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Czechoslovak Mathematical Journal, 49 (124) (1999), 67–80

ON POSETS WITH ISOMORPHIC INTERVAL POSETS

Judita Lihová, Košice

(Received April 4, 1996)

Let � = (A, �) be a partially ordered set, Int � the system of all (nonempty)
intervals of � , partially ordered by the set-theoretical inclusion ⊆. We are interested
in partially ordered sets � = (B, �) with Int � isomorphic to Int � . We are going
to show that they correspond to couples of binary relations on A satisfying some
conditions. If � is a directed partially ordered set, the only � with Int � isomorphic

to Int � are � δ
1×� 2 corresponding to direct decompositions � 1×� 2 of � (� δ

1 denotes
the dual of � 1 ). The present results include those presented in the paper [11] by V.

Slavík. Systems of intervals, particularly of lattices, have been investigated by many
authors, cf. [1]–[11].

1.

By an interval of a partially ordered set � = (A, �) a set 〈a, b〉 = {x ∈ A : a � x �
b} with a, b ∈ A, a � b is meant. If a = b, we use the notation 〈a〉 instead of 〈a, a〉.
The system of all intervals of � is denoted by Int � . Consider the set-theoretical

inclusion on Int � . The following lemma is easy to verify:

1.1. Lemma. a) 〈a, b〉 = inf{〈a1, b1〉, 〈a2, b2〉} if and only if 〈a, b〉 = 〈a1, b1〉 ∩
〈a2, b2〉;
b) 〈a, b〉 = sup{〈a1, b1〉, 〈a2, b2〉} if and only if a = inf{a1, a2}, b = sup{b1, b2}.

Let U , V be binary relations on A. Consider the following conditions:

(P1) U, V ⊆ {(x, y) ∈ A×A : x � y};
(P2) x, y ∈ A, x � y =⇒ there exists a unique couple of elements p, q ∈ 〈x, y〉

satisfying pV xUqV yUp;

(P3) u � x, y, xV uUy =⇒ u = inf{x, y}, v = sup{x, y} exists and yV vUx holds;
(P3′) v � x, y, yV vUx =⇒ v = sup{x, y}, u = inf{x, y} exists and xV uUy holds;
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(P4) a = a1Ua2U . . . Uan = a′, a = a′1V a′2V . . . V a′m = a′ (n, m ∈ N) =⇒ a = a′;

(P5) for every a, a′ ∈ A there exist n, m ∈ N , a1, . . . , an, a′1, . . . , a
′
m ∈ A satisfying

a = a1Ua2U . . . Uan = a′1V a′2V . . . V a′m = a′.

We are going to prove the following theorem:

1.2. Theorem. Let � be a connected partially ordered set. Then there exists a
mapping Φ of the system of all couples of binary relations U , V on A satisfying the

conditions (P1)–(P3′) onto the system of all isomorphism classes of partially ordered
sets � with Int � isomorphic to Int � . If a couple (U, V ) satisfies (P1)–(P5), then

the class Φ((U, V )) consists of all partially ordered sets isomorphic to � δ
1 × � 2 for

a direct decomposition � 1 × � 2 of � . Conversely, the class of all partially ordered

sets isomorphic to � δ
1 × � 2 for a direct decomposition � 1 × � 2 of � is Φ((U, V )) for

a couple (U, V ) satisfying (P1)–(P5).

Let us remark that the connectivity of � is not a limiting assumption. Namely, if

� is any partially ordered set, P can be decomposed into maximal connected subsets
Pi (i ∈ I) and the system Int � is the cardinal sum of the interval posets Int �i of
these subsets. Now a partially ordered set � satisfies the condition Int � ∼= Int � if
and only if � is the cardinal sum of some �i (i ∈ I) with Int �i

∼= Int �i.
Further let us notice that if partially ordered sets � , � have isomorphic interval

posets, then they are of the same cardinality; so we may assume, without loss of
generality, that � , � have the same underlying set.

2.

Let � = (A, �) be a connected partially ordered set, U , V binary relations on A

satisfying (P1)–(P3′). First we will show some properties of U , V following from the

conditions (P1)–(P3′).
The following is obtained immediately, using (P2).

2.1. Lemma. The relations U , V are reflexive.

2.2. Lemma. The relations U , V are symmetric.

�����. Let xUy. By (P1) x, y are comparable. Suppose, e.g., that x � y. We
have x � x, y, xV xUy and since y = sup{x, y}, using (P3) we obtain yUx. To prove

yUx for x � y, we use (P3′). �

2.3. Lemma. If x, y ∈ A and one of these elements covers the other, then

(x, y) ∈ U ∪ V .
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This follows immediately from (P2).

2.4. Lemma. If (x, y) ∈ U ∩ V , then x = y.

�����. Let (x, y) ∈ U ∩ V . Without loss of generality we can suppose x � y.
Then both xUyV y and xUxV y hold, so x = y by (P2). �

2.5. Lemma. If x � y � z, then xUyUz implies xUz and xV yV z implies xV z.

�����. We are going to prove, e.g., the part concerning U . Hence let x � y � z,
xUyUz. (P2) ensures the existence of an element p ∈ 〈x, z〉 with zUpV x. Now

x � p, y, pV xUy, so that sup{p, y} = v exists and satisfies yV vUp by (P3). Evidently
v � z. We have y � v, z, vV yUz, so in view of (P3) we obtain y = inf{v, z} = v.

But then x = inf{p, y} = p and consequently xUz. �

2.6. Lemma. Let x, y ∈ A, x � y, p, q be as in (P2). If a ∈ 〈x, y〉, there
exists a unique quadruple of elements p1 ∈ 〈x, p〉, q1 ∈ 〈x, q〉, p2 ∈ 〈p, y〉, q2 ∈ 〈q, y〉
satisfying aUp1V xUq1V aUq2V yUp2V a, p1V pUp2, q1UqV q2.

�����. Let a ∈ 〈x, y〉. Then x � a implies the existence of p1, q1 ∈ 〈x, a〉
satisfying p1V xUq1V aUp1 and a � y implies that p2V aUq2V yUp2 for some p2, q2 ∈
〈a, y〉, by (P2). Using again (P2) we obtain that there exist p′ ∈ 〈p1, p2〉, q′ ∈ 〈q1, q2〉
such that p1V p′Up2, q1Uq′V q2. But then 2.5 yields p′V xUq′V yUp′. The uniqueness
of p, q in (P2) implies p′ = p, q′ = q. The uniqueness of p1, q1, p2, q2 follows from (P3)

and (P3′). Namely, p1 = inf{p, a}, q1 = inf{a, q}, p2 = sup{p, a}, q2 = sup{a, q}.
�

2.7. Lemma. If x � a � y, then xUy implies xUaUy and xV y implies xV aV y.

�����. Let x � a � y, xUy. Using the notation as in 2.6, we have p = x,

q = y, p1 = x, q1 = a, p2 = a, q2 = y. By 2.6 we have pUp2Uy, hence xUaUy. The
part concerning V can be shown analogously. �

2.8. Lemma. Let x, y ∈ A, x � y, p, q be as in (P2). Then for each a ∈ 〈x, y〉,
inf{p, a}, inf{a, q} exist and they satisfy pV inf{p, a}UaV inf{a, q}Uq. The mapping

α : a 	→ (inf{p, a}, inf{a, q}) is an isomorphism of 〈x, y〉 onto 〈x, p〉 × 〈x, q〉.

�����. Let a ∈ 〈x, y〉, p1, q1 be as in 2.6. Then p1 = inf{p, a}, q1 = inf{a, q} by
(P3). Further, 2.6 ensures that pV p1UaV q1Uq holds. Now using (P3′) and 2.6 we

obtain a = sup{p1, q1}. Let p′1 ∈ 〈x, p〉, q′1 ∈ 〈x, q〉. Since x � p′1, q
′
1 and p′1V xUq′1

holds, by 2.7, the condition (P3) yields that sup{p′1, q′1} = a′ exists and we have

q′1V a′Up′1. But then p′1 = inf{p, a′}, q′1 = inf{a′, q}, so that α(a′) = (p′1, q
′
1). We

have proved that α is onto.
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Let a, a′ ∈ 〈x, y〉, a � a′. Then evidently (inf{p, a}, inf{a, q}) � (inf{p, a′},
inf{a′, q}). Hence α preserves the order.

Finally, let a, a′ ∈ 〈x, y〉, (inf{p, a}, inf{a, q}) � (inf{p, a′}, inf{a′, q}). Then
a = sup{inf{p, a}, inf{a, q}} � sup{inf{p, a′}, inf{a′, q}} = a′, completing the proof.

�

2.9. Lemma. Let x, y ∈ A, x � y, p, q be as in (P2). If x � a � a′ � y and

aUa′(aV a′), then inf{p, a} = inf{p, a′}(inf{a, q} = inf{a′, q}).

�����. Suppose that x � a � a′ � y and, e.g., aUa′. Using 2.8 we
get inf{p, a} � inf{p, a′}, pV inf{p, a}UaUa′. Now inf{p, a′} ∈ 〈inf{p, a}, a′〉, so
that inf{p, a}U inf{p, a′}. But simultaneously inf{p, a}V inf{p, a′} by 2.7. Hence
inf{p, a} = inf{p, a′} by 2.4. �

Now we are going to introduce a “new” order on A, corresponding to a couple of

U , V satisfying (P1)–(P3′).

2.10. Definition. For x, y ∈ A set x �1 y if there exists u ∈ A, u � x, y,
satisfying xV uUy.

2.11. Lemma. The above defined relation �1 is a partial order.

�����. The reflexivity of U , V ensures that x �1 x for each x ∈ A. Let

x �1 y, y �1 x. Then there exist u1, u2 such that u1 � x, y, xV u1Uy, u2 � y, x,
yV u2Ux. Using (P3) we obtain u1 = inf{x, y} = u2. Hence (u1, x) ∈ U ∩ V and

also (u1, y) ∈ U ∩ V and consequently x = u1 = y by 2.4. Let x �1 y, y �1 z. Then
there exist u1, u2 ∈ A satisfying u1 � x, y, xV u1Uy, u2 � y, z, yV u2Uz. Using (P3′)

we obtain that inf{u1, u2} = u exists and u1V uUu2 holds. But then u � x, z and
xV uUz by 2.5, so that x �1 z. �

The aim is to prove that Int (A, �) ∼= Int (A, �1). Let x, y ∈ A, x � y, p, q be as

in (P2). Then evidently p �1 q. Set f(〈x, y〉) = 〈p, q〉1, where 〈p, q〉1 = {t ∈ A : p �1
t �1 q}. Recall that 〈x, y〉 is isomorphic to 〈x, p〉 × 〈x, q〉. Now we have:

2.12. Lemma. The mapping α defined in 2.8 is an isomorphism of 〈p, q〉1 onto
〈x, p〉δ × 〈x, q〉.

�����. Evidently a ∈ 〈x, y〉 if and only if a ∈ 〈p, q〉1 and α is onto. Further

let us suppose that a, a′ ∈ 〈p, q〉1, a �1 a′. We have to prove inf{p, a} � inf{p, a′},
inf{a, q} � inf{a′, q}. Take p1 = inf{p, a}, q′1 = inf{a′, q} and u � a, a′ satis-

fying aV uUa′. In view of (P3′), r = inf{p1, u}, s = inf{u, q′1} exist such that
p1V rUuV sUq′1. But then pV rUa′, aV sUq, so that r = inf{p, a′}, s = inf{a, q}
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and we have r � p1, s � q′1. Conversely let a, a′ ∈ 〈p, q〉1, p1 � p′1, q1 � q′1, where

p1 = inf{p, a}, q1 = inf{a, q}, p′1 = inf{p, a′}, q′1 = inf{a′, q}. Since x � p′1, q1 and
p′1V xUq1, sup{p′1, q1} = t exists and q1V tUp′1. Obviously t � a, a′. Moreover, aV q1
yields aV t and p′1Ua′ implies tUa′. Thus a �1 a′. The proof is complete. �

2.13. Lemma. The mapping f assigning to 〈x, y〉 the interval 〈p, q〉1 is an
isomorphism of Int(A, �) onto Int(A, �1).

�����. Let r �1 s. Then there exists u � r, s such that rV uUs. By (P3),
v = sup{r, s} exists and sV vUr holds. Evidently f(〈u, v〉) = 〈r, s〉1. The mapping f

is onto.

Now let 〈x, y〉 ⊆ 〈x1, y1〉, f(〈x, y〉) = 〈p, q〉1, f(〈x1, y1〉) = 〈p1, q1〉1. Take
inf{p1, p} = p′1, inf{q, q1} = q′1. We have p′1 � p1, p, p1V p′1Up, so p1 �1 p.
Analogously q′1 � q, q1, qV q′1Uq1 ensures q �1 q1. Hence 〈p, q〉1 ⊆ 〈p1, q1〉1.
Next suppose that f(〈x, y〉) = 〈p, q〉1 ⊆ 〈p1, q1〉1 = f(〈x1, y1〉). We have to show

〈x, y〉 ⊆ 〈x1, y1〉. Let u � p1, p, p1V uUp and v � q, q1, qV vUq1. Since p � u, x,
xV pUu and q � x, v, vV qUx, there exist a � u, x, b � x, v satisfying uV aUxV bUv,
by (P3′). Finally consider c = inf{a, b}, whose existence follows from (P3′). We have
p1V uV aV cUbUvUq1, hence c = inf{p1, q1} = x1 by (P3) and (P2). Now obviously
x1 � x. The relation y � y1 can be proved analogously. �

Summarizing, we have:

2.14. Theorem. Let � = (A, �) be a connected partially ordered set, U , V

binary relations on A satisfying (P1)–(P3′). If �1 is the relation on A defined as in

2.10 with the aid of U , V , then (A, �1) is a partially ordered set with Int(A, �1)
isomorphic to Int(A, �).

It is easy to see that the couples U1 = {(x, y) ∈ A × A : x � y}, V1 = {(x, x) :

x ∈ A} and U2 = {(x, x) : x ∈ A}, V2 = {(x, y) ∈ A × A : x � y} satisfy the
conditions (P1)–(P3′). The corresponding orders �1, �2 are � and �δ, respectively.

Some partially ordered sets � = (A, �) have no other orders �1 besides � and �δ,
satisfying Int (A, �1) ∼= Int (A, �). This is the case e.g. for � in Fig. 1. On the
other hand, it is easy to see that the partially ordered sets in Fig. 2 and Fig. 3 have
isomorphic interval systems, but they are neither isomorphic nor dually isomorphic.

In fact, the first is the direct product of two copies of � in Fig. 1, while the other is
isomorphic to � δ × � .

Further assume that U , V satisfy also the conditions (P4), (P5). Define binary
relations U , V on A as follows:
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� � �
Fig. 1 Fig. 2 Fig. 3

2.15. Definition. For x, y ∈ A set xUy (xV y) if there exists a finite sequence
x1, x2, . . . , xn of elements of A such that x1 = x, xn = y and every two adjoining

elements are in the relation U(V ).

The following statement is evident.

2.16. Lemma. The relations U , V are equivalence relations.

Consider the decompositions A/U , A/V . Denote by [a]U , [a]V the equivalence

classes containing the element a.

2.17. Definition. Set [a]U � [b]U ([a]V � [b]V ) if and only if there exist
a1 ∈ [a]U , b1 ∈ [b]U (a1 ∈ [a]V , b1 ∈ [b]V ) satisfying a1 � b1.

2.18. Lemma. For any a, b ∈ A the following conditions are equivalent:

(1) [a]U � [b]U ;
(2) for each a1 ∈ [a]U there exists b1 ∈ [b]U with a1 � b1;

(3) for each b1 ∈ [b]U there exists a1 ∈ [a]U with a1 � b1.

�����. The implications (2) =⇒ (1), (3) =⇒ (1) are evident. We are going to
prove (1) =⇒ (2). The proof of (1) =⇒ (3) would be analogous. So let [a]U � [b]U .
We can suppose that a � b. Take any a1 ∈ [a]U . Then there exist x1, . . . , xn such

that a = x1, a1 = xn, x1 � x2, x2 � x3, . . . , xn−1 � xn, x1Ux2U . . . Uxn. Using the
conditions (P2), (P3) we can construct elements y1, y2, . . . , yn such that y1 ∈ 〈x1, b〉,
x1V y1Ub, y2 � y1, x2, x2V y2Uy1, y3 ∈ 〈x3, y2〉, x3V y3Uy2, . . ., yn ∈ 〈xn, yn−1〉,
xnV ynUyn−1. We have a1 � yn, yn ∈ [b]U . �

Obviously the same holds for V .

2.19. Lemma. The above defined relation � on A/U is a partial order.

�����. The reflexivity is trivial. Further let [a]U � [b]U , [b]U � [a]U . Then
there exist a1, a2 ∈ [a]U satisfying a1 � b � a2. Take z ∈ 〈a1, a2〉 such that
a1UzV a2. We have zUa2 and simultaneously zV a2. Using (P4) we obtain z = a2
and consequently a1 � b � z, which implies a1Ub by 2.7. Hence [b]U = [a1]U = [a]U .

Finally, let [a]U � [b]U , [b]U � [c]U . Then there exist a1 ∈ [a]U , c1 ∈ [c]U such that
a1 � b � c1 and this implies [a]U � [c]U . �
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Evidently the same holds for V . The symbol � /U (� /V ) will be used for A/U

(A/V ) with the order � as above.

2.20. Theorem. Let � = (A, �) be a connected partially ordered set, U , V

binary relations on A satisfying (P1)–(P5). If �1 is as in 2.10, then � is isomorphic
to � /U × � /V , while � 1 = (A, �1) is isomorphic to (� /U )δ × � /V .

�����. Define α : A → A/U × A/V by α(a) = ([a]U, [a]V ). α is onto: Take
([a1]U, [a2]V ) ∈ A/U ×A/V . By (P5) there exists x ∈ A satisfying a1UxV a2. Then

α(x) = ([a1]U, [a2]V ).

The implication a � b =⇒ α(a) � α(b) is evident. Conversely, let α(a) � α(b).
Then [a]U � [b]U , [a]V � [b]V and consequently a � b1, b2 for some b1 ∈ [b]U ,
b2 ∈ [b]V . Take b′1 ∈ 〈a, b1〉, b′2 ∈ 〈a, b2〉 such that aV b′1Ub1, aUb′2V b2. The condition
(P3) yields the existence of t � b′1, b

′
2 with b′2V tUb′1. Now tUb, tV b, hence t = b by

(P4). We have b � a.

Suppose a �1 b. Then there exists u � a, b satisfying aV uUb and this implies that
[a]U � [u]U = [b]U , [a]V = [u]V � [b]V .
Finally, let [a]U � [b]U , [a]V � [b]V . We have to show a �1 b. The assumptions

yield the existence of a1 ∈ [a]U , a2 ∈ [a]V with a2 � b � a1. Take c ∈ 〈a2, a1〉
satisfying a2V cUa1. Then c = a by (P4). In view of 2.8 u = inf{a, b} exists and
aV uUb. The proof is complete. �

3.

Let � = (A, �) be a connected partially ordered set, � ′ = (A, �′) another partially

ordered set with the same underlying set and let f be an isomorphism of Int � onto
Int � ′ . The aim is to prove that � ′ can be obtained in the way described in the

preceding section. Define f ′ : A → A by

f ′(a) = b ⇐⇒ f(〈a〉) = 〈b〉′ = 〈b〉.

(〈x, y〉′ will mean the set {t ∈ A : x �′ t �′ y}). Evidently f ′ is a bijective mapping of
A onto A. Consider the following binary relations on A : U = {(x, y) ∈ A×A : x � y

and f ′(x) �′ f ′(y)} ∪ {(x, y) ∈ A × A : x � y and f ′(x) �′ f ′(y)}, V = {(x, y) ∈
A × A : x � y and f ′(x) �′ f ′(y)} ∪ {(x, y) ∈ A × A : x � y and f ′(x) �′ f ′(y)}.
Evidently U , V satisfy the condition (P1).

3.1. Lemma. Let x, y ∈ A, x � y, f(〈x, y〉) = 〈r, s〉′. Then r = inf{f ′(x), f ′(y)},
s = sup{f ′(x), f ′(y)} in � ′ .
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�����. Since 〈x, y〉 = sup{〈x〉, 〈y〉}, we have 〈r, s〉′ = sup{f(〈x〉), f(〈y〉}. But
f(〈x〉) = 〈f ′(x)〉, f(〈y〉) = 〈f ′(y)〉 so that r = inf{f ′(x), f ′(y)}, s = sup{f ′(x), f ′(y)}
in � ′ by 1.1. �

Taking into account that f−1 is also an isomorphism and (f−1)′ = (f ′)−1, we

obtain:

3.2. Lemma. If x, y ∈ A, x � y, f(〈x, y〉) = 〈r, s〉′, r = f ′(p), s = f ′(q), then

x = inf{p, q}, y = sup{p, q} in � .

3.3. Lemma. The above defined U , V fulfil (P2).

�����. Let x, y ∈ A, x � y. The previous lemma guarantees the existence

of such p, q as we need. Now let p1, q1 ∈ 〈x, y〉 also satisfy p1V xUq1V yUp1.
The relations p1V x, x � p1 imply f ′(x) �′ f ′(p1) while yUp1, p1 � y imply

f ′(p1) �′ f ′(y). Hence f ′(p1) �′ r by 3.1. Analogously f ′(q1) �′ s. On the
other hand 〈p1〉, 〈q1〉 ⊆ 〈x, y〉 yields 〈f ′(p1)〉, 〈f ′(q1)〉 ⊆ 〈r, s〉′ and consequently
r �′ f ′(p1), f ′(q1) �′ s. So we have f ′(p1) = r = f ′(p), f ′(q1) = s = f ′(q), which
implies p1 = p, q1 = q. �

3.4. Lemma. Let x, y ∈ A, x � y, xUy (xV y). Then for each t ∈ 〈x, y〉 we have
xUtUy (xV tV y).

�����. We will prove, e.g., the part concerning U . Take any t ∈ 〈x, y〉. We
have 〈x, t〉 ⊆ 〈x, y〉, hence f(〈x, t〉) ⊆ f(〈x, y〉). By the assumption xUy we have
f ′(x) �′ f ′(y) and using 3.1 we obtain f(〈x, y〉) = 〈f ′(x), f ′(y)〉′. Let f(〈x, t〉) =
〈a, b〉′. Then 〈a, b〉′ ⊆ 〈f ′(x), f ′(y)〉′, which implies f ′(x) �′ a. On the other hand
a = inf{f ′(x), f ′(t)} in � ′ by 3.1, so that a �′ f ′(t). Summarizing we obtain

f ′(x) �′ f ′(t). We have xUt. The relation tUy can be shown analogously. �

3.5. Lemma. The above defined U , V fulfil (P3) and (P3′).

�����. We are going to show that (P3) holds. The condition (P3′) can be

verified analogously. Let u � x, y, xV uUy. Then f ′(x) �′ f ′(u) �′ f ′(y). Let
〈f ′(x), f ′(y)〉′ = f(〈a, b〉. Using 3.1 and 3.2 we obtain a = inf{x, y}, b = sup{x, y} in
� , f ′(x) = inf{f ′(a), f ′(b)}, f ′(y) = sup{f ′(a), f ′(b)} in � ′ . Since u is a lower bound
of {x, y}, we infer u � a. Now a ∈ 〈u, x〉∩〈u, y〉, hence uUa and simultaneously uV a

by 3.4. Since u � a, we have f ′(u) �′ f ′(a) and simultaneously f ′(u) �′ f ′(a). Then
f ′(u) = f ′(a) and consequently u = a. We have proved u = inf{x, y}. It remains to
show yV bUx. Since b � x, y, we have to verify f ′(x) �′ f ′(b) �′ f ′(y), but this is
evident. �
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Summarizing, having an isomorphism f : Int � → Int � ′ , we can construct binary
relations U , V on A satisfying (P1)–(P3′). Further, using 2.14, we obtain a partially
ordered set � 1 such that Int � and Int � 1 are isomorphic. The following theorem
makes clear the relation between � ′ and � 1 .

3.6. Theorem. Let � = (A, �) be a connected partially ordered set, � ′ =
(A, �′) any partially ordered set such that Int � ′ is isomorphic to Int � . If U , V

are defined with the aid of an isomorphism f : Int � → Int � ′ as above, then the
partially ordered set � 1 corresponding to U , V in the sense of 2.14 is isomorphic to

� ′ .

�����. We are going to show that the mapping f ′ belonging to the isomorphism

f : Int � → Int � ′ is an isomorphism of � 1 onto � ′ . It is sufficient to prove that
x �1 y if and only if f ′(x) �′ f ′(y). Let x �1 y. Then there exist u � x, y satisfying

xV uUy. Using the definition of U , V we obtain f ′(x) �′ f ′(u) �′ f ′(y). Conversely,
let f ′(x) �′ f ′(y). Considering 〈a, b〉 = f−1(〈f ′(x), f ′(y)〉′) and using 3.2, 3.1, we
obtain a = inf{x, y}, xV aUy. Hence x �1 y. The proof is complete. �

Notice that if (A, �), (A, �1) are as in 2.14, then Int (A, �), Int (A, �1) are not
only isomorphic, but even identical as systems of subsets of A. Moreover, every

(A, �′) satisfying that Int (A, �′) is identical with Int (A, �) can be obtained in this
way by 3.6.

To have 1.2 completely proved, we add:

3.7. Theorem. Let � = �×� be a connected partially ordered set, � ′ = � δ×� ,

let f : Int � → Int � ′ be defined by

f(〈c1, d1), (c2, d2)〉) = 〈(c2, d1), (c1, d2)〉′.

Then f is an isomorphism and if U , V are defined with the aid of f as at the beginning

of this section, they satisfy the conditions (P4) and (P5).

�����. The assertion that f is an isomorphism is evident. Obviously, f ′ is the
identity mapping, so that (c1, d1)U(c2, d2) means that c1 = c2 and simultaneously

d1, d2 are comparable while (c1, d1)V (c2, d2) means that c1, c2 are comparable and
d1 = d2.

Now let

(c, d) = (c1, d1)U(c2, d2)U . . . U(cn, dn) = (c′, d′),

(c, d) = (c′1, d
′
1)V (c

′
2, d

′
2)V . . . V (c′m, d′m) = (c

′, d′).
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Then c = c1 = c2 = . . . = c′ and d = d′1 = d′2 = . . . = d′, so that (c, d) = (c′, d′).

Finally, taking any (c, d), (c′, d′) ∈ C×D and using the fact that � is connected so
that � , � are connected, too, we can find c1, . . . , cn ∈ C, d1, . . . , dm ∈ D such that

c1 = c, cn = c′, d1 = d, dm = d′, ci is comparable with ci+1 for each i ∈ {1, . . . , n−1}
and dj is comparable with dj+1 for each j ∈ {1, . . . , m− 1}. Then we have (c, d) =
(c1, d1)U(c1, d2)U . . . U(c1, dm) = (c1, d′)V (c2, d′)V . . . V (cn, d′) = (c′, d′). The proof
is complete. �

Notice that the mapping Φ in Theorem 1.2 is not one-to-one, in general. For
example, if � is a selfdual partially ordered set, then both U1 = {(x, y) ∈ A×A : x �

y}, V1 = {(x, x) : x ∈ A} and U2 = {(x, x) : x ∈ A}, V2 = {(x, y) ∈ A × A : x � y}
lead to the same isomorphism class of partially ordered sets. In this connection,

a natural question arises: under what conditions two couples U1, V1 and U2, V2
of binary relations on A satisfying (P1)–(P3′) give the same isomorphism class of

partially ordered sets.

Having a bijection α of A onto A, binary relations U1, V1 on A satisfying (P1)–
(P3′) and the corresponding partial order �1 (in the sense of 2.10), consider the
following conditions:

(C1) α(x) � α(y) =⇒ there exists a unique couple of elements p, q ∈ A satisfying

α(x) � α(p), α(q) � α(y), p �1 x, y �1 q;
(C2) p �1 q =⇒ inf{α(p), α(q)}, sup{α(p), α(q)} exist and

x = α−1(inf{α(p), α(q)}),
y = α−1(sup{α(p), α(q)})

are the only elements of A satisfying α(x) � α(p), α(q) � α(y), p �1 x,
y �1 q.

3.8. Theorem. Let U1, V1 and U2, V2 be two couples of binary relations on

A satisfying (P1)–(P3′), let �1 and �2 be the corresponding partial orders (in the
sense of 2.10). If α is an isomorphism of (A, �1) onto (A, �2), then
(1) α fulfils (C1), (C2) and
(2) U2 = {(x, y) ∈ A×A : x � y and α−1(x) �1 α−1(y)}∪{(x, y) ∈ A×A : x � y

and α−1(x) �1 α−1(y)}, V2 = {(x, y) ∈ A × A : x � y and α−1(x) �1
α−1(y)} ∪ {(x, y) ∈ A×A : x � y and α−1(x) �1 α−1(y)}.

�����. We start with (2). Obviously U2 = {(x, y) ∈ A × A : x � y and

x �2 y} ∪ {(x, y) ∈ A×A : x � y and x �2 y}. Since r �2 s (r, s ∈ A) is equivalent
to α−1(r) �1 α−1(s), we have what we need for U2. As to V2, we proceed analogously.
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Now let α(x) � α(y). Then there exists a unique couple of α(p), α(q) ∈
〈α(x), α(y)〉 with α(p)V2α(x)U2α(q)V2α(y)U2α(p) by (P2). The latter is equiva-
lent to α(p) �2 α(x), α(y) �2 α(q) and this holds if and only if p �1, x, y �1 q.
To prove (C2), take p �1 q. Then α(p) �2 α(q) and there exists α(x) � α(p), α(q)

satisfying α(p)V2α(x)U2α(q). Using (P3) we obtain that α(x) = inf{α(p), α(q)},
α(y) = sup{α(p), α(q)} exists and we have α(q)V2α(y)U2α(p). The latter means

α(p) �2 α(y) �2 α(q), which is equivalent to p �1 y �1 q. The relation p �1 x �1 q

follows from α(p)V2α(x)U2α(q). Now having x1, y1 satisfying α(x1) � α(p), α(q) �
α(y1), p �1 x1, y1 �1 q, it is easy to see that α(p)V2α(x1)U2α(q)V2α(y1)U2α(p),
which yields α(x1) = inf{α(p), α(q)}, α(y1) = sup{α(p), α(q)} by (P3) and (P3′).
But then α(x1) = α(x), α(y1) = α(y) and consequently x1 = x, y1 = y.
The proof is complete. �

Conversely, we have:

3.9. Theorem. Let U1, V1 be a couple of binary relations on A satisfying (P1)–

(P3′) and let α be any bijection of A onto A satisfying (C1), (C2). Taking U2, V2
as in (2) of 3.8, they satisfy the conditions (P1)–(P3′) and α is an isomorphism of

(A, �1) onto (A, �2) (�1 and �2 are the partial orders corresponding to U1, V1 and

U2, V2, respectively, in the sense of 2.10).

�����. The relations U2, V2 satisfy (P1) trivially. To prove (P2), let x′, y′ ∈ A,

x′ � y′. Take x, y ∈ A with α(x) = x′, α(y) = y′. The condition (C1) yields the
existence of a unique couple of elements p, q ∈ A satisfying α(x) � α(p), α(q) � α(y),

p �1 x, y �1 q. Set α(p) = p′, α(q) = q′. Then p′, q′ are the only elements of the
interval 〈x′, y′〉 with p′V2x′U2q′V2y′U2p′.

We are going to prove (P3). The proof of (P3′) would be analogous. Let u′ � p′, q′,
p′V2u′U2q′. Take u, p, q with α(u) = u′, α(p) = p′, α(q) = q′. Using the definition

of U2, V2 we obtain p �1 u �1 q. Now (C2) ensures the existence of inf{α(p), α(q)}
and sup{α(p), α(q)}, together with u′ = inf{α(p), α(q)}. It remains to show that
q′V2 sup{p′, q′}U2p′, which is equivalent to p �1 α−1(sup{p′, q′}) �1 q. But this
holds by (C2).
Finally, we have to prove that having any x, y ∈ A, x �1 y is equivalent to α(x) �2

α(y). Let x �1 y. Then there exists u ∈ 〈x, y〉1 such that α(u) = inf{α(x), α(y)}
by (C2). Now α(u) � α(x) together with u �1 x yields α(u)V2α(x), while α(u) �
α(y), u �1 y implies α(u)U2α(y). Consequently α(x) �2 α(y). Conversely, let
α(x) �2 α(y). Then there exists α(t) � α(x), α(y) with α(x)V2α(t)U2α(y). So we

have x �1 t �1 y and the proof is complete. �

It is easy to see that if α is an automorphism or a dual automorphism of � ,
then α satisfies the conditions (C1), (C2) for any U1, V1 fulfilling (P1)–(P3′) and
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the corresponding order �1. But a bijection α fulfilling (C1), (C2) need not be an

isomorphism or a dual isomorphism, as the following example shows:

3.10. Example. Let � be as in Fig. 4. Let U1 = {(a, b) ∈ A×A : a � b}, V1 =
{(t, t) : t ∈ A}, U2 = V1, V2 = U1, U3 = {(u, y), (y, u), (x, v), (v, x)} ∪ {(t, t) : t ∈ A},
V3 = {(x, u), (u, x), (y, v), (v, y)}∪{(t, t) : t ∈ A}, U4 = V3, V4 = U3. It is easy to see
that all couples satisfying (P1)–(P3′) are those of U1, V1, U2, V2, U3, V3 and U4, V4.

But each of them yields the same isomorphism class of partially ordered sets with
the interval system isomorphic to Int � . E.g., the mapping α such that α(u) = v,

α(v) = u, α(x) = x, α(y) = y mediates the transition from U1, V1 to U2, V2, while
Ψ defined by Ψ(u) = y, Ψ(y) = v, Ψ(v) = x, Ψ(x) = u is an intermediary between
U1, V1 and U4, V4.

x

u

y

v�
Fig. 4

The following question remains open:
Let � 1 × � 2 be a direct decompositon of � . Consider the class of all partially

ordered sets isomorphic to � δ
1 × � 2 . Does every pre-image (U, V ) of this class under

Φ satisfy (P4), (P5)? In particular, if the class Φ((U, V )) consists of all partially

ordered sets isomorphic to � (or � δ ), does (U, V ) satisfy (P4), (P5)?

4.

In this section we will apply the foregoing results to the case of a directed partially

ordered set.

4.1. Lemma. Let � = (A, �) be a directed partially ordered set, U , V binary
relations on A satisfying (P1)–(P3′). Then U , V satisfy also (P4) and (P5).

�����. Let a = a1Ua2U . . . Uan = a′, a = a′1V a′2V . . . V a′m = a′. Take a lower
bound x and an upper bound y of the set {a1, . . . , an, a′1 . . . , a′m} and elements p, q

as in (P2). Using 2.9 we get inf{p, a} = inf{p, a1} = inf{p, a2} = . . . = inf{p, a′}
and analogously inf{a, q} = inf{a′, q}. But then a = a′ by 2.8.

Further let a, a′ ∈ A. Take a lower bound x and an upper bound y of {a, a′}
and p, q as in (P2). Then p1 = inf{p, a}, q′1 = inf{a′, q} satisfy pV p1Ua, a′V q′1Uq,

p1V xUq′1. (P3) ensures the existence of t = sup{p1, q′1} with q′1V tUp1. Hence
aUp1UtV q′1V a′, completing the proof. �
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Using 1.2 we immediately get:

4.2. Theorem. Let � be a directed partially ordered set. If � is a partially
ordered set with Int � isomorphic to Int � , then there exist partially ordered sets � ,

� such that � is isomorphic to � × � and � is isomorphic to � δ × � .

The converse is evident, so we have:

4.3. Corollary. Let � be a directed partially ordered set, � any partially

ordered set. The following conditions are equivalent:

(i) Int � is isomorphic to Int � ,

(ii) there exist partially ordered sets � , � such that � is isomorphic to � × �

and � is isomorphic to � δ × � .

Since lattices are directed partially ordered sets, we obtain Theorem 1 of [11] as

a consequence of 4.3. Let us notice that if � is a lattice and � is a partially ordered
set with Int � isomorphic to Int � , then � is also a lattice, as 4.3 shows.

e2

f2

e1

f1

e0

f0

e−1

f−1

a1

b1

c1

d1

a0

b0

c0

d0

a−1

b−1

c−1

d−1�
Fig. 5

Without the assumption that � is directed, the assertion of 4.3 is false. To show
this, consider � as in Fig. 5. Let U and V be the relations marked out by the

full and dashed lines, respectively. It is easy to see that U , V fulfil the condi-
tions (P1)–(P3′) and (P5), but (P4) is not satisfied (e.g. e0V e1 and simultaneously

e0Ud0Ua0Ub0Uf1Ue1 holds). Taking the corresponding � 1 (in the sense of 2.10) as
� , depicted in Fig. 6, it fulfils (i) of 4.3, while it fails to satisfy (ii) of 4.3.
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