed (µ, α) ∈ L, there exists (λ(µ, α), uµ,α(x)) ∈ � × Nµ,α

which satisfies (2.12).

�����. By Lemma 3.3 we see that u∞ ∈ Nµ,α is the minimizer of the minimizing
problem in (2.12). Then by the Lagrange multiplier theorem there exists λ(µ, α) ∈ �
such that (u∞, λ(µ, α)) satisfies the equation in (2.1). Furthermore, by a standard
regularity argument we see that u∞ ∈ C2(I). Now we put uµ,α(x) := |u∞(x)|. Since
fk, g are odd with respect to u, Fk, G are even with respect to u. Therefore,

(3.14) Φk(uµ,α) = Φk(u∞),Ψ(uµ,α) = Ψ(u∞) = β(µ, α).
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Furthermore, since u∞ ∈ C2(I), we have ‖u∞‖X = ‖uµ,α‖X . This along with (2.3)

and (3.14) implies that uµ,α ∈ Nµ,α, and (µ, α, λ(µ, α), uµ,α) ∈ L×�×Nµ,α satisfies
(2.1) and uµ,α is the mimimizer of (2.12) with the same Lagrange multiplier λ(µ, α) as
that of u∞. Finally, if there exists x0 ∈ I such that uµ,α(x0) = 0, then u′µ,α(x0) = 0,

since uµ,α(x) � 0 in I. Then by the uniqueness theorem of ODE, we obtain that
uµ,α ≡ 0 in I. However, this is impossible, since uµ,α ∈ Nµ,α and 0 �∈ Nµ,α. Thus

uµ,α > 0 in I. �

Remark 3.5. To apply the Lagrange multiplier theorem, the fact Eu(µ, u∞)u∞ �=
0 was used, where Eu is the Fréchet derivative of E with respect to u. This is

guaranteed, since Eu(µ, u∞)u∞ = Eu(µ, uµ,α)uµ,α �= 0 by (4.22) in the next section.

4. Fundamental lemmas

We put σµ,α := max
x∈I

uµ,α(x). By Gidas, Ni and Nirenberg [3] we know that uµ,α

possesses the following properties:

uµ,α(−x) = uµ,α(x), u
′
µ,α(x) < 0, x ∈ (0, 1),(4.1)

u′µ,α(0) = 0, σµ,α = uµ,α(0).

In what follows, for norms of a function defined on � we use the same notation as

that defined at the beginning of Section 2.

Lemma 4.1. For a fixed (µ, α) ∈ L, the following equality holds for x ∈ I:

(4.2)
1
2
(u′µ,α(x))

2 + J(µ, α, x, uµ,α(x)) −
n∑

k=1

µkBk(µ, α, x) + λ(µ, α)B0(µ, α, x)

= J(µ, α, 0, σµ,α) =
1
2
u′µ,α(1)

2 −
n∑

k=1

µkBk(µ, α, 1) + λ(µ, α)B0(µ, α, 1),

where

J(µ, α, x, u) :=
n∑

k=1

µkFk(x, u)− λ(µ, α)G(x, u),(4.3)

Bk(µ, α, x) :=
∫ x

0

{∫ uµ,α(r)

0

∂fk(r, s)
∂r

ds

}
dr � 0, x ∈ [0, 1],(4.4)

B0(µ, α, x) :=
∫ x

0

{∫ uµ,α(r)

0

∂g(r, s)
∂r

ds

}
dr � 0, x ∈ [0, 1].(4.5)
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�����. Multiplying (2.1) by u′µ,α(x) we obtain for x ∈ I

(4.6) {u′′µ,α(x) +
n∑

k=1

µkfk(x, uµ,α(x)) − λ(µ, α)g(x, uµ,α(x))}u′µ,α(x) = 0;

namely,

d
dx

{
1
2
(u′µ,α(x))

2 + J(µ, α, x, uµ,α(x))(4.7)

−
n∑

k=1

µkBk(µ, α, x) + λ(µ, α)B0(µ, α, x)

}
≡ 0;

this implies that for x ∈ I

1
2
(u′µ,α(x))

2 + J(µ, α, x, uµ,α(x))(4.8)

−
n∑

k=1

µkBk(µ, α, x) + λ(µ, α)B0(µ, α, x) ≡ const.

Now, put x = 0, 1 in (4.8). Then (4.2) follows immediately. �

Lemma 4.2. Assume that {(µ, α)} ⊂ L satisfies (B.1). Then

(4.9) ‖uµ,α‖q+1
q+1 � Cα

2q+3−pi
pi+3 µ

− q+3
pi+3

i .

�����. Let η = ηµ,α := (αµ
2

pi−1
i )

pi−1
pi+3 . Furthermore, let wη satisfy

(4.10)

w′′η (s) + wpi
η (s)− wq

η(s) = 0, −ηµ,α < s < ηµ,α,

wη(s) > 0, −ηµ,α < s < ηµ,α,

wη(±ηµ,α) = 0.

The existence of wη is obtained easily, for instance, by variational method. We put

Uµ,α(x) :=

{
dµ,α(α2µ

−1
i )

1
pi+3wη(s), x = η−1µ,αx1s, x ∈ J,

0, x ∈ I \ J,

where x1 > 0 is the number defined in (A.3) and

dµ,α := inf{t > 0: t(α2µ−1i )
1

pi+3wη(ηx−11 x) ∈ Nµ,α}.
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By (3.3) we see that dµ,α > 0 exists. We shall show that

(4.11) C−1 � dµ,α � C.

Since η → ∞ by (2.15), we know from Shibata [4, Lemma 4.7] that wη → w∞
uniformly on any compact subset in � and C−1 � ‖wη‖p � C (p � q + 1), where
w∞ is the ground state solution of

(4.12) w′′(t) + wpi(t)− wq(t) = 0, t ∈ �,

w(t) > 0, t ∈ �,

lim
|t|→∞

w(t) = 0.

First, we assume that there exists a subsequence of {(µ, α)} such that dµ,α → ∞,
and derive a contradiction. Since suppUµ,α ⊂ J , we have by (2.5), (2.7), (2.17) and

direct calculation that

(4.13) −α =
1
2
‖Uµ,α‖2X −

n∑

k=1

µkΦk(Uµ,α)

� 1
2
‖Uµ,α‖2X − µiΦi(Uµ,α) +

i−1∑

k=1

µk|Φk(Uµ,α)|

� 1
2
ηx−11 d2µ,α(α

2µ−1i )
2

pi+3 ‖wη‖2X

− µiη
−1x1d

pi+1
µ,α (α

2µ−1i )
pi+1
pi+3 ‖wη‖pi+1

pi+1

+
i−1∑

k=1

µkη−1x1d
pk+1
µ,α (α

2µ−1i )
pk+1
pi+3 ‖wη‖pk+1

pk+1

� αd2µ,α

{
x−11
1
2
‖wη‖2X − x1d

pi−1
µ,α ‖wη‖pi+1

pi+1

+ x1

i−1∑

k=1

(µkα
2(pk−pi)

pi+3 µ
− pk+3

pi+3

i )dpk−1
µ,α ‖wη‖pk+1

pk+1

}

� − Cα,
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where C � 1 is a constant. This is a contradiction. Hence dµ,α � C. Then (3.6)

implies that

−α =
1
2
‖Uµ,α‖2X −

n∑

k=1

µkΦk(Uµ,α) � 1
2
‖Uµ,α‖2X −

n∑

k=1

µk|Φk(Uµ,α)|

� ηx−11 d2µ,α(α
2µ−1i )

2
pi+3 ‖wη‖2X −

n∑

k=1

µkη−1x1d
pk+1(α2µ−1i )

pk+1
pi+3 ‖wη‖pk+1

pk+1

� αd2µ,α

{
x−11
1
2
‖wη‖2X −

n∑

k=1

x1(µkα
2(pk−pi)

pi+3 µ
− pk+3

pi+3

i )dpk−1
µ,α ‖wη‖pk+1

pk+1

}
;

this along with (2.17) implies that dµ,α → 0 does not occur. Therefore, we obtain
(4.11). Now by (2.12) and (3.5)

(4.14) ‖uµ,α‖q+1
q+1 � CΨ(uµ,α) � CΨ(Uµ,α) � C‖Uµ,α‖q+1

q+1

� C(α2µ−1i )
q+1

pi+3 η−1α,µ‖wη‖q+1
q+1 � Cα

2q+3−pi
pi+3 µ

− q+3
pi+3

i .

Thus the proof is complete. �

Lemma 4.3. Assume that {(µ, α)} ⊂ L satisfies (B.1). Then

(4.15) C−1α � ‖uµ,α‖2X � Cα.

�����. By (3.5), (3.8) and (4.9), we obtain that for 1 � k � n

(4.16) µk|Φk(uµ,α)| � Cµk‖uµ,α‖
(pk+3)(q+1)

q+3

q+1 ‖uµ,α‖
2(pk−q)

q+3

X

= C
(
µkα

2(pk−pi)
pi+3 µ

− pk+3
pi+3

i

)
α
2q+3−pk

q+3 ‖uµ,α‖
2(pk−q)

q+3

X .

By the inequality

ab � 1
d1

ad1 +
1
d2

bd2
(
a, b � 0, 1

d1
+
1
d2
= 1

)

we have

(4.17) α
2q+3−pk

q+3 ‖uµ,α‖
2(pk−q)

q+3

X � C(α+ ‖uµ,α‖2X).
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Since uµ,α ∈ Nµ,α, we obtain by (2.17), (4.16) and (4.17) that

(4.18)

α+
1
2
‖uµ,α‖2X � µiΦi(uµ,α) +

n∑

k=1, �=i

µk|Φk(uµ,α)|

� Cα
2q+3−pi

q+3 ‖uµ,α‖
2(pi−q)

q+3

X + o(1)
n∑

k=1, �=i

α
2q+3−pk

q+3 ‖uµ,α‖
2(pk−q)

q+3

X

� Cα
2q+3−pi

q+3 ‖uµ,α‖
2(pi−q)

q+3 + o(1)(α+ ‖uµ,α‖2X);

that is,

(4.19) α+
1
2
‖uµ,α‖2X � Cα

2q+3−pi
q+3 ‖uµ,α‖

2(pi−q)
q+3

X .

Then (4.15) follows immediately from (4.19). �

Lemma 4.4. Assume that {(µ, α)} ⊂ L satisfies (B.1). Then λ(µ, α) > 0.

�����. We obtain by (4.18) that

0 < α+ ‖uµ,α‖2X � CµiΦi(uµ,α) + o(1)(α + ‖uµ,α‖2X);

this implies that

(4.20) 0 < α+ ‖uµ,α‖2X � CµiΦi(uµ,α).

Furthermore, by (4.16) and Lemma 4.3 we obtain that for k �= i

(4.21) µk|(fk(uµ,α), uµ,α)2|, µk|Φk(uµ,α)| = o(1)α.

Then by (2.8), (2.13), (4.21)

(4.22) λ(µ, α)(g(x, uµ,α), uµ,α)2 � 2α+ µi{(fi(x, uµ,α), uµ,α)2 − 2Φi(uµ,α)}

− C
n∑

k=1,k �=i

µk(|(fk(uµ,α), uµ,α)2|+ |Φk(uµ,α)|)

� (2− o(1))α.

Thus the proof is complete. �

329



Lemma 4.5. Assume that {(µ, α)} ⊂ L satisfies (B.1). Then

(4.23) Cα
2(pi−q)

pi+3 µ
q+3

pi+3

i � λ(µ, α).

�����. It follows from (2.4), (4.9) and (4.22) that

Cα � λ(µ, α)(g(x, uµ,α), uµ,α)2 � Cλ(µ, α)‖uµ,α‖q+1
q+1 � Cλ(µ, α)α

2q+3−pi
pi+3 µ

− q+3
pi+3

i ;

this implies (4.23). Thus the proof is complete. �

Lemma 4.6. Assume that {(µ, α)} ⊂ L satisfies (B.1). Then σµ,α → 0.

�����. By (4.2)–(4.5) and Lemma 4.4 we see that J(µ, α, 0, σµ,α) > 0, that is,

λ(µ, α)G(0, σµ,α) <
n∑

k=1

µkFk(0, σµ,α);

this along with (3.5) and (3.6) implies that

(4.24) λ(µ, α)σq+1
µ,α � C

n∑

k=1

µkσpk+1
µ,α .

We have by (3.6), (4.2)–(4.5) and (4.24) that

(4.25)
1
2
(u′µ,α(x))

2 = J(µ, α, 0, σµ,α)− J(µ, α, x, uµ,α(x))

+
n∑

k=1

µkBk(µ, α, x) − λ(µ, α)B0(µ, α, x)

� J(µ, α, 0, σµ,α)− J(µ, α, x, uµ,α(x))

=
n∑

k=1

µk(Fk(0, σµ,α)− Fk(x, uµ,α(x)))

− λ(µ, α)(G(0, σµ,α)−G(x, uµ,α(x)))

� C

n∑

k=1

µkσpk+1
µ,α + Cλ(µ, α)σq+1

µ,α

� C
n∑

k=1

µkσpk+1
µ,α .
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Let x1 = x1,µ,α ∈ [0, 1] satisfy uµ,α(x1) = (1−ε)σµ,α, where 0 < ε � 1 is a constant.
By the mean value theorem and (4.25) we have for y1,µ,α ∈ [0, x1,µ,α]

(4.26)
εσµ,α

x1
=

∣∣∣∣
uµ,α(0)− uµ,α(x1)

x1

∣∣∣∣ = |u′µ,α(y1,µ,α)| �

√√√√C
n∑

k=1

µkσpk+1
µ,α .

Hence, by (2.4), (4.9) and (4.26),

(4.27) Cα
2q+3−pi

pi+3 µ
− q+3

pi+3

i � C‖uµ,α‖q+1
q+1 � (g(x, uµ,α), uµ,α)2

� C

∫ x1

0
g(x, uµ,α(x))uµ,α(x) dx

� C

∫ x1

0
uµ,α(x)

q+1 dx � C(1− ε)σq+1
µ,α x1

� C(1 − ε)εσq+2
µ,α

( n∑

k=1

µkσpk+1
µ,α

)−1/2
;

this implies that

(4.28)

σq+2
µ,α � Cα

2q+3−pi
pi+3 µ

− q+3
pi+3

i

n∑

k=1

µ
1/2
k σ

pk+1
2

µ,α

= C

n∑

k=1

(
µkα

2(pk−pi)
pi+3 µ

−pk+3
pi+3

i

)1/2
(αµ

−1/2
i )

2q+3−pk
pi+3 σ

pk+1
2

µ,α .

Now, our conclusion follows from (2.16), (2.17) and (4.28), since (pk + 1)/2 < q + 2.

�

Lemma 4.7. Assume that {(µ, α)} ⊂ L satisfies (B.1). Then for 1 � k � n

(4.29) µkσpk+1
µ,α � Cµiσ

pi+1
µ,α .

�����. For a fixed (µ, α), let 1 � j(µ, α) � n satisfy

(4.30) max
1�k�n

µkσpk+1
µ,α = µj(µ,α)σ

pj(µ,α)+1
µ,α .

Then there exists a subsequence of {(µ, α)} and 1 � j � n such that j = j(µ, α)
for this subsequence. We fix and consider this subsequence. Then using (4.28) and
(4.30) we obtain

σq+2
µ,α � C

√√√√
n∑

k=1

µkσpk+1
µ,α α

2q+3−pi
pi+3 µ

− q+3
pi+3

i � Cµ
1/2
j σ

pj+1

2
µ,α α

2q+3−pi
pi+3 µ

− q+3
pi+3

i ,
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that is,

(4.31) σµ,α � C
(
µ
1/2
j α

2q+3−pi
pi+3 µ

− q+3
pi+3

i

) 2
2q+3−pj

.

By (4.23), (4.24) and (4.31) we obtain

α
2(pi−q)

pi+3 µ
q+3

pi+3

i � Cλ(µ, α) � C

n∑

k=1

µkσpk−q
µ,α � Cµj

(
µ
1/2
j α

2q+3−pi
pi+3 µ

− q+3
pi+3

i

) 2(pj−q)

2q+3−pj ;

namely,

µj � Cα
2(pi−pj)

pi+3 µ
pj+3

pi+3

i .

This along with (2.17) implies that (4.30) holds for j = j(µ, α) = i except a finite
number of the elements of {(µ, α)}. Thus, we obtain (4.29). �

5. Further observations

Let

ξ := ξµ,α = (λ(µ, α)/µi)
1

pi−q , τ := τµ,α = µ
1−q

2(pi−q)

i λ(µ, α)
pi−1
2(pi−q) ,

t := τx, wµ,α(t) := ξ−1uµ,α(x).

Furthermore, let Ak(t) := ak(t/τ). Then by (2.1), wµ,α(t) satisfies the equation
(5.1)

w′′µ,α(t) +Ai(t)wpi
µ,α(t)−A0(t)wq

µ,α(t) +
n∑

k=1,k �=i

τ−2µkξpk−1Ak(t)wpk
µ,α(t)

+
n∑

k=1

τ−2µkξ−1fk,0(t/τ, ξwµ,α(t))− λ(µ, α)τ−2ξ−1g0(t/τ, ξwµ,α(t))

= 0, t ∈ Iµ,α := (−τ, τ),

wµ,α(t) > 0, t ∈ Iµ,α,

wµ,α(±τ) = 0.

It follows from (2.15) and Lemma 4.5 that

(5.2) τµ,α � Cµ
1−q

2(pi−q)

i

(
α
2(pi−q)

pi+3 µ
q+3

pi+3

i

) pi−1
2(pi−q)

= C
(
αµ

2
pi−1
i

) pi−1
pi+3 →∞.

Therefore, we expect that wµ,α(t) → w∞(t) if {(µ, α)} ⊂ L satisfies (B.1), where

w∞ is the ground state of (4.12). The goal of this section is to show the following
lemma:
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Lemma 5.1. Assume that {(µ, α)} ⊂ L satisfies (B.1). Then wµ,α(t) → w∞(t)

in Lq+1(�) and Lpk+1(�).

To prove Lemma 5.1, we recall some important properties of w∞. We know that
there exists a unique solution w∞ of (4.12), which is called the ground state solution

of (4.12), and satisfies the following properties:

w∞(0) = ζ :=
(pi + 1

q + 1

) 1
pi−q

, w∞(t) = w∞(−t), t ∈ �, w′∞(t) � 0, t � 0,(5.3)

1
2
(w′∞(t))

2 +
1

pi + 1
wpi+1
∞ (t)− 1

q + 1
wq+1
∞ (t) = 0, t ∈ �,(5.4)

w∞(t) � Ce−C|t| (q = 1), w∞(t) � C(1 + |t|)−s(5.5)
(
q > 1, 0 < s <

2
q − 1

)
, t ∈ �.

We refer to Berestycki and Lions [1] for these properties. Let ζµ,α := max
t∈Iµ,α

wµ,α(t) =

ξ−1σµ,α.

Lemma 5.2. Assume that {(µ, α)} ⊂ L satisfies (B.1). Then C−1 � ζµ,α � C.

�����. By (4.24) and Lemma 4.7 we have that

(5.6) λ(µ, α) � C

n∑

k=1

µkσpk−q
µ,α � Cµiσ

pi−q
µ,α .

This implies the first inequality. Next, since (4.31) holds for j = i, we see from

Lemma 4.5 that

(5.7) σpi−q
µ,α � C(αµ

−1/2
i )

2(pi−q)
pi+3 � C

λ(µ, α)
µi

.

Thus we obtain the second inequality. �

Lemma 5.3. Assume that {(µ, α)} ⊂ L satisfies (B.1). Then

(5.8) λ(µ, α)τ−2ξq−1 = 1, τ−2µkξpk−1 → 0 (k �= i).

�����. The first equality follows from the definition of τ and ξ. We shall show
the second inequality. It follows from (5.6) and (5.7) that

(5.9) λ(µ, α) � C
(
αµ

q+3
2(pi−q)

i

) 2(pi−q)
pi+3 .
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Then by (2.17), Lemma 4.5 and (5.9) that for k �= i

τ−2µkξpk−1 = λ(µ, α)
pk−pi
pi−q µkµ

− pk−q

pi−q

i � Cµkα
2(pk−pi)

pi+3 µ
− pk+3

pi+3

i → 0.

Thus the proof is complete. �

Lemma 5.4. Assume that {(µ, α)} ⊂ L satisfies (B.1). Then ‖wµ,α‖q+1 � C.

�����. By Lemma 4.2 and Lemma 4.5 we obtain

(5.10) ‖wµ,α‖q+1
q+1 = ξ−(q+1)τ‖uµ,α‖q+1

q+1 � C
(
λ(µ, α)−1α

2(pi−q)
pi+3 µ

q+3
pi+3

i

) 2q+3−pi
2(pi−q) � C.

�

We regard wµ,α(t) as a function defined on � by 0-extension.

Lemma 5.5. Assume that {(µ, α)} ⊂ L satisfies (B.1). Then ‖w′µ,α‖∞ � C.

Furthermore, wµ,α satisfies the inequality

(5.11) w′µ,α(t) � −
√

T1(wµ,α(t)),

where

(5.12) T1(w) = (w′µ,α(τ))
2 + Cwq+1 − Cwpi+1 − o(1)

n∑

k=1,k �=i

wpk+1.

334



�����. It follows from (2.11) and Lemma 4.1 that

(5.13)
1
2
(u′µ,α(x))

2 +
n∑

k=1

µk
1

pk + 1
ak(x)u

pk+1
µ,α (x)−

n∑

k=1

µk

∫ x

0
a′k(s)u

pk+1
µ,α (s) ds

+
n∑

k=1

µk

∫ uµ,α(x)

0
fk,0(x, s) ds−

n∑

k=1

µk

∫ x

0
dy

(∫ uµ,α(y)

0

∂

∂z
fk,0(z, s) ds

)

− λ(µ, α)
1

q + 1
a0(x)uq+1

µ,α (x) + λ(µ, α)
∫ x

0
a′0(s)u

q+1
µ,α (s) ds

− λ(µ, α)
∫ uµ,α(x)

0
g0(x, s) ds+ λ(µ, α)

∫ x

0
dy

(∫ uµ,α(y)

0

∂

∂z
g0(z, s) ds

)

=
n∑

k=1

µk

{
1

pk + 1
ak(0)σpk+1

µ,α +
∫ σµ,α

0
fk,0(0, s) ds

}

− λ(µ, α)

{
1

q + 1
a0(0)σq+1

µ,α +
∫ σµ,α

0
g0(0, s) ds

}

=
1
2
(u′µ,α(1))

2

−
n∑

k=1

µk

{∫ 1

0
a′k(s)u

pk+1
µ,α (s) ds+

∫ 1

0
dy

(∫ uµ,α(y)

0

∂

∂z
fk,0(z, s) ds

)}

+ λ(µ, α)

{∫ 1

0
a′0(s)u

q+1
µ,α (s) ds+

∫ 1

0
dy

(∫ uµ,α(y)

0

∂

∂z
g0(z, s) ds

)}
.

By the first equality of (5.13), (2.9), (4.29) and (5.6) we have

1
2
ξ2τ2(w′µ,α(t))

2 =
1
2
(u′µ,α(x))

2 � C

n∑

k=1

µkσpk+1
µ,α + Cλ(µ, α)σq+1

µ,α � µiσ
pi+1
µ,α ;

this implies that

(5.14) (w′µ,α(t))
2 � Cµiσ

pi+1
µ,α τ−2ξ−2 � C.
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Thus, we obtain the first assertion. Next, by the second equality of (5.13) we have

(5.15)
1
2
(u′µ,α(x))

2 =
1
2
(u′µ,α(1))

2 + λ(µ, α)
1

q + 1
a0(x)uq+1

µ,α (x)

−
n∑

k=1

µk
1

pk + 1
ak(x)upk+1

µ,α (x)−
n∑

k=1

µk

∫ uµ,α(x)

0
fk,0(x, s) ds

+ λ(µ, α)
∫ uµ,α(x)

0
g0(x, s) ds−

n∑

k=1

µk

∫ 1

x

a′k(s)u
pk+1
µ,α (s) ds

+ λ(µ, α)
∫ 1

x

a′0(s)u
q+1
µ,α (s) ds−

n∑

k=1

µk

∫ 1

x

dy

(∫ uµ,α(y)

0

∂

∂z
fk,0(z, s) ds

)

+ λ(µ, α)
∫ 1

x

dy

(∫ uµ,α(y)

0

∂

∂z
g0(z, s) ds

)
.

Then by (1.3), (2.10) and (5.15) we obtain

(5.16)
1
2
(u′µ,α(x))

2 � 1
2
(u′µ,α(1))

2 + λ(µ, α)
1

q + 1
b0(x)uq+1

µ,α (x)

−
n∑

k=1

µk
1

pk + 1
ak(x)upk+1

µ,α (x)

−
n∑

k=1

µk

∫ uµ,α(x)

0
fk,0(x, s) ds+ λ(µ, α)

∫ uµ,α(x)

0
g0(x, s) ds.

By (2.9) and Lemma 4.6 we have for 1 � k � n

(5.17)

∣∣∣∣
∫ uµ,α(x)

0
fk,0(x, s) ds

∣∣∣∣ = o(1)upk+1
µ,α (x),

∣∣∣∣λ(µ, α)
∫ uµ,α(x)

0
g0(x, s) ds

∣∣∣∣ = o(1)λ(µ, α)uq+1
µ,α (x).

Therefore, by (5.16) and (5.17) we obtain

(5.18)
1
2
(u′µ,α(x))

2 � 1
2
(u′µ,α(1))

2 + Cλ(µ, α)uq+1
µ,α (x) − C

n∑

k=1

µkupk+1
µ,α (x).
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By (5.8) and (5.18), we obtain

(5.19)

1
2
(w′µ,α(t))

2 � 1
2
(w′µ,α(τ))

2 + Cwq+1
µ,α (t)− Cwpi+1

µ,α (t)

− C

n∑

k=1,k �=i

µkτ−2ξpk−1wpk+1
µ,α (t)

� 1
2
(w′µ,α(τ))

2 + Cwq+1
µ,α (t)− Cwpi+1

µ,α (t)

− o(1)
n∑

k=1,k �=i

wpk+1
µ,α (t).

Since w′µ,α(t) � 0 for 0 � t � τ , we obtain (5.11). Thus the proof is complete. �

Lemma 5.6. Assume that {(µ, α)} ⊂ L satisfies (B.1). Then wµ,α → w∞
uniformly on any compact subset on �.

�����. We see that {wµ,α}, {w′µ,α} and {w′′µ,α} are bounded by (5.1), Lemma
5.2 and Lemma 5.5. Hence, by Ascoli-Arzela’s theorem, (5.1) and Lemma 5.3, we

can choose a subsequence of {(µ, α)} such that wµ,α → w1 uniformly on any compact
subset on �, where w1 satisfies the equation in (4.12). Furthermore, by a standard

regularity argument, we obtain that w1 ∈ C2(�). Let t0 := inf{t > 0: w1(t0) > 0}.
Then by Lemma 5.2, t0 > 0. If t0 < ∞, then w1(t0) = w′1(t0) = 0, since w1(t) � 0
for t ∈ �. Then the uniqueness theorem of ODE implies that w1 ≡ 0. This is a
contradiction. Hence t0 = ∞, namely, w1(t) > 0 for t ∈ �. Now by Fatou’s lemma
and Lemma 5.4

(5.20)
∫

�

wq+1
1 (t) dt � lim inf

∫

�

wq+1
µ,α (t) dt � C.

Since w1(t) is decreasing for t > 0, we see that w1(t) → 0 as |t| → ∞. Hence w1
satisfies (4.12), namely, w1 ≡ w∞. �

Lemma 5.7. Assume that {(µ, α)} ⊂ L satisfies (B.1). Then there exists y(t) ∈
Lq+1(�) such that wµ,α(t) � y(t) for t ∈ �.

�����. Let q < r < 2q + 3 be fixed. Furthermore, let y1(t) := (t + 1)−2/(r−1).
Then y1(t) satisfies

(5.21)
y′1(t) = −

√
T0(y1(t)), t > 0,

y1(0) = 1,
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where T0(y) := 4(r− 1)−2yr+1. Moreover, since r < 2q+3 < 2pk+3, it is clear that

y1(t) ∈ Lq+1(�+ ) ∩ Lpk+1(�+ ). Next, by (5.11), wµ,α(t) satisfies

(5.22)
w′µ,α(t) � −

√
T1(wµ,α(t)), 0 < t < τ,

wµ,α(0) = ζµ,α.

By (5.12) we obtain that for 0 � y � ε

T1(y)− T0(y) � (w′µ,α(τ))
2 + Cyq+1 − Cyp1+1(5.23)

− o(1)
n∑

k=1

ypk+1 − 4
(r − 1)2 y

r+1 > 0.

We fix t0 � 1 satisfying y1(t0) < ε. Then by (5.5) and Lemma 5.6 we see that

wµ,α(t0) < y1(t0). Then by the comparison theorem of ODE, we obtain that
wµ,α(t) � y1(t) for t > t0. Now define y(t) by

(5.24) y(t) =

{
C, |t| � t0,

y1(|t|), |t| > t0,

where C > 0 is a large constant. This is the desired function. �

����� �� ����� 5.1. Lemma 5.1 is a direct consequence of Lemma 5.6,
Lemma 5.7 and Lebesgue’s convergence theorem. Thus the proof is complete. �

6. Proof of Theorem 2.1

We introduce the following lemma before the proof of Theorem 2.1.

Lemma 6.1 ([4, Lemma 4.6]). Let w∞(t) be the ground state of (4.12). Then

(6.1)
∫

�

wq+1
∞ (t) dt =

2
pi − q

√
�(q + 1)
2

ζ
q+3
2

Γ
(

q+3
2(pi−q)

)

Γ
(

pi+3
2(pi−q)

) .

����� �� �	����� 2.1. We know from [4, (4.44)] that

(6.2) ‖w∞‖pi+1
pi+1 =

(pi + 1)(q + 3)
(pi + 3)(q + 1)

‖w∞‖q+1
q+1.
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Furthermore, by (2.17), Lemma 4.5 and (5.9)

(6.3) µi‖uµ,α‖pi+1
pi+1 = λ(µ, α)

pi+3
2(pi−q)µ

− q+3
2(pi−q)

i ‖wµ,α‖pi+1
pi+1,

‖uµ,α‖q+1
q+1 = λ(µ, α)

2q+3−pi
2(pi−q) µ

− q+3
2(pi−q)

i ‖wµ,α‖q+1
q+1,

µk‖uµ,α‖pk+1
pk+1 = µkλ(µ, α)

pk−pi
pi−q µ

− pk−q

pi−q

i

{
λ(µ, α)

pi+3
2(pi−q)µ

− q+3
2(pi−q)

i ‖wµ,α‖pk+1
pk+1

}

� Cµkα
2(pk−pi)

pi+3 µ
− pk+3

pi+3

i

{
λ(µ, α)

pi+3
2(pi−q)µ

− q+3
2(pi−q)

i ‖wµ,α‖pk+1
pk+1

}

= o(1)

{
λ(µ, α)

pi+3
2(pi−q) µ

− q+3
2(pi−q)

i ‖wµ,α‖pk+1
pk+1

}
(k �= i).

Since we have Lemma 5.1 and Lemma 5.6, it follows by direct computation that

(6.4) (fk(x, uµ,α), uµ,α)2 = (1 + o(1))ak(0)ξpk+1‖wµ,α‖pk+1
pk+1,

Φk(uµ,α) =
1

pk + 1
(1 + o(1))ak(0)ξ

pk+1‖wµ,α‖pk+1
pk+1,

(g(x, uµ,α), uµ,α)2 = (1 + o(1))a0(0)ξq+1‖wµ,α‖q+1
q+1.

Then by (2.17), (6.3) and (6.4) and the assumption ai(0) = a0(0) = 1 we obtain

(6.5) λ(µ, α) =
2α+

n∑
k=1

µk
pk−1
pk+1
(1 + o(1))ak(0)ξpk+1‖wµ,α‖pk+1

pk+1

(1 + o(1))a0(0)ξq+1‖wµ,α‖q+1
q+1

=
2α+ pi−1

pi+1
λ(µ, α)

pi+3
2(pi−q) µ

− q+3
2(pi−q)

i {(1 + o(1))‖wµ,α‖pi+1
pi+1 + o(1)}

(1 + o(1))λ(µ, α)
2q+3−pi
2(pi−q) µ

− q+3
2(pi−q)

i ‖wµ,α‖q+1
q+1

;

this implies that

(6.6)
λ(µ, α)

α
2(pi−q)

pi+3 µ
q+3

pi+3

i

=
( 2

Sµ,α

) 2(pi−q)
pi+3 →

( 2
S

) 2(pi−q)
pi+3

.

Here by (6.2)

(6.7) Sµ,α = (1 + o(1))‖wµ,α‖q+1
q+1 −

pi − 1
pi + 1

((1 + o(1))‖wµ,α‖pi+1
pi+1 + o(1)),

S = ‖w∞‖q+1
q+1 −

pi − 1
pi + 1

‖w∞‖pi+1
pi+1 =

2(2q + 3− pi)
(pi + 3)(q + 1)

‖w∞‖q+1
q+1.

Then Theorem 2.1 follows from (6.6), (6.7) and Lemma 6.1. Under the general
situation of ai(0) and a0(0), we also obtain our conclusion by replacing µi and λ(µ, α)

by ai(0)µi and a0(0)λ(µ, α), respectively, and by repeating the same arguments as
those used above. Thus the proof is complete. �
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