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1. Preliminaries

Let Fq = GF (q) be a finite field with char(Fq) = p, p a prime, and Fqn = GF (qn)

the n-dimensional extension of Fq.

By a basis of Fqn with respect to Fq (shortly a basis of Fqn |Fq) we mean a set of

elements {α1, α2, . . . , αn}, αi ∈ Fqn , such that any element γ ∈ Fqn can be written

uniquely in the form γ =
n∑

i=1
ciαi, with αi ∈ Fq. Viewing Fqn as a vector space of

dimension n over Fq the set {α1, . . . , αn} is a set of n linearly independent vectors

(of length n) over Fq.

A basis is called a normal basis of Fqn |Fq if it is of the form A = {α, αq, . . . , αqn−1},
where α ∈ Fqn . The element α is called a generator of the basis A. It is known that a
normal basis always exists. The element α is then a root of an irreducible polynomial

of degree n over Fq, often called a normal polynomial (or an N -polynomial).

Let A = {α, αq, . . . , αqn−1} and B = {β, βq, . . . , βqn−1} be two normal bases of
Fqn |Fq. Since β ∈ Fqn there exist n elements c1, . . . , cn (all belonging to Fq) such
that β = c1α+ c2α

q + . . .+ cnαqn−1
. This implies

βq = cnα+ c1α
q + . . .+ cn−1α

qn−1
,

...

βqn−1
= c2α+ c3α

q + . . .+ c1α
qn−1

.
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Denote by C the circulant matrix




c1, c2, . . . , cn

cn, c1, . . . , cn−1
...

c2, c3, . . . , c1


 ,

and AT =




α

αq

...

αqn−1


 , BT =




β

βq

...

βqn−1


. We then have BT = C ·AT .

Analogously, there exists a circulant matrix D such that AT = DBT . From these
relations we obtain by a simple reasoning the following well known proposition:

Proposition 1.1. If A = {α, αq, . . . , αqn−1} is a normal basis of Fqn |Fq, then any

other normal basis of Fqn |Fq is of the form C AT , where C is an invertible circulant

matrix (with elements of Fq). Conversely, if C is any invertible n×n circulant matrix

with elements in Fq, then C AT is a normal basis of Fqn |Fq.

Recall that the set of all n×n circulant matrices with elements in Fq forms (with

respect to multiplication) a commutative semigroup, while the invertible ones form
a commutative group (contained in this semigroup).

Denote by P the matrix

P =




0, 1, 0, . . . 0
0, 0, 1, . . . 0
...
0, 0, 0, . . . 1

1, 0, 0, . . . 0




.

We then have

C = c1E + c2P + . . .+ cnPn−1, and Pn = E,

where E is the unit matrix. In the correspondence ω : x� ←→ P � (� = 0, 1, . . . , n−1)
the set of all circulant n × n matrices is isomorphic to the ring R = R(n, q) =
Fq[x]

/
(xn − 1). In this way we assign to the circulant matrix C the polynomial

c(x) = c1 + c2x + . . .+ cnxn−1 and the arithmetical operations with C are reduced
to the calculations with polynomials over Fq modulo (xn − 1). In particular, the
invertible circulant matrices correspond to the polynomials of degree at most (n−1),
which are relatively prime to xn − 1.
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Notation. In the following we shall write “NB-generator” instead of “normal
basis generator”. The set of all NB-generators of Fqn |Fq will be denoted by Γ =
Γ(n, q) ⊂ Fqn . The multiplicative semigroup of the ring R = Fq(x)/(xn − 1) will
be denoted by R. The group of all elements of R relatively prime to xn − 1 will be
denoted by G(1).

The necessity to consider R is due to the fact that in what follows we shall deal
with subsets of R which are multiplicatively closed, but not closed under addition.

The preceding arguments imply (the again well known)

Proposition 1.2. If c(x) = c0 + c1x+ . . .+ cn−1xn−1 is a polynomial relatively

prime to xn − 1 [i.e. c(x) ∈ G(1)] and α is an NB-generator of Fqn |Fq, then g =
c0α + c1α

q + . . . + cn−1αqn−1
is an NB-generator. Moreover, if α is a fixed chosen

NB-generator, then all NB-generators of Fqn |Fq are obtained in this manner by

choosing suitably c(x).

In what follows we denote by Ω the mapping Ω: x� → αq�

and we shall write

Ωx� = αq�

. This mapping is “additive” in the sense that Ω(axu+bxv) = aαqu

+bαqv

for a, b ∈ Fq.

The goal of this paper is the following. Suppose that we know one NB-generator
of Fqn |Fq, say α ∈ Fqn . We shall give an explicit description of all NB-generators of
Fqn |Fq.

To understand well we first give an example. Let α be an NB-generator of F53 |F5.
It will be shown (Example 3.3) that all polynomials coprime to x3−1 are of the form

r0(1 + x+ x2) + r1(4 + x) + r2(4 + x2),

where r0 �= 0 and (r1, r2) �= (0, 0), {r0, r1, r2} ∈ F5. Hence the set Γ(3, 5) =
{
r0(α+

α5 + α25) + r1(4α + α5) + r2(4α + α25)
}
is the set of all NB-generators of F125|F5.

Clearly the cardinality |Γ| = 96. (The element α itself is obtained for r0 = 2,

r1 = r2 = 3.)

Remark. If g ∈ Γ, then ag ∈ Γ for any a ∈ Fq. Also gq, gq2 , . . . , gqn−1 ∈ Γ. If
g′ ∈ Γ, g′′ ∈ Γ, then neither g′ + g′′ nor g′ · g′′ need to belong to Γ. Also, if g ∈ Γ,
g−1 need not be an element of Γ.

The first two statements are obvious. To be sure that it may happen that g−1 /∈ Γ
it is sufficient to give an example. The element α satisfying the equation x3 + x2 +

1 = 0 over F5 is an NB-generator of GF (53)|GF (5). But α−1 which satisfies (the
irreducible) equation y3 + y + 1 = 0 is certainly not an NB-generator. (For any

N-polynomial with root β we have necessarily trace (β) �= 0.)
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2. The description of the multiplicative semigroup R

It is known that the factorization of xn − 1 into the product of monic irreducible
factors over Fq is of the form xn − 1 =

[
f1(x) · f2(x) . . . fr(x)

]t
, where

t =

{
1, if (n, p) = 1,

ps, if n = n0p
s, (n0, p) = 1.

The ring R = Fq[x]
/
(xn− 1) admits a decomposition as a direct sum of r rings in

the form

R ≈ Fq[x]
/
f1(x)

t ⊕ . . .⊕ Fq[x]
/
fr(x)

t.

This can be considered an “external” description of R, and as such it is not suitable

for computations in R itself.
Our aim is to describe some properties of R (and R) using only elements of R, so to

say to give an “internal” description of R. To this end we describe the multiplicative
semigroup R as a set-theoretical union of disjoint subsemigroups each of which has
a unique idempotent. We then use this decomposition to prove Proposition 2.5

(below), which is a starting point to numerical computations.

A) We first recall some notions used in the elementary theory of semigroups. Let S

be a finite commutative semigroup with a zero element 0 and an identity element 1.
We shall say that a ∈ S belongs to the idempotent e if there is an integer � = �(a)

such that a� = e. Any a ∈ S belongs to one and only one idempotent of S. Let
K(e) be the set of all elements of S belonging to the idempotent e. Then K(e) is a

subsemigroup of S (the maximal subsemigroup of S belonging to the idempotent e).
We have S =

⋃
e∈E

K(e), where E is the set of all idempotents.

Each K(e), e ∈ E, has the property that K(e). e is a group, denoted by G(e) and
called the maximal group belonging to the idempotent e. Note that G(e) ⊂ K(e).

In particular, K(1) is the set of all “absolutely” invertible elements of S, i.e. the
group of all elements a ∈ S for which there is an element a′ such that aa′ = 1. Hence

K(1) is a group, which will be denoted by G(1).
The set K(0) is the set of all nilpotent elements of S and G(0) = {0} is a one-point

group.
The number of maximal subgroups contained in S is equal to the number of

idempotents in S. If G(e) is a maximal subgroup we may speak also about the
“relative inverses” with respect to the idempotent e (i.e. inside of G(e)).

B) We now apply the foregoing notions and results to the semigroup R. Our

goal is first to prove Proposition 2.4 (concerning any idempotent e ∈ R) and then
Proposition 2.5 (in which only the primitive idempotents appear).
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In accordance with section A, we denote by G(1) the group of all polynomials

a = a(x) ∈ R of degree � n− 1 which are relatively prime to xn− 1. Also we denote
deg fi = ni, so that n =

r∑
i=1

nit.

The method used in the sequel is analogous to that of [5] and [6].
Any element h = h(x) ∈ R can be written in the form h = fs1

1 fs2
2 . . . fsr

r ·a, where
a ∈ G(1). If, e.g., s1 > t, then fs1

1 can be written in the form fs1
1 = f t

1(f
s1−t
1 +

f t
2 . . . f t

r) = f t
1a1, a1 ∈ G(1), so that h = f

min(s1,t)
1 · fmin(s2,t)2 . . . f

min(sr ,t)
r · b with

b ∈ G(1). Hence we have

Lemma 2.1. Any element h ∈ R can be written in the form h = f τ1
1 ·f τ2

2 . . . f τr
r ·b,

where 0 � τi � t, b ∈ G(1).

Suppose that ε = f τ1
i1

. . . f τv

iv
· a is an idempotent ε �= 1, (i1 < i2 < . . . < iv),

τi > 0, 1 � v < r, a ∈ G(1). Then ε = εt implies ε = gtτ1
i1

. . . f tτv

iv
at. Here tτj � t. If

tτj > 1, then f
tτj

ij
= f t

ij
· bj , bj ∈ G(1), whence ε = f t

i1
. . . f t

iv
· c, c ∈ G(1). If v = r,

we have ε = 0. (ε = 1 is obtained for τ1 = . . . = τr = 0 and a = 1.) This implies

Lemma 2.2. R contains 2r idempotents. Each of the idempotents can be written

in the form

e = f τ1
1 f τ2

2 . . . f τr
r · c, c ∈ G(1), and τi is either 0 or t.

Write (in an obvious notation) xn−1 = f t
i ·F t

i (i = 1, 2, . . . , r), then the primitive
idempotents are e1 = F t

1a1, . . . , er = F t
rar (ai ∈ G(1)). Clearly ei · ej = 0 for i �= j.

Next, the sum F ·t
1 a1+. . .+F ·t

r ar is contained inG(1) [since, e.g., f1 divides F2, . . . , Fr,
and does not divide F1]. Since this sum is an idempotent we have e1 + . . .+ er = 1.

We now specify the maximal subsemigroup K(e), e �= 1, belonging to the idem-
potent e = f t

i1
f t

i2
. . . f t

iv
a, a ∈ G(1), i1 < i2 < . . . < iv.

An element h = f τ1
1 . . . f τr

r · b ∈ R, 1 � τi � t, b ∈ G(1), belongs to the idempotent
e if there is an integer k such that fkτ1

1 . . . fkτr
r bk = e.

Hence
f
min(kτ1,t)
1 . . . fmin(kτr ,t)

r · c · bk = f t
i1f

t
i2 . . . f t

iv
a,

where c ∈ G(1). If k � t and v < r, we have necessarily τj = 0 for all indices j for

which j /∈ {i1, . . . , iv}. Hence, h(x) is necessarily of the form h = f τ1
i1

f τ2
i2

. . . f τv

iv
· b1,

b1 ∈ G(1). This holds also for v = r, in which case e = 0.

Conversely, let h = f τ1
i1

. . . f τv

iv
· b2, 1 � τi � t, and let b2 be any element of G(1).

Then

ht = f τ1t
i1

. . . f τvt
iv
· bt
2 = f t

i1 . . . f t
iv

c · bt
2 = f t

i1 . . . f t
iv
· a(cbt

2a
−1) = e(cbt

2a
−1).
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If � is the order of the group G(1), we eventually obtain ht� = e. Since b2 is any

element of G(1), we have f τ1
i1

. . . f τv

iv
G(1) ⊂ K(e).

We have proved

Lemma 2.3. If e = f t
i1

. . . f t
iv

a is an idempotent of R, 1 � v � r, a ∈ G(1), then

K(e) =
⋃

τ1,...,τv

f τ1
i1

. . . f τv

iv
·G(1), where 1 � τi � t.

Clearly K(e) is a (set theoretical) union of tv such “complexes”, and these “com-
plexes” are disjoint.

To specify the maximal group G(e) belonging to the idempotent

e = f t
i1f

t
i2 . . . f t

iv
a, (i1 < i2 . . . < iv)

we use the formula G(e) = K(e) · e.
The term f t+τ1

i1
f t+τ2

i2
. . . f t+τv

iv
G(1) multiplied by e is equal to f t+τ1

i1
f t+τ2

i2
. . .

f t+τv

iv
aG(1) = f t

i1
f t

i2
. . . f t

iv
· b aG(1) = e · b ·G(1) = eG(1), hence it is independent of

(τ1, . . . , τv).

We have proved

Proposition 2.4. If e is any idempotent of R, then the maximal group G(e)
belonging to e is given by the formula G(e) = G(1) · e.

In the following A⊕B denotes the set of all elements a+ b, where a ∈ A, b ∈ B.
Consider the set U = G(1)e1 ⊕ . . . ⊕ G(1)er. All elements of U are contained in

G(1) (since, e.g., f1 divides all summands with the exception of G(1)e1, which is not
divisible by f1). Hence U ⊂ G(1). Next, 1 = e1 + . . . + er ∈ U , so that for any

b ∈ G(1) we have b ∈ bG(1)e1 ⊕ . . . ⊕ bG(1)er = G(1) · e1 ⊕ . . . ⊕ G(1) · er = U ,
whence G(1) ⊂ U . Therefore U = G(1). Using Proposition 2.4 we have

Proposition 2.5. If G(ei) is the maximal group belonging to the primitive

idempotent ei, then

G(1) = G(e1)⊕G(e2)⊕ . . .⊕G(er).

Let us underline that G(ei) is a multiplicative group but not an additive one. Any

element ξ ∈ G(1) can be written in the form ξ = ξ1 + ξ2 + . . .+ ξr, ξi ∈ G(ei), and
ξi �= 0 (i = 1, . . . , r). This result is of essential importance for all what follows. It
will turn out that the computation of the elements of the G(ei)’s can be relatively
easily established.
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C) For computational purposes we need an explicit description of ei. In this

connection we prove

Lemma 2.6. If xn − 1 = f t
i · F t

i , then the r primitive idempotents are given by

the formula ei = 1
n0

[
x · f ′

iFi

]t
, i = 1, 2, . . . , r.

�����. a) Suppose first t = 1, i.e. n = n0. We can use the well known
formula that if f(x) = xn − 1 = f1f2 . . . fr, then ei =

f ′iFi

f ′ =
f ′iFi

nxn−1 = 1
nx · f ′

iFi,

(i = 1, 2, . . . , r).

b) Suppose next t > 1, hence xn − 1 = (xn0 − 1)t, t = ps. We have xn0 − 1 =
f1f2 . . . fr, and εi = 1

n0
x·f ′

iFi satisfies ε2i ≡ εi

(
mod(xn0−1)

)
, i.e. ε2i−εi = v(x)(xn0−

1), where v(x) ∈ R. Taking to the power t = ps we have ε2ti − εt
i = v(x)t(xn− 1) = 0

(in R), whence ei = 1
n0

[
x · f ′

i · Fi

]t
. �

Remark. It should be remarked that the cardinality |G(1)| can be calculated
in advance knowing only the degrees of the irreducible factors fi. We owe O. Ore

(1934) the following result. If deg fi = ni, so that n =
r∑

i=1
nit, we have |G(1)| =

qn(1− q−n1) . . . (1− q−nr ).

[To be historically more precise, this formula appears (in a more general setting)

even in the book R. Fricke [1] in the case of the ground field Fp.]

3. The case (n, p) = 1

In this case t = 1, and we have xn − 1 = f1 . . . fr. Any idempotent e �= 1 is of
the form e = fi1 · fi2 . . . fiva, 1 � v � r, a ∈ G(1). By Proposition 2.4 the maximal

semigroup belonging to e ∈ R is K(e) = fi1 . . . fivG(1) = fi1 . . . fiv · a · G(1) =
eG(1) = G(e). Hence K(e) = G(e). This implies

Proposition 3.1. If (n, p) = 1, then R is a (set theoretical) union of disjoint

groups (including G(1) and {0}).

Let ei be a primitive idempotent of R, and 	 ∈ R.

a) If 	 ∈ G(ei), then 	ei = 	, hence 	(1− ei) = 0.

b) If 	 /∈ G(ei) and 	 �= 0, then there is an idempotent ε �= 0 such that 	 ∈ G(ε) �=
G(ei). Next, 	ei ∈ G(ε) · ei = G(1) · εei.

Since ε · ei is either 0 or ei, we have either 	ei = 0 or 	ei ∈ G(ei). In both cases

we have 	 �= 	ei.

We have proved
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Proposition 3.2. If (n, p) = 1, a non-zero element 	 ∈ R is contained in the

group G(ei) if and only if 	(1− ei) = 0.

This last statement enables us to describe all elements of G(ei) in the polynomial
form 	 = r0 + r1 + . . .+ rn−1xn−1. The unknowns ri (i = 0, . . . , r − 1) appear as a
solution of a system of linear equations.

The following two examples show how this works.

Example 3.3. We have to find all NB-generators of F53 |F5 (supposing that
one NB-generator α is known).

The problem reduces to finding all elements of R = F5[x]
/
(x3 − 1) which are

relatively prime to x3 − 1.
In F5 we have x3 − 1 = f1f2 = (x− 1)(1 + x+ x2) and |G(1)| = |Γ(3, 5)| = 53(1−

5−1)(1−5−2) = 96. The primitive idempotents are (by Lemma 2.6) e1 = 2(1+x+x2),

e2 = 4 + 3x+ 3x2.

a) We describe G(e1). The element 	 = r0+r1x+r2x
2, ri ∈ F5, 	 �= 0 is contained

in G(e1) if and only if 	(1 − e1) = 0, i.e. (r0 + r1x + r2x
2)(4 + 3x+ 3x2) = 0. This

leads to the system of linear equations (of rank 2)

4r0 + 3r1 + 3r2 = 0,

3r0 + 4r1 + 3r2 = 0,

3r0 + 3r1 + 4r2 = 0,

whence r0 = r1 = r2. Finally, G(e1) =
{
r0(1 + x+ x2)|r0 �= 0

}
. Clearly |G(e1)| = 4.

b) We specify G(e2). Put 	′ = r′0 + r′1x + r′2x
2. Then 	′(1 − e2) = (r′0 + r′1x +

r′2x
2)(2 + 2x+ 2x2) = 0 implies a linear system of rank 1. Namely, r′o + r′1 + r′2 = 0.

Hence r′0 = 4(r
′
1 + r′2), and 	′ = 4(r′1 + r′2) + r′1x + r′2x

2, (r′1, r
′
2) �= (0, 0). Also

|G(e2)| = 24.
c) Changing the notation (r′1 → r1, r

′
2 → r2) we have

G(1) =
{
r0(1 + x+ x2)⊕

[
4(r1 + r2) + r1x+ r2x

2
]}

.

Using the mapping Ω we get the following result:

If α is one NB-generator of F53 |F5, then all NB-generators of F53 |F5 are given by
the set of 96 elements

Γ(3, 5) =
{
r0(α+ α5 + α25) + r1(4α+ α5) + r2(4α+ α25

}
,

where the triples (r0, r1, r2) are subject to the conditions r0 �= 0, (r1, r2) �= (0, 0).
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Remark 1. There is of course a natural question how to decide whether an
element α ∈ Fqn is an NB-generator of Fqn |Fq or not. In this direction we refer to
[7], where it is proved that α is an NB-generator of Fq(α) if and only if Ω(f

t−1
i F t

i ) �= 0
for i = 1, . . . , r.

Remark 2. If we know a concrete N-polynomial of degree 3 over F5, the formula
for Γ(3, 5) can be reduced to a polynomial in α of degree 2. For instance, x3+x2+1

is an N-polynomial over F5. If α is the root of this polynomial, then α5 = 4+α+3α2,
a25 = 3α+ 2α2, and we have Γ(3, 5) =

{
4r0 + r1(4 + 3α2) + r2(2α+ 2α2)

}
.

Remark 3. It follows from the foregoing results: If we know a “parametric
expression” for the generators g = g(r1, . . . rn), then (x − g) (x − gq) . . . (x − gqn−1

)

is an N-polynomial of degree n over Fq with parameters (r1, . . . , rn) comprising all
N-polynomials of degree n over Fq. Unfortunately the “technical realization” turns

out to be rather complicated. We will return to this question in Section 5.

Example 3.4. We have to find all NB-generators of F74 |F7.

The factorization of x4−1 over F7 is x4−1 = (x−1)(x+1)(x2+1). The primitive
idempotents of F7[x]/(x4 − 1) are e1 = 2(1 + x+ x2 + x3), e2 = 2(1− x+ x2 − x3),
e3 = 4(1− x2).

a) To find G(e1) we put 	(e1−1) = (r0+r1x+r2x
2+r3x

3)(1+2x+2x2+2x3) = 0.

This leads to the system of linear equations




1 2 2 2
2 1 2 2

2 2 1 2
2 2 2 1







r0
r1

r2
r3


 = 0,

which implies r0 = r1 = r2 = r3, so that G(e1) =
{
r0(1 + x+ x2 + x3)|r0 �= 0

}
.

b) Next, in order to find G(e2) we write 	′(e2 − 1) = (r′0 + r′1x + r′2x
2 + r′3x

3)
(1− 2x+ 2x2 − 2x3) = 0. This implies




1 −2 2 −2
−2 1 −2, 2

2 −2 1 −2
−2 2 −2 1







r′0
r′1
r′2
r′3


 = 0,

whence r′o + r′1 = 0, r
′
1 + r′2 = 0, r

′
2 + r′3 = 0 and r′1 = −r′0, r

′
2 = r′0, r

′
3 = −r′0, so

that G(e2) =
{
r′0(1 − x+ x2 − x3)|r′0 �= 0

}
.

c) Finally, 	′′(1 − e3) = (r′′0 + r′′1x + r′′2x
2 + r′′3x

3) · 4 · (1 + x2) = 0 implies (r′′0 +

r′′2 ) + (r
′′
1 + r′′3 )x + (r

′′
0 + r′′2 )x

2 + (r′′1 + r′′3 )x
3 = 0 and r′′2 = −r′′0 , r

′′
3 = −r′′1 , so that

G(e3) =
{
r′′0 (1− x2) + r′′1 (x− x3)

}
, where (r′′0 , r

′′
1 ) �= (0, 0).
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We have |G(e1)| = |G(e2)| = 6, |G(e3)| = 48 and |G(1)| = 1728.
By changing the notation, we have

G(1) =
{
r0(1 + x+ x2 + x3)⊕ r1(1− x+ x2 − x3)⊕

[
r2(1 − x2) + r3(x− x3

]}
.

This implies the following result.
If α is one NB-generator of F74 |F7, then all NB-generators of F74 |F7 are given by

the set of 1728 elements

Γ(4, 7) =
{
r0(α + α7 + α49 + α343) + r1(α− α7 + α49 − α343)

+ r2(α − α49) + r3(α7 − α343)
}
.

Hereby the quadruples (r0, r1, r2, r3) are subject to the conditions r0 �= 0, r1 �= 0 and
(r2, r3) �= (0, 0).

Remark. The polynomial x4 + x3 + 1 is an N-polynomial over F7. If we choose

α as the root of this polynomial, we get

Γ(4, 7) =
{
6r0 + r1(1 + 4α2 + α3) + r2(2α+ 5α2 + 3α3)

+ r3(3 + 5α+ 4α2 + 4α3)
}
,

where r0 �= 0, r1 �= 0 and (r2, r3) �= (0, 0).

4. The case (n, p) > 1

We now suppose xn − 1 = (xn0 − 1)t = (f1 . . . fr)t, t = ps > 1. Our goal is to find
G(ei), where ei (i = 1, . . . , r) are the primitive idempotents.

In this case the semigroup R is not a set-theoretical union of disjoint groups. So
we have to follow a slightly different way.

Write U = Re1⊕ . . .⊕Rer. It is easy to see that U = R and Rei∩Rej = {0}. The
set Rei is an ideal of the semigroup R, containing exactly two idempotents, namely

ei and 0. It is known that if an ideal I of any semigroup contains an idempotent e,
then I contains the whole maximal group G(e).

Therefore we may write Rei = G(ei) ∪ I(ei), G(ei) ∩ I(ei) = ∅, and I(ei) is the
set of all nilpotent elements of Rei. The set Rei is the set of all 	 ∈ R for which

	ei = 	, i.e., 	(1 − ei) = 0.
Any 	 ∈ R can be written in the form 	 = f τ1

j1
· f τ2

j2
. . . f τv

jv
b, 1 � τj � t, and

ei = F t
i ai, where b, ai ∈ G(1). We have 	 · ei = f τ1

j1
f τ2

j2
. . . f τv

jv
· F t

i ai · b = f τi

i · F t
i c,

c ∈ G(1). It is immediately seen that 	ei is nilpotent if and only if τi � 1, i.e., if
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and only if fi(x) divides 	 ∈ Rei. [Also, if τi � 1, it is clear that 	t = 0.] We have

proved

Proposition 4.1. Let (n, p) > 1. An element 	 ∈ R is contained in the maximal

group G(ei) if and only if 	(1− ei) = 0, and fi does not divide 	.

Hence, to find G(ei) we have first to find all 	 satisfying 	(1− ei) = 0 and then to

exclude all those which are divisible by fi.

Remark. The condition that fi(x) divides 	(x) = r0 + r1x + . . . rn−1xn−1 leads

to a system of ni homogeneous linear equations for {r0, . . . , rn−1} from which the
constrains for the ri

′s follow. To see this let ξ be a root of the irreducible polynomial

fi(x). Then fi(ξ) = 0 enables us to compute ξk for all k � ni in the form ξk =
b
(k)
0 + b

(k)
1 ξ + . . . b

(k)
ni−1ξ

ni−1. We then have 	(ξ) = r0 + r1ξ + . . . + rn−1ξn−1 =

c0+ c1ξ+ . . .+ cni−1ξ
ni−1, where the ci

′s are linear forms of {r0, r1, . . . , rn−1} (with
coefficients in Fq). Now, fi(x) divides 	(x) if and only if c0 = c1 = . . . = cni−1 = 0.

Example 4.2. We have to find all NB-generators of F36 |F3 (supposing that
one NB-generator α is known).

We have x6 − 1 = (x− 1)3(x+ 1)3. By Proposition 2.6 the primitive idempotents
of F3[x]

/
(x6 − 1) are e1 = 2(1 + x3) and e2 = 2(1− x3).

a) Write 	 = r0 + r1x + . . . + r5x
5. The condition 	(1 − e1) = (r0 + r1x + . . . +

r5x
5)(x3−1) = (r3−r0)+(r4−r1)x+(r5−r2)x2+(r0−r3)x3+(r1−r4)x4+(r2−r5)x5 =

0 implies r3 = r0, r4 = r1, r5 = r2. Hence all polynomials 	 �= 0 satisfying 	e1 = 	

are {r0 + r1x + r2x
2 + rox

3 + r1x
4 + r2x

5} =
{
(1 + x3)(r0x + r1x + r2x

2)
}
, where

(r0, r1, r2) �= (0, 0, 0).
Now we have to exclude those polynomials which are divisible by f1 = x − 1.

These are the polynomials for which r0 + r1 + r2 = 0. Hence

G(e1) =
{
(ro(1 + x3) + r1(x+ x4) + r2(x

2 + x5)
}
, where r0 + r1 + r2 �= 0.

Clearly, |G(e1)| = 18.
b) Next, write 	′ = r′0+r′1x+. . .+r′5x

5. The condition 	(1−e2) = (r′0+r′1x+ . . .+

r′5x
5)(2 + 2x3) = 0 implies r′0 + r′3 = 0, r

′
1 + r′4 = 0, r

′
2 + r′5 = 0.

Hence all elements 	 of R satisfying 	e2 = 	 are

{r′0 + r′1x+ r′2x
2 − r′0x

3 − r′1x
4 − r′2x

5}, where (r′0, r
′
1, r

′
2) �= (0, 0, 0).

From these polynomials we have to exclude those which are divisible by f2 = x+ 1.

These are the polynomials for which r′0 − r′1 + r′2 = 0. Hence

G(e2) =
{
r′0(1− x3) + r′1(x− x4) + r′2(x

2 − x5)
}
, where r′0 − r′1 + r′2 �= 0.
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Again, |G(e2)| = 18.
c) Finally, G(1) = G(e1)⊕G(e2) implies

Γ(6, 3) =
[
r0(α+ α27) + r1(α

3 + α81) + r2(α
9 + α243)

]

⊕
[
r′0(α − α27) + r′1(α

3 − α81) + r′2(α
9 − α243)

]
.

Denoting A = α+ α27, B = α− α27, we may write this in the form

Γ(6, 3) =
{
[r0A+ r1A

3 + r2A
9]⊕ [r′0B + r′1B

3 + r′2B
9]

}
,

where r0 + r1 + r2 �= 0 and r′0 − r′1 + r′2 �= 0. Clearly, |Γ(6, 3)| = 324.
Example 4.3. To see how the results look like for larger n we give here (without

the necessary computations) the result concerning the set of all NB-generators of
GF (312)|GF (3).

The factorization of x12 − 1 into irreducible factors over F3 is x12 − 1 = (x −
1)3(x + 1)3(x2 + 1)3 = f31 f

3
1f
3
3 . By Proposition 2.6 the primitive idempotents are

e1 = 1 + x3 + x6 + x9, e2 = 1− x3 + x6 − x9, e3 = x6 − 1.

G(e1) =
{
(r0 + r1x+ r2x

2)(1 + x3 + x6 + x9)|r0 + r1 + r2 �= 0
}
, and |G(e1)| = 18.

G(e2) =
{
(r′0 + r1x

′ + r′2x
2)(1− x3 + x6 − x9)|r′0 − r′1 + r′2 �= 0

}
, and |G(e2)| = 18.

G(e3) =
{
(r′′0 + r′′1x+ r′′2x

2 + r′′3x
3 + r′′4x

4 + r′′5x
5)(1 − x6)

}
,

where (r′′0 − r′′2 + r′′4 , r
′′
1 − r′′3 + r′′5 ) �= (0, 0), and |G(e3)| = 23 · 34.

Hence G(1) = G(e1)⊕G(e2)⊕G(e3) and |G(1)| = 25 · 38 = 209952.
Denote A1 = α+α3

3
+α3

6
+α3

9
, A2 = α−α3

3
+α3

6 −α3
9
, A3 = α−α3

6
. Then

the set of all NB-generators of GF (312)|GF (3) is given by the formula

Γ(12, 3) =
{
(r0A1 + r1A

3
1 + r2A

9
1)⊕ (r′0A2 + r′1A

3
2 + r′2A

9
2)

⊕ (r′′0A3 + r′′1A
3
3 + r′′2A

9
3 + r′′3A

27
3 + r′′4A

81
3 + r′′5A

243
3 )

}
,

where the restrictions for the ri
′s are given above.

Example 4.4. Simple results are obtained if we consider the extension Fqn |Fq,

where n is a power of the characteristic, p = char(Fq).
Consider, e.g., the case Fpp |Fp. The ring Fp[x]

/
(xp−1) = Fp[x]

/
(x−1)p contains

a unique non-zero idempotent (namely 1), and G(1) consists of all polynomials 	 =
r0 + r1x + . . .+ rp−1xp−1 which are not divisible by x− 1, i.e., such that r0 + r1 +

. . .+ rp−1 �= 0. Hence G(1) =
{
r0 + r1x+ . . .+ rp−1xp−1|r0 + r1 + . . .+ rp−1 �= 0

}
.

If α is one NB-generator of Fpp |Fp, then all the others are given by

Γ(p, p) =
{
r0α+ r1α

p + . . .+ rp−1α
pp−1 |r0 + r1 + . . .+ rp−1 �= 0

}
.

Here |Γ(p, p)| = pp − pp−1.
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5. Some consequences for N-polynomials

In the preceding sections we have shown how to describe all NB-generators of

Fqn |Fq by one formula (containing parameters). If g = g(α, r1, . . . , rn) is this “general
expression”, then h(x) = h(x, r1, . . . , rn) = (x−g)(x−gq) . . . (x−gqn−1

) is a “general

expression” for all N-polynomials of degree n � 2 over Fq. In other words, if we
know one N-polynomial of degree n � 2, we are able (in principle) to describe all
N-polynomials of degree n by one formula (containing parameters ri). It is sufficient
to write down h(x) as a polynomial with coefficients ∈ Fq . For n = 2 this is rather

easy. For n = 3 we show in Example 3.3 how the straightforward procedure looks
like. For n � 4 the evaluation is rather cumbersome.

Example 5.1. We prove two statements concerning quadratic N-polynomials.

Statement 1. Let x2+a1x+a2 be one N-polynomial over Fq, char(Fq) = p > 2.

Then the set
{
h(x)

}
of all quadratic N-polynomials over Fq is given by the formula

h(x) = x2 + 2a1r0x+ r2oa21 − r21(a
2
1 − 4a2),

where r0, r1 ∈ Fq and r0r1 �= 0.
�����. The factorization x2 − 1 = (x − 1)(x + 1) over Fq implies that the

primitive idempotents of Fq[x]
/
(x2− 1) are e1 = 1

2 (1+x) and e2 = 1
2 (1−x), so that

G(1) = r0(1+x)⊕r1(1−x), where r0r1 �= 0, and Γ(2, q) =
{
r0(α+αq)⊕r1(α−αq)

}
,

where α is a root of x2 + a1x+ a2 = 0.

If g = r0(α+ αq) + r1(α− αq), then gq = r0(αq + α) + r1(αq − α), and g + gq =
2r0(α+αq) = −2a1r0, ggq = r20(α+ αq)2 − r21(α− αq)2 = r20a

2
1 − r21(a

2
1 − 4a2). This

proves our statement. [Clearly there are 12 (q− 1)2 different quadratic N-polynomials
over Fq.] �

To have a numerical example let us describe (by one formula) the set of all

quadratic N-polynomials over F7, knowing that, e.g., x2 + x+ 3 is an N-polynomial
over F7. We then have h(x) = x2 + 2r0x + r2o + r21 . To obtain all the 18 different

ones it is sufficient to choose r0 ∈ {1, 2, . . . , 6}, r21 ∈ {1, 2, 4}.
To complete our considerations we have to consider also the case char(Fq) = 2,

q = 2s, n = 2.

Statement 2. Let x2 + b1x + b2 be one N-polynomial of degree 2 over Fq =
GF (2s). Then all N-polynomials of degree 2 over Fq are given by the formula

h(x) = x2 + b1(r0 + r1)x+ (r0 + r1)2b2 + r0r1b
2
1,

where r0, r1 ∈ Fq and r0 �= r1.
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�����. The ring Fq[x]/(x − 1)2 has a unique non-zero idempotent (namely
e = 1). To find G(1) we have (in accordance with Proposition 4.1) to exclude all
those polynomials r0 + r1x which are divisible by f(x) = x + 1. These are the
polynomials for which r0 + r1 = 0 (i.e. r0 = r1). We have therefore

G(1) =
{
r0 + r1x|r0, r1 ∈ Fq, r0 �= r1

}
.

If β is the root of x2 + b1x+ b2 we immediately obtain the set of all NB-generators

Γ(2, q) = Γ(2, 2s) =
{
r0β + r1β

q|r0, r1 ∈ Fq, r0 �= r1
}
.

If g = r0β+ r1β
q is an NB-generator, we have g+gq = (r0β+ r1β

q)+(r0βq+ r1β) =
b1(r0 + r1) and g · gq = (r0β + r1β

q)(roβ
q + r1β) = (r0 + r1)2 · b2 + r0r1(β + βq)2 =

(r20 + r21)b2 + r0r1b
2
1. Therefore h(x) = (x − g)(x − gq) = x2 + b1(r0 + r1)x + (r0 +

r1)2b2 + r0r1b
2
1. This formula comprises all the

1
2q(q − 1) N-polynomials of degree 2

over Fq. �

Example 5.2. We have to find all N-polynomials of degree 3 over F5.

In Example 3.3 we have proved that any NB-generator g of F53 |F5 is of the form

g = r0(α + α5 + α25) + r1(4α+ α5) + r2(4α+ α25),

whence

g5 = r0(α + α5 + α25) + r1(4α
5 + α25) + r2(4α

5 + α),

g25 = r0(α + α5 + α25) + r1(4α25 + α) + r2(4α25 + α5).

Here α is a root of an N-polynomial x3 + a1x
2 + a2x + a3 = 0, and an admissible

triple (r0, r1, r2) is defined by the restrictions r0 �= 0, (r1, r2) �= (0, 0).
Our goal is to calculate

h(x) = (x − g)(x− g5)(x− g25)

as a polynomial over F5.

Since r0(α + αp + αp2 ) = −r0a1, we shall write g + r0a1 = g1, so that g1 =
r1(4α+ α5) + r2(4α+ α25), and we shall evaluate the product

h1(y) = (y − g1)(y − g51)(y − g251 ) = y3 + b1y
2 + b2y + b3.

Note first that−b1 = g1+g51+g251 = g+g5+g25+3r0a1 = 3r0(α+α+α25)+3r0a1 =
−3r0a1 + 3r0a1 = 0 (independently of the choice of α).
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Now choose α as a root of the N-polynomial x3 + x2 + 1 (over F5). Then g1 =

r1(4α + α5) + r2(4α + α25) = r1(4 + 3α2) + r2(2α + 2α2) satisfies an equation
g31 + b2g1 + b3 = 0 with unknowns b2, b3.
Hence

[
r1(4 + 3α

2) + r2(2α+ 2α
2)

]3
+ b2

[
r1(4 + 3α

2) + r2(2α+ 2α
2)

]
+ b3 = 0,

i.e.,

[
r31(1 + 3α

2) + r21r2(4 + 2α) + r1r
2
2(3 + 2α) + r32(3 + 2α+ 2α

2)
]

+ b2
[
4r1 + 2r2α+ (3r1 + 2r2)α2

]
+ b3 = 0.

This leads to the following three equations:

r31 + 4r
2
1r2 + 3r1r

2
2 + 3r

2
2 + 4b2r1 + b3 = 0,

2r21r2 + 2r1r
2
2 + 2r

3
2 + 2r2b2 = 0,

3r31 + 2r
3
2 + b2(3r1 + 2r2) = 0.

From the second (which is equivalent to the third if r2 �= 0 or r1 − r2 �= 0) we get
b2 = 4(r21 + r1r2 + r22), and from the first b3 = 3r31 + r1r

2
2 + 2r

3
2. This holds also if

r2 = 0 or r1 − r2 = 0. Hence

h1(y) = y3 + 4(r21 + r1r2 + r22)y + (3r
3
1 + r1r

2
2 + 2r

3
2),

and replacing y by x+ r0a1 = x+ r0, we finally get

(∗) h(x) = (x+ r0)3 + 4(r21 + r1r2 + r22)(x + r0) + (3r31 + r1r
2
2 + 2r

3
2).

The formula (∗) contains formally 96 polynomials. It is of course clear that three
different triples (r0, r1, r2) always lead to the same N-polynomial. We show that in

our case the triples (r0, r1, r2), (r0, 4r1 + 4r2, r1), (r0, r2, 4r1 + 4r2) are giving the
same polynomial h(x).

To see this it is sufficient to find (r′0, r
′
1, r

′
2) such that (r

′
0 + 4r

′
1 + 4r

′
2)α + (r

′
0 +

r′1)α
5+(r′0+r′2)α

25 = g5 = (r0+4r1+4r2)α5+(r0+r1)α25+(r0+r2)α. This implies

r′0 +4r
′
1 + 4r

′
2 = r0 + r2, r′0 + r′1 = r0 + 4r1 +4r2, r′0 + r′2 = r0 + r1, whence r′0 = r0,

r′1 = 4r1+r2, r′2 = r1. Applying once more “the shift” (r0, r1, r2)→ (r0, 4r1+4r2, r1)
to the second term we obtain the third triple (r0, r2, 4r1 + 4r2).
We have proved

Statement 3. The formula (∗) comprises exactly all the 32 N-polynomials of de-
gree 3 over F5, when (r0, r1, r2) runs through all admissible triples. Hereby the triples
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(r0, r1, r2), (r0, 4r1 + 4r2, r1) and (r0, r2, 4r1 + 4r2) are giving the same polynomial

h(x).

Remark. It is clear from our considerations that formulas of the type (∗) exist
for any n � 2 and any Fq, but the effective construction of the corresponding N-
polynomials for n � 4 is rather complicated.
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