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CHORDAL INTERSECTION GRAPHS OF BANDS

Bedřich Pondělíček, Praha

(Received August 16, 1995)

To Miroslav Fiedler on the occasion of his 70th birthday

A graph G is said to be chordal if G does not contain a cycle with n vertices

(n � 4) as an induced subgraph. Let S be a semigroup. By G(S) we denote a graph
which has as vertices all subsemigroups of S (including S itself) with AB an edge of

G(S) if and only if A �= B and A ∩B �= ∅. Bosák [1] began such an investigation in
the sixties by considering the graphG∗(S) = G(S)\{S} (of all proper subsemigroups
of S).

A band is a semigroup in which every element is idempotent. A commutative band
is a semilattice. Semilattices can be defined as a special type of posets. The relation
� defined on a semilattice S by a � b if and only ab = a gives S structure of a poset

in which every pair of elements has a greatest lower bound (meet). For a, b ∈ S we
put a < b if and only if a � b and a �= b. Two elements a, b of a semilattice S are

said to be noncomparable if a �= ab �= b; we shall writte a ‖ b. By anon ‖ b we denote
the fact that a, b are comparable, i.e. a � b or b � a.

In [2] Ackerman, McMoriris and Seif give a characterization of the semilattice S

whose graph is chordal.

Theorem S. Let S be a semilattice. Then G(S) is chordal if and only if S satisfies

the following conditions:

(i) noncomparable elements of S meet to 0 (the zero of S);

(ii) S is a tree, i.e. joins of noncomparable elements of S do not exist;

(iii) the height of the longest chain in S is less than 4.

Note that the authors considered the graph G∗ (S). It is easy to show that G∗ (S)
(including the empty graph) is chordal if and only if G(S) is chordal.

The aim of this paper is to characterize bands whose graphs are chordal.

225



Let S be a band. Define a relation σ on S by (a, b) ∈ σ if and only if aba = a and

bab = b for a, b ∈ S. It is well known (see Proposition II.1.1 of [3]) that σ is the least
semilattice congruence on S. Then the quotient semigroup S/σ is a semilattice and
each of its classes is a rectangular band.

Recall that a band S is said to be rectangular if

(1) aba = a for all a, b ∈ S.

A semigroup S is a left (right) zero semigroup if ab = a(ab = b) for all a, b ∈ S. It

is well known (see Lemma II.1,5 of [3]) that

A semigroup S is a rectangular band if and only if it is isomorphic to the(2)

direct product of a left zero semigroup and a right zero semigroup.

For any element a of a band S by [a] we denote the class of S/σ containing a. Put
�(S) = {(x1, x2, x3, x4), where xi ∈ S and {xi, xi+1} are subbands of S for i /∈ I4}.
Note that by I we denote the ring of all integers and In is the quotient ring I/nI for
n ∈ I.

Theorem B. Let S ba a band. Then the following conditions are equivalent:

1. The graph G(S) is chordal.

2. If (e, f, g, h) ∈ �(S), then card{e, f, g, h} � 3.
3. The band S satisfies the following conditions:

(i) G(S/σ) is chordal;
(ii) cardZ � 3, where Z = minS/σ;

(iii) if Z < X � Y , then card(X ∪ Y ) � 2, where X, Y ∈ S/σ;

(iv) if cardZ = 3, then cardxZx = 1 for all x ∈ S \ Z;

(v) if cardZ = 2 = cardyZy for some y ∈ S \ Z, then cardxZx = 1 for all
x ∈ S \ Z, x �= y.

(vi) if Z < [x] � [y], where x, y ∈ S, x �= y, then xZx = yZy and cardxZx = 1.

�����. 1 ⇒ 2. Suppose that S(G) is chordal and (x1, x2, x3, x4) ∈ �(S) with
card{x1, x2, x3, x4} = 4. Put Xi = {xi, xi+1} for i ∈ I4. It is easy to show that
X1, X2, X3, X4 is a cycle of G(S) which is an induced subgraph. Therefore G(S) is

not chordal, a contradiction.
2 ⇒ 3. First we will prove the following lemmas, in which we will suppose that

card{e, f, g, h} � 3 whenever (e, f, g, h) ∈ �(S). �

Lemma 1. If A ∈ S/σ, then cardA � 3 and so A is a left (or right) zero

subsemigroup of S.
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�����. Let A ∈ S/σ and suppose that A is neither a left nor a right

zero subsemigroup of S. Then by (2), there are elements e, f ∈ A such that
card{e, f, ef, fe} = 4. It follows from (1) that (e, ef, f, fe) ∈ �(S), which is a
contradiction. Therefore A is a left or a right zero subsemigroup of S.

By way of contradiction we assume that cardA � 4. If A is a left zero semigroup,
then for different elements e, f , g and h from A we have (e, f, g, h) ∈ �(S), a
contradiction. Thus cardA � 3. �

Lemma 2. If A, B ∈ S/σ and A < B, then cardB � 2.

�����. Let A, B ∈ S/σ with A < B and suppose that e, f, g ∈ B with
card{e, f, g} = 3. Choose a ∈ A.

If eae = gag, then, by Lemma 1, we have (e, f, g, gag) ∈ �(S), which is a contra-
diction.

If eae �= gag, then eae, gag ∈ A and by Lemma 1 we obtain (e, eae, gag, g) ∈ �(S),
a contradiction.

Therefore cardB � 2. �

Lemma 3. If A, B, C ∈ S/σ and A < B < C, then cardC = 1.

�����. Let A, B, C ∈ S/σ with A < B < C and suppose that e, f ∈ C, e �= f .

Choose a ∈ A and b ∈ B.
If eae �= faf , then eae, faf ∈ A and by Lemma 1 we have (e, eae, faf, f) ∈ �(S),

a contradiction. If ebe �= fbf , then we obtain a contradiction analogously.
Now, we can assume that eae = faf and ebe = fbf . According to Lemma 1 we

have (e, eae, f, fbf) ∈ �(S), a contradiction. �

Lemma 4. Then height of the longest chain in S/σ is less than 4.

�����. Suppose that A1 < A2 < A3 < A4 where Ai ∈ S/σ, i ∈ I4. Choose
ai ∈ Ai, i ∈ I4, and put e = a4, f = ea3e, g = fa2f and h = ga1g. Evidently we

have e ∈ A4, f ∈ A3, g ∈ A2 and h ∈ A1.
Case 1. h = ehe. Then (e, f, g, h) ∈ �(S), a contradiction.
Case 2. h �= ege. If ege = fhf , then according to Lemma 1 we have (f, g, h, ehe) ∈

�(S), a contradiction. If ehe �= fhf , then (e, f, fhf, ehe) ∈ �(S), a contradiction.
Therefore the height of the longest chain in S/σ is less than 4. �

Lemma 5. The semilattice S/σ is a tree.

�����. Suppose that A1 < A2 < A4, A1 < A3 < A4 and A2 ‖ A3 where

Ai ∈ S/σ, i ∈ I4. Choose ai ∈ Ai, i ∈ I4 and put e = a4, f = ea2e, g = ea3e and
h = ea1e.
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Case 1. fhf �= h. Then (e, f, fhf, h) ∈ �(S), a contradiction.
Case 2. ghg �= h. Analogously to Case 1 we obtain a contradiction.

Case 3. fhf = h = ghg. Then (e, f, g, h) ∈ �(S), a contradiction. �

Lemma 6. The graph G(S/σ) is chordal.

�����. According to Lemmas 4, 5 and Theorem S, it suffices to show that the

meet of two noncomparable elements of S/σ is the infimum of S/σ. On the contrary,
suppose that A1 < A2 < A3, A2 < A4 and A3 ‖ A4 where Ai ∈ S/σ, i ∈ I4. Choose

ai ∈ Ai, i ∈ I4 and put e = a3, f = a4, g = ea2e and h = fa2f . If ea1e �= ga1g,
then by Lemma 1 we have (e, g, ga1g, ea1e) ∈ �(S), which is a contradiction. We
have ea1e = ga1g and analogously we can show that fa1f = ha1h. According to
Lemma 1, we obtain (g, h, ha1, ga1g) ∈ �(S) and so card{g, h, ha1h, ga1g} � 3.
Case 1. g �= h. Then ha1h = ga1g = ea1e and so (e, g, h, ha1h) ∈ �(S), a

contradiction.

Case 2. g = h. Then fa1f = ha1h = ga1g = ea1e and so (e, g, f, fa1f) ∈ �(S), a
contradiction.

By Z we denote the minimum of S/σ. �

Lemma 7. If B, C ∈ S/σ and Z < B < C, then cardB = 1.

�����. It follows from Lemma 2 that cardB � 2. Suppose that cardB = 2.
Choose h ∈ Z, b ∈ B and e ∈ C and put f = ebe. Then f ∈ B. There is

an element g of B such that g �= f . If ehe �= fhf , then by Lemma 1 we have
(e, f, fhf, ehe) ∈ �(S), which is a contradiction. Thus we obtain ehe = fhf .

Case 1. ghg �= ege. Then by Lemma 1 we have (f, g, ghg, fhf) ∈ �(S), a contra-
diction.

Case 2. ghg = ehe. Then (e, f, g, ghg) ∈ �(S), a contradiction. �

Lemma 8. If X, Y ∈ S/σ and Z < X � Y , then card(X ∪ Y ) = 2.

The ����� follows from Lemma 2, 3 and 7. �

Lemma 9. If cardZ = 3, then cardxZx = 1 for all x ∈ S \ Z.

�����. Suppose that cardZ = 3. Let x be an element of S \ Z such that
cardxZx � 2. Choose e, f ∈ xZx with e �= f . Then Z = {e, f, g} and so, by
Lemma 1, we have (e, g, f, x) ∈ �(S), a contradiction. Therefore cardxZx = 1 for
all x ∈ S \ Z. �
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Lemma 10. If cardZ = 2 = card yZy for some y ∈ S \ Z, then cardxZx = 1 for

all x ∈ S \ Z, x �= y.

�����. Suppose that cardZ = cardxZx = card yZy = 2 for some x, y ∈ S \Z,

x �= y. Then Z = xZx = yZy = {e, f} and so (e, x, f, y) ∈ �(S), which is a
contradiction. �

Lemma 11. If Z < [x] � [y], where x, y ∈ S, x �= y, then xZx = yZy and

cardxZx = 1.

�����. Suppose that Z < [x] � [y], where x, y ∈ S and x �= y. It follows from
Lemma 8 that {x, y} is a subband of S. For any pair of elements e, f ∈ Z Lemma 1

implies that (x, y, yfy, xex) ∈ �(S). Thus we obtain yfy = xex and so xZx = yZy

and cardxZx = 1. �

Finally, the proof of the implication 2 ⇒ 3 follows from Lemmas 6, 1, 8, 9, 10
and 11.

3⇒ 1. Assume that a band S satisfies (i)–(vi). By way of contradiction we suppose
that B1, B2, . . . , Bn (n � 4) is a cycle of G(S), which is an induced subgraph of G(S).
This means that Bi ∩Bj �= ∅, i �= j, if and only if i = j + 1 or j = i+ 1 for i, j ∈ In.

Choose ai+1 ∈ Bi ∩Bi+1 and if Bi ∩Bi+1 ∩Z �= ∅, then ai+1 ∈ Z. It is clear that

ai �= aj for i, j ∈ In and i �= j. By Ai we denote the subband of S generated by the
set {ai, ai+1}. Evidently Ai ⊆ Bi and A1, A2, . . . , An is a cycle of G(S) having the

following properties:

It is induced subgraph of G(S).(3)

Ai ∩Aj �= ∅ (i �= j) if and only if i = j + 1 or j = i+ 1 for i, j ∈ In.(4)

If Ai ∩Ai+1 ∩ Z �= ∅, then ai+1 ∈ Z.(5)

We have the following possibilities:

Case 1. There is an index i ∈ In such that {ai, ai+1, ai+2} ⊆ Z. Then by (ii) we

have {ai, ai+1, ai+2} = Z.

Subcase 1a. ai−1 = ai+3. Then n = 4 and it follows from (iv) that ai+3Zai+3 =

{z} ⊆ Z. If z ∈ {αi, ai+1} then z ∈ Ai and z = ai+3ai+2ai+3 ∈ Ai+2, which
contradicts with (4).

If z = ai+2 then z ∈ Ai+1 and z = ai+3aiai+3 = ai+3ai+4ai+3 ∈ Ai+3, a contra-

diction.

Subcase 1b. ai−1 �= ai+3 and [ai−1] non ‖ [ai+3]. Then n � 5 and according to
(vi), we have ai−1Zai−1 = ai+3Zai+3 = {z} ⊆ Z. Therefore z = ai−1aiai−1 =
ai+3ai+2ai+3 ∈ Ai−1 ∩Ai+2, which contradicts (4).
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Subcase 1c. [ai−1] ‖ [ai+3]. Suppose that [ai+3] non ‖ [ai+4], then ai+4 �= ai−1 and

so n � 6. Therefore ai+1, ai+5 /∈ Z. It follows from (iii) that [ai+4] ‖ [ai+5] and so,
by (i) and (i) of Theorem S, we have Ai+4 ∩Z �= ∅. This implies that Ai+4 ∩Ai �= ∅
or Ai+4 ∩Ai+1 �= ∅, which contradicts (4).
If [ai+3] ‖ [ai+4], then it follows from (i) and (i) of Theorem S that Ai+3 ∩ Z �= ∅

and so Ai+3 ∩Ai �= ∅ or Ai+3 ∩Ai+1 �= ∅, a contradiction.
Case 2. There is an index i ∈ In such that {ai, ai+1} ⊆ Z and ai−1, ai+2 /∈ Z. If

[ai−1] non ‖ [ai+2] then, by (vi), we have ai−1aiai−1 = ai+2ai+1ai+2 ∈ Ai−1 ∩ Ai+1,
which contradicts (4). We can assume that [ai−1] ‖ [ai+2].

Subcase 2a. ai+3 ∈ Z. Then according to (iv), we have ai+2ai+1ai+2 =

ai+2ai+3ai+2 ∈ Ai+1 ∩ Ai+2 ∩ Z. It follows from (5) that ai+2 ∈ Z, a contra-
diction.

Subcase 2b. ai−2 ∈ Z. Then we obtain a contradiction analogously.

Subcase 2c. ai−2, ai+3 /∈ Z.

If [ai+2]non ‖[ai+3], then according to (iii) we have ai+4 ∈ Z or [ai+4] ‖ [ai+3]. This

gives in both cases Ai+3 ∩Z �= ∅ and so cardZ = 3 because Ai∩Ai+3 = ∅. It follows
from (vi) that ai+2ai+1ai+2 = ai+3zai+3 for z ∈ Ai+3 ∩ Z and so Ai+1 ∩ Ai+3 �= ∅,
which contradicts (4).

Analogously we can show that [ai−2] non ‖ [ai−1] gives a contradiction. Assume

that [ai−2] ‖ [ai−1] and [ai+2] ‖ [ai+3]. It follows from (i) and (i) of Theorem S that
Ai−2 ∩ Z �= ∅ �= Z ∩ Ai+2. According to (4) we have Ai−2 ∩ Ai = ∅ = Ai+2 and so

cardZ = 3 and Ai−2 ∩Ai+2 �= ∅. Then n = 4 or n = 5.

If n = 5, then Ai+2∩Ai+3∩Z �= ∅ and so, by (5), we have ai+3 ∈ Z, a contradiction.

If n = 4, then ai−1 = ai+3. According to (iv), (i) and (i) of Theorem S, we

have ai−1aiai−1 = ai−1(ai−1ai−2)ai−1 ∈ Ai−1 ∩Ai−2 ∩Z. Therefore by (5) we have
ai−1 ∈ Z, a contradiction.

Case 3. There is an index k ∈ In such that ak ∈ Z and if ai ∈ Z(i ∈ In), then
ai−1, ai+1 /∈ Z.

We shall show that

(6) if ai ∈ Z and ai−1, ai+1 /∈ Z(i ∈ In), then [ai−1] ‖ [ai+1].

On the contrary, suppose that [ai−1] non ‖ [ai+1]. According to (vi), we have

ai−1Zai−1 = {z} = ai+1Zai+1 and so z = ai−1aiai−1 ∈ Z ∩Ai−1. If ai+2 ∈ Z, then
z = ai+1ai+2ai+1 ∈ Ai+1, which contradicts (4). If ai+2 /∈ Z, then it follows from

(iii) that [ai+1] ‖ [ai+2]. Hence, by (1) and (i) of Theorem S, we have u = ai+1ai+2 ∈
Z ∩Ai+1 and so z = ai+1uai+1 ∈ Ai+1, a contradiction. Therefore (6) is satisfied.

Subcase 3a. There is an index i ∈ In such that ai, ai+2 ∈ Z. Evidently we
have ai−1, ai+1, ai+3 /∈ Z. It follows from (6) that [ai−1] ‖ [ai+1] ‖ [ai+3]. If Z �=
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{ai, ai+2}, then, by (ii) and (iv), we have ai−1aiai−1 = ai+1ai+2ai+1 ∈ Ai−1 ∩Ai+1

which contradicts (4). Thus we obtain that Z = {ai, ai+2}.
Subcase 3aα. [ai−1] ‖ [ai+3]. Then there is an index j ∈ In such that [aj ] ‖ [aj+1]

and aj /∈ {ai−1, ai, ai+1, ai+2}. It follows from (i) and (i) of Theorem S that Aj∩Z �=
∅. If ai ∈ Aj , then j ∈ {i−1, i}, a contradiction. If ai+2 ∈ Aj , then j ∈ {i+1, i+2},
a contradiction.

Subcase 3aβ. [ai−1] non ‖ [ai+3]. If ai−1 �= ai+3, then n � 5. By (vi) we have
ai−1aiai−1 = ai+3ai+2ai+3 ∈ Ai−1 ∩ Ai+2, which contradicts (4). We can suppose

that ai−1 = ai+3 and so n = 4.

If ai−1aiai−1 = ai−1ai+2ai−1, then Ai−1 ∩Ai+2 ∩Z �= ∅ and so, by (5), we obtain
that ai−1 ∈ Z, a contradiction.

If ai+1aiai+1 = ai+1ai+2ai+1, then Ai ∩ Ai+1 ∩ Z �= ∅ and so, by (5), we have
ai+1 ∈ Z, a contradiction.

Therefore we have cardZ = cardai−1Zai−1 = cardai+1Zai+1 = 2 and so accord-

ing to (v), we obtain that ai−1 = ai+1, which is a contradiction.

Subcase 3b. There is an index i ∈ In such that ai ∈ Z and so ai−2, ai−1, ai+1, ai+2

/∈ Z. First we shall prove that

(7) [ai−2] ‖ [ai−1] ‖ [ai+1] ‖ [ai+2].

On the contrary, suppose that [ai+1] non ‖ [ai+2]. It follows from (vi) that

ai+1Zai+1 = {z} = ai+2Zai+2 and z ∈ Ai. If ai+3 ∈ Z, then ai+2ai+3ai+2 ∈ Ai+2

and so z ∈ Ai ∩ Ai+2, which contradicts (4). If ai+3 /∈ Z, then by (iii) we have

[ai+2] ‖ [ai+3] and so, by (i) and (i) of Theorem S, we have Ai+2 ∩ Z �= ∅. Choose
u ∈ Ai+2 ∩ Z. Then we have z = ai+2uai+2 ∈ Ai ∩Ai+2, a contradiction. Therefore

[ai+1] ‖ [ai+2].

Analogously we can show that [ai−2] ‖ [ai−1]. Finally, [ai−1] ‖ [ai+1] follows

from (6).

According to (7), (i) and (i) of Theorem S, we have e = ai−2ai−1 ∈ Ai−2 ∩ Z

and f = ai+1ai+2 ∈ Ai+1 ∩ Z. It follows from (4) and (5) that e �= ai �= f . If

e = f , then Ai−2 ∩ Ai+1 ∩ Z �= ∅ and so n = 4. By (5) we have ai−2 = ai+2 ∈ Z, a
contradiction. If e �= f , then cardZ = 3 (see (ii)). Hence according to (iv), we obtain

that ai+1aiai+1 = ai+1fai+1 ∈ Ai ∩ Ai+1 ∩ Z and so, by (5), we have ai+1 ∈ Z, a
contradiction.

Subcase 4. ai /∈ Z for each index i ∈ In.

Subcase 4a. There is an index j ∈ In such that [aj ] non ‖ [aj+1]. It follows from
(iii) that [aj−1] ‖ [aj ] and [aj+1] ‖ [aj+2]. According to (i) and (i) of Theorem S, we

have e = ajaj−1aj ∈ Z∩Aj−1 and f = aj+1aj+2aj+1 ∈ Z∩Aj+1. From (4) it follows
that e �= f . By this yields e = ajeaj = aj+1faj+1 = f , which is a contradiction.
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Subcase 4b. [ai] ‖ [ai+1] for each index i ∈ In. Put ei = aiai+1ai. From (i) and

(i) of Theorem S it follows that ei ∈ Ai ∩ Z. If ei = ei+1 for an index i ∈ In, then
Ai ∩Ai+1 ∩ Z �= ∅ and so, by (5), we have ai+1 ∈ Z, a contradiction. Consequently,
we have ei �= ei+1 for each index i ∈ In. By (4) we obtain that ei �= ei+2 for each

index i ∈ In. According to (ii), we get that ei = ei+3 and so Ai ∩ Ai+3 ∩ Z �= ∅. It
follows from (4) that n = 4 and according to (5), we have ai = ai+4 ∈ Z, which is a

contradiction.
Therefore G(S) is chordal.
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