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CERTAIN TRANSFORMATIONS Tω AND LEBESGUE

MEASURABLE SETS OF POSITIVE MEASURE

Mukul Pal and Mrityunjoy Nath, Kalyani

(Received October 30, 1995)

Suppose that for every ω belonging to a metric space Ω, there is a certain transfor-
mation Tω transforming a Lebesgue measurable set in �N (N -dimensional Euclidean
space) into a Lebesgue measurable set in �N .

In [1] T.Neubrunn and T. Šalát introduced this type of transformations Tω for
measurable sets of the real line satisfying certain conditions.

In [2] M.Pal considered such transformations Tω for measurable sets in �N satis-
fying the following conditions which are equivalent to the conditions as introduced
by T.Neubrunn and T. Šalát for transformations Tω transforming a measurable set
of the real line into a measurable set of the real line provided N = 1.

(I) There exists ω0 ∈ Ω such that for every closed ball K = B[a, r] ⊂ �N with
centre a and radius r and for every sequence {ωn} (ωn ∈ Ω) converging to ω0,

lim
n→∞

[
sup

{
|a− Tωn(K)|

}]
= r

holds where the symbol
{
|a−A|

}
, a ∈ A, A ∈ �N denotes the set of all numbers

|a− x|, x ∈ A.

(II) If E and F are measurable sets in �N with F ⊂ E then Tω(F ) ⊂ Tω(E) for
every ω ∈ Ω.

(III) For ω0 ∈ Ω as in (I), for every sequence {ωn} (ωn ∈ Ω) converging to ω0 and
for every measurable set E,

lim
n→∞

∣∣Tωn(E)
∣∣ =

∣∣Tω0(E)
∣∣ = |E|

Keywords: N-dimensioanal Euclidean space, metric space, Lebesque measure, Tω trans-
formation
MSC 1991 : 28A05
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where |E| denotes the Lebesgue measure of the set E. Then among other re-
sults, M.Pal in [2] proved the following theorem which extends a theorem [The-
orem 1.1] proved by T.Neubrunn and T. Šalát in [1].

Theorem 1 [2]. Let Tωn(ωn ∈ Ω) be transformations satisfying the conditions
(I), (II), (III) and let the sequence {ωn} converge to ω0 (in Ω). Let A be a set of
positive measure in �N . Then there exists a natural number N0 such that for n � N0,
A ∩ Tωn(A) is a set of positive measure.

In [4] N.G. Saha and K.C.Ray also extended the above theorem considering a
family of transformations like Tω transforming a set in αN (the collection of all
measurable subsets of �N ) into a set αN and satisfying (II) and (III) mentioned
above and the following condition stated in the form we consider here:
(I′) Let a, b ∈ �N and let there exist a point ω0 ∈ Ω such that for every sequence

{ωn} (ωn ∈ Ω) converging to ω0,

lim
n→∞

[
sup

{
|b− Tωn(K)|

}]
= r

holds for every ball K = B[a, r], r > 0.
The purpose of the paper is to study some properties of sets in �N under trans-

formations like Tω which transform a measurable set in �N into a measurable set
in �N .

In this paper we relax the conditions (I) and (II) as considered by M.Pal in [2]
and extend the result of Theorem 1 of [2] as stated earlier. Theorem 2 of this
paper gives an extension of the result of a theorem in [4] by relaxing the condition
(I′) as considered by N.G. Saha and K.C.Ray. We prove Theorem 3 in which a
further extension of Theorem 2 is achieved. Before going into details we explain
some notation used in the sequel.

Notation.
1) B[c, �] stands for the closed ball with centre c and radius � while B(c, �) denotes
the open ball with the same centre and radius.

2) |x| denotes the norm of the vector x ∈ �N , while |x| stands for the absolute
value of the real number x.

3) A\B denotes the set of all points of the set A which do not belong to the set B.

4) For a set A ⊂ �N and a non-zero real number α, αA is the set {αx : x ∈ A}.
5) For sets A and B, A −B denotes the difference set

{a− b : a ∈ A, b ∈ B}.

6) For a ball K = B[a, r] ⊂ �N , dn stands for sup
{∣∣a− Tωn(K)

∣∣}.
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Throughout the paper Ω is a metric space and the set under consideration is a set
in �N . Now we introduce the conditions (i) and (iii) which are less restrictive than
the conditions (I) and (III) as considered by M.Pal in [2].
(i) Let there exist a point ω0 ∈ Ω such that for every sequence {ωn} (ωn ∈ Ω) con-
verging to ω0 and for every sequence {αn} of non-zero real numbers converging
to a non-zero real number α0 and for every ball K = B[a, r],

lim
n→∞

[
sup

{
|αna − Tωn(αnK)|

}]
= |α0|r.

(ii) For every ω ∈ Ω and for sets E and F with F ⊂ E, let

Tω(F ) ⊂ Tω(E).

(iii) For ω0 ∈ Ω as in (i), for every sequence {ωn} (ωn ∈ Ω) converging to ω0, for
every sequence {αn} of non-zero real numbers converging to a non-zero real
number α0 and for any measurable set E,

lim
n→∞

∣∣Tωn(αnE)
∣∣ =

∣∣Tω0(α0E)
∣∣− |α0E|.

If we take αn = i, n = 1, 2, . . ., then (i) and (iii) reduce to the conditions (I)
and (II).

In proving the results we follow the method as adopted by K.C. Ray in [3] with
the necessary modifications. In this connection we note a well known result [5], viz.

if T is a linear transformation in �N given by x′i =
N∑

j=1
aijxj , i = 1, 2, . . . , N and

aij ’s are real numbers and if E is a measurable set in �N , then
∣∣T (E)

∣∣ = δ|E| where
δ is the absolute value of the determinant of T.

As a Corollary of this result, it can be easily deduced that if α is a real number
and E is a measurable set in �N , then |αE| = |α|NE.

To substantiate our conditions (i) and (ii) as introduced above we present the
following examples:

Examples. Let � be the real line. Then � is a metric space with the usual
metric.
(i) Let Tωn(E) = E+ 1

2n , E being a measurable subset of � and let αn =
(
2− 1

2n

)
.

Then lim
n→∞

αn = 2. So, for a closed interval [1, 5]

K = sup
x∈K

∣∣∣3(αn)− Tωn

[(
2− 1
2n

)
x
]∣∣∣,

where 3 is the middle point of the interval [1, 5].

= sup
x∈K

∣∣∣3
(
2− 1
2n

)
−

[(
2− 1
2n

)
x+

1
2n

]∣∣∣ =
∣∣∣6−

[(
2− 1
2n

)
5 +

1
2n
+
3
2n

]∣∣∣

=
∣∣∣6− 10 + 1

n

∣∣∣ =
∣∣∣− 4 + 1

n

∣∣∣ =
∣∣∣4− 1

n

∣∣∣.
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So, lim
n→∞

dn = 4 = 2 · 2 = |α0| · r, where r = sup
x∈[1,5]

{
|3− x|

}
.

(ii) Let E = [0, 1] and let {αn} be a sequence of non-zero real numbers converging
to a non-zero real number α0. Then lim

n→∞

∣∣Tωn

(
αn[0, 1]

)∣∣, where

Tωn(E) = E +
1
n
= lim

n→∞

∣∣∣[0, αn] +
1
n

∣∣∣ or lim
n→∞

∣∣∣[αn, 0] +
1
n

∣∣∣
provided αn > 0 or αn < 0

= lim
n→∞

|αn| = |α0|.

Theorem 1. Let there exist an element ω0 ∈ Ω such that for a sequence
{ωn} (ωn ∈ Ω) converging to ω0 and for a sequence {αn} of non-zero real num-
bers converging to a non-zero real number α0 such that the sequence {Tωn} of
transformations satisfies the conditions (I), (II), (III).

Let A be a set of positive Lebesgue measure in �N . Then there exists a positive
integer N0 such that for a system of p positive integers N1, N2, . . . , Np with Ni > N0,
the set

1
α0

A ∩ TωN1

( 1
αN1

A
)
∩ TωN2

( 1
αN2

A
)
∩ . . . ∩ TωNp

( 1
αNp

A
)

is a set of positive measure.

�����. Since A is a set of positive Lebesgue measure, there exists a ball
K1 = B[a, r], a �= 0 such that

|K1 \A| < ε|K1| where 0 < ε <
1

(1 + p)(1 + 2p)
.

Let
dn = sup

{∣∣∣ 1
αn

a − Tωn

( 1
αn

K2

)∣∣∣
}

where K2 = B[a, s], s =
(

p
1+p

)1/N
r.

Since lim
n→∞

dn = 1
|α0|s and limn→∞

αn = α0, there exists a positive integer N1 such

that for every n > N1

∣∣∣dn − 1
|α0|

s
∣∣∣ <

r − s

2|α0|
and

∣∣∣ 1
αn

− 1
α0

∣∣∣ <
r − s

2|a||α0|
.

According to (iii), lim
n→∞

∣∣∣Tωn

[
1

αn
(A∩K2)

]∣∣∣ =
∣∣∣ 1α0 (A∩K2)

∣∣∣. So there exists a positive
integer N2 such that for n > N2,

∣∣∣∣
∣∣∣Tωn

[ 1
αn
(A ∩ K2)

]∣∣∣−
∣∣∣ 1
α0
(A ∩K2)

∣∣∣
∣∣∣∣ < ε

|K1|
|α0|N

.
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Let N0 = max(N1, N2). So for x ∈ K2 and for n > N0, we have

∣∣∣ 1
α0

a− Tωn

( 1
α0

x
)∣∣∣ =

∣∣∣ 1
α0

a− 1
αn

a+
1

αn
a− Tωn

( 1
α0

x
)∣∣∣

� |a|
∣∣∣ 1
α0

− 1
αn

∣∣∣+
∣∣∣ 1
αn

a − Tωn

( 1
α0

x
)∣∣∣

� |a|
∣∣∣ 1
α0

− 1
αn

∣∣∣+ dn � |a| r − s

2|a||α0|
+

r + s

2|α0|
=
1

|α0|
r.

So, Tωn

(
1

αn
K2

)
⊂ 1

α0
K1 for n > N0 and hence

Tωn

( 1
αn
(K2 ∩ A)

)
⊂ 1

α0
K1 for n > N0.

Let N1, N2, . . . , Np be p positive integers with Ni > N0. Also let

X =
[ 1
α0
(A ∩ K1)

]
∩ TωN1

[ 1
αN1

(A ∩ K2)
]
∩ TωN2

[ 1
αN2

(A ∩ K2)
]

∩ . . . ∩ TωNp

[ 1
αNp

(A ∩ K2)
]
.

So,

X =
( 1

α0
K1

)
\

[(( 1
α0

K1

)
\ 1

α0
A

)
∪

p⋃

i=1

{ 1
α0

K1 \ TωNi

( 1
αNi

(A ∩ K2)
)}]

.

Hence

|X | �
∣∣∣ 1
α0

K1

∣∣∣−
[∣∣∣ 1

α0
K1 \

1
α0

A
∣∣∣+

p∑

i=1

{ 1
α0

K1 \ TωNi

( 1
αNi

(A ∩ K2)
)}]

=
∣∣∣ 1
α0

K1

∣∣∣−
[∣∣∣ 1

α0
(K1 \A)

∣∣∣+ p
∣∣∣ 1
α0

K1

∣∣∣−
p∑

i=1

∣∣∣TωNi

( 1
αNi

(A ∩ K2)
)∣∣∣

]

=
∣∣∣ 1
α0

K1

∣∣∣−
∣∣∣ 1
α0
(K1 \A)

∣∣∣ − p
∣∣∣ 1
α0

K1

∣∣∣+
p∑

i=1

∣∣∣TωNi

( 1
αNi

(A ∩ K2)
)∣∣∣

>
∣∣∣ 1
α0

K1

∣∣∣−
∣∣∣ 1
α0
(K1 \A)

∣∣∣ − p
∣∣∣ 1
α0

K1

∣∣∣+ p
∣∣∣ 1
α0
(A ∩ K2)

∣∣∣− pε
|K1|
|α0|N

=
1

|α0|N
|K1| −

1
|α0|N

|K1 \A| − p
1

|α0|N
|K1|+ p

1
|α0|N

|A ∩K2| − pε
|K1|
|α0|N

>
1

|α0|N
|K1| −

1
|α0|N

ε|K1| − p
1

|α0|N
|K1|+ p

1
|α0|N

∣∣K2 \ (K2 \A)
∣∣ − pε

|K1|
|α0|N

=
1

|α0|N
|K1| −

1
|α0|N

ε|K1| − p
1

|α0|N
|K1|+ p

1
|α0|N

[
|K2| − |K2 \A|

]
− pε

|K1|
|α0|N
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=
1

|α0|N
|K1| −

1
|α0|N

ε|K1| − p
1

|α0|N
[
|K1| − |K2|

]
− p

1
|α0|N

|K2 \A| − pε
|K1|
|α0|N

>
1

|α0|N
|K1| −

1
|α0|N

ε|K1| −
1

|α0|N
|K2| − p

1
|α0|N

|K1 \A| − pε
|K1|
|α0|N

>
1

|α0|N
[
|K1| − |K2|

]
− 1
|α0|N

ε|K1| − p
1

|α0|N
ε|K1| − pε

|K1|
|α0|N

=
1

|α0|N
1
p
|K2| −

1
|α0|N

[1 + 2p]ε|K1|

=
1

|α0|N
1
p

p

1 + p
|K1| −

1
|α0|N

(1 + 2p)ε|K1|

=
1

|α0|N
[ 1
1 + p

− (1 + 2p)ε
]
|K1|

=
1 + 2p
|α0|N

[ 1
(1 + p)(1 + 2p)

− ε
]
|K1|

> 0, since 0 < ε <
1

(1 + p)(1 + 2p)
.

Hence X is a set of positive measure and so by (II′), for N1, N2, . . . , Np � N0 the set

1
α0

A ∩ TωN1

( 1
αN1

A
)
∩ TωN2

( 1
αN2

A
)
∩ . . . ∩ TωNp

( 1
αNp

A
)

is a set of positive measure.
This completes the proof. �

Corollary. Let αn = 1, n = 1, 2, . . .. Then Theorem 1 of [2] follows immediately.

Now we introduce the following condition which is equivalent to (I′).

Condition (i′). Let a, b ∈ �N , let there exist ω0 ∈ Ω (a metric space) and a
sequence {ωn} converging to ω0 such that for every ball K = B[b, r] (r > 0) and for
every sequence {αn} of non-zero numbers converging to a non-zero real number α0,

limsup
n→∞

{∣∣αna− Tωn(αnK)
∣∣} = |α0|r

holds. For the following theorems we denote the condition (ii) as the condition (ii′),
and the condition (iii) is replaced by the condition (iii′) which is the condition (iii)
with ω0 ∈ Ω as in (i′).

Theorem 2. Let A and B be sets of positive Lebesgue measure in �N and let
a and b be points of density of A and B, respectively. Let there exist an element
ω0 ∈ Ω and a sequence {ωn} (ωn ∈ Ω) converging to ω0 such that for a sequence
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{αn} of non-zero real numbers converging to α0(�= 0) the transformations Tωn satisfy
the conditions (i′), (ii′), (iii′) with respect to (a, b, ω0). Then there exists a natural
number N0 such that for a system of p elements ωN1 , ωN2 , . . ., ωNp of the sequence
{ωn} with Ni > N0,

1
α0

A ∩ TωN1

( 1
αN1

B
)
∩ TωN2

( 1
αN2

B
)
∩ . . . ∩ TωNp

( 1
αNp

B
)

is a set of positive measure.

�����. Since A and B are sets of positive measure, there exist balls KA =
B[a, r] (a �= 0) and KB = [b, r] such that |KA \A| < ε|KA|, |KB \B| < ε|KB| where
0 < ε < 1

2p2+2p+1 . Let sup
{∣∣ 1

αn
a− Tωn

(
1

αn
K2

)∣∣} = dn where K2 = B[b, s],

s =
( p

1 + p

)1/N

r.

Since lim
n→∞

dn = 1
|α0|s and limn→∞

αn = α0, there exists a positive integer N1 such that

for every n > N1 we have

∣∣∣dn − 1
|α0|

s
∣∣∣ <

r − s

2|α0|
and

∣∣∣ 1
αn

− 1
α0

∣∣∣ <
r − s

2|a||α0|
.

In virtue of (iii) K2 = B[a, s],

lim
n→∞

∣∣∣Tωn

[ 1
αn
(A ∩ K ′

2)
]∣∣∣ =

∣∣∣ 1
α0
(A ∩ K ′

2)
∣∣∣.

So, there exists a positive integer N2 such that for n > N2 we have
∣∣∣∣
∣∣∣Tωn

[ 1
αn
(A ∩ K ′

2)
]∣∣∣−

∣∣∣ 1
α0
(A ∩ K ′

2)
∣∣∣
∣∣∣∣ < ε1

where 0 < ε1 < ε
∣∣ 1
α0

K2
∣∣. Let N0 = max(N1, N2). Then, for x ∈ K2 and for n > N0,

∣∣∣ 1
α0

a − Tωn

( 1
α0

x
)∣∣∣ =

∣∣∣ 1
α0

a − 1
αn

a+
1

αn
a − Tωn

( 1
αn

x
)∣∣∣

� |a|
∣∣∣ 1
α0

− 1
αn

∣∣∣+
∣∣∣ 1
αn

a− Tωn

( 1
αn

x
)∣∣∣

� |a| r − s

2|a||α0|
+ dn � |a| r − s

2|a||α0|
+

r + s

2|α0|
=
1

|α0|
r.

So Tωn

(
1

αn
K2

)
⊂ 1

α0
KA and hence

Tωn

( 1
αn
(K2 ∩ B)

)
⊂ 1

α0
KA for n > N0.
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Let N1, N2, . . . , Np be positive integers with Ni > N0. Also let

X =
[ 1
α0
(A ∩ KA)

]
∩ TωN1

[ 1
αN1

(B ∩ K2)
]
∩ TωN2

[ 1
αN2

(B ∩ K2)
]

∩ . . . ∩ TωNp

[ 1
αNp

(B ∩ K2)
]
.

Then

X =
( 1

α0
KA

)
\

[(( 1
α0

KA

)
\ 1

α0
(KA ∩A)

)
∪

p⋃

i=1

{ 1
α0

KA \ TωNi

( 1
αNi

(B ∩K2)
)}]

.

Hence

|X | �
∣∣∣ 1
α0

KA

∣∣∣−
[∣∣∣ 1

α0
KA \ 1

α0
A

∣∣∣+
p∑

i=1

{∣∣∣ 1
α0

KA \ TωNi

( 1
αNi

(B ∩ K2)
)∣∣∣

}]

=
∣∣∣ 1
α0

KA

∣∣∣−
[∣∣∣ 1

α0
(KA \A)

∣∣∣+ p
∣∣∣ 1
α0

KA

∣∣∣−
p∑

i=1

∣∣∣TωNi

( 1
αNi

(B ∩ K2)
)∣∣∣

]

=
∣∣∣ 1
α0

KA

∣∣∣−
∣∣∣ 1
α0
(KA \A)

∣∣∣ − p
∣∣∣ 1
α0

KA

∣∣∣+
p∑

i=1

∣∣∣TωNi

( 1
αNi

(B ∩ K2)
)∣∣∣

>
∣∣∣ 1
α0

KA

∣∣∣−
∣∣∣ 1
α0
(KA \A)

∣∣∣ − p
∣∣∣ 1
α0

KA

∣∣∣+ p
∣∣∣ 1
α0
(B ∩ K2)

∣∣∣− pε1

=
1

|α0|N
|KA| −

1
|α0|N

|KA \A| − p
1

|α0|N
|KA|+ p

1
|α0|N

|B ∩ K2| − pε1

>
1

|α0|N
|KA| −

1
|α0|N

ε|KA| − p
1

|α0|N
|KA|+ p

1
|α0|N

∣∣K2 \ (K2 \B)
∣∣ − pε1

=
1

|α0|N
|KA| −

1
|α0|N

ε|KA| − p
1

|α0|N
|KA|+ p

1
|α0|N

[
|K2| − |K2 \B|

]
− pε1

=
1

|α0|N
|KA| −

1
|α0|N

ε|KA| − p
1

|α0|N
[
|KA| − |K2|

]
− p

1
|α0|N

|K2 \B| − pε1

>
1

|α0|N
|KA| −

1
|α0|N

ε|KA| −
1

|α0|N
|K2| − p

1
|α0|N

|KB \B| − pε1

>
1

|α0|N
[
|KA| − |K2|

] 1
|α0|N

ε|KA| − p
1

|α0|N
ε|KB| − pε

|K2|
|α0|N

=
1

|α0|N
1
p
|K2| −

1
|α0|N

ε
1 + p

p
|K2| − p

1
|α0|N

ε
1 + p

p
|K2| −

p

|α0|N
ε|K2|

=
1

|ao|N
[1
p
−

(1 + p

p
+ 1 + p+ p

)
ε
]
|K2|
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=
1

|α0|N
[1
p
−

(1 + p+ p+ 2p2

p

)
ε
]
|K2|

=
1 + 2p+ 2p2

|α0|Np

[ 1
1 + 2p+ 2p2

− ε
]
|K2|

> 0, since 0 < ε <
1

2p2 + 2p+ 1
.

Hence X is a set of positive measure and so by (ii), for N1, N2, . . ., Np � N0, the
set

1
α0

A ∩ TωN1

( 1
αN1

B
)
∩ TωN2

( 1
αN2

B
)
∩ . . . ∩ TωNp

( 1
αNp

B
)

is a set of positive measure.
This completes the proof. �

Theorem 3. Let A and B1, B2, . . ., Bp be sets of positive measure in �N and let a
and bi (i = 1, 2, . . . , p) be points of density of A and Bi (i = 1, 2, . . . , p), respectively.
Let there exist an element ω0 ∈ Ω and a sequence {ωi

n}(ωi
n ∈ Ω) (i = 1, 2, . . . , p)

converging to ω0 such that for a sequence {αn} of non-zero real number converging to
a non-zero real number α0, the sequence of transformations {Tωni} (i = 1, 2, . . . , p)
satisfies the conditions (i′), (ii′), (iii′) with respect to (a, bi, ω0). Then there exists a
natural number N0 such that for a system of p2 elements ωN1i, ωN2i, . . ., ωNpi of
the sequence {Tωni} with N i

k > N0 and for a system of p numbers αN1 , αN2 , . . .,
αNp of the sequence {αn} with Nk > N0 the set

1
α0

A ∩ Tω1N1

( 1
αN1

B1

)
∩ Tω1

N1
2

( 1
αN2

B1

)
∩ . . . ∩ Tω1

N1p

( 1
αNp

B1

)

∩ Tω2
N2
1

( 1
αN1

B2

)
∩ Tω2

N2
2

( 1
αN2

B2

)
∩ . . . ∩ Tω2

N2p

( 1
αNp

B2

)
∩ . . .

∩ Tωp

N
p
1

( 1
αN1

Bp

)
∩ Tωp

N
p
2

( 1
αN2

Bp

)
∩ . . . ∩ Tωp

N
p
p

( 1
αNp

Bp

)

is a set of positive measure.

�����. Since A and Bi (i = 1, 2, . . . , p) are sets of positive measure, there exist
balls KA = B[a, r], a �= 0 and KBi = B[bi, r] (i = 1, 2, . . . , p) such that

|KA \A| < ε|KA| and |KBi \Bi| < ε|KBi |, i = 1, 2, . . . , p,

where 0 < ε < 1+p
1+p+2p2 . Let sup

{∣∣ 1
αn

a− Tωn

(
1

αn
Ki
2

)∣∣} = di
n where Ki

2 = B[bi, s],

s =
( p

1 + p

)1/N

r.
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Since lim
n→∞

di
n =

1
|α0|s and limn→∞

αn = α0, there exists a positive integer N1 such that

for every n > N1,

∣∣∣di
n − 1

|α0|
s
∣∣∣ <

r − s

2|α0|
and

∣∣∣ 1
αn

− 1
α0

∣∣∣ <
r − s

2|a||α0|
.

In virtue of (iii) we have

lim
n→∞

∣∣∣Tωi
n

[ 1
αn
(A ∩ Ki

2)
]∣∣∣ =

∣∣∣ 1
α0
(A ∩ Ki

2)
∣∣∣.

So there exists a positive integer N2 such that for n > N2,
∣∣∣∣
∣∣∣Tωi

n

[ 1
αn
(A ∩ Ki

2)
]∣∣∣−

∣∣∣ 1
α0
(A ∩ Ki

2)
∣∣∣
∣∣∣∣ < ε1

where 0 < ε1 < ε
∣∣ 1
α0

Ki
2

∣∣. Let N0 = max(N1, N2). Then, for x ∈ Ki
2 and for n > N0

we obtain
∣∣∣ 1
α0

a − Tωi
n

( 1
α0

x
)∣∣∣ =

∣∣∣ 1
α0

a − 1
αn

a+
1

αn
a − Tωi

n

( 1
α0

x
)∣∣∣

� |a|
∣∣∣ 1
α0

− 1
αn

∣∣∣+
∣∣∣ 1
αn

a− Tωi
n

( 1
αn

x
)∣∣∣

� |a| r − s

2|a||α0|
+ di

n � |a| r − s

2|a||α0|
+

r + s

2|α0|
=
1

|α0|
r.

Hence Tωi
n

(
1

αn
Ki
2

)
⊂ 1

α0
KA and for n > N0 and for i = 1, 2, . . . , p. LetN i

1, N
i
2, . . . , N

i
p

and Ni (i = 1, 2, . . . , p) be positive integers with N i
k > N0 and Ni > N0. Also let

X =
[ 1
α0
(A ∩KA)

]
∩ Tω1

N11

[ 1
αN1

(B ∩ K12 )
]
∩ Tω1

N12

[ 1
αN2

(B1 ∩ K12)
]
∩ . . .

∩ Tω1
N1p

[ 1
αNp

(B1 ∩ K12 )
]

∩ Tω2
N2
1

[ 1
αN1

(B2 ∩ K22)
]
∩ Tω2

N2
2

[ 1
αN2

(B2 ∩K22 )
]
∩ . . .

∩ Tω2
N2p

[ 1
αNp

(B2 ∩ K22 )
]
∩ . . .

∩ Tωp

N
p
1

[ 1
αN2

(Bp ∩ Kp
2 )

]
∩ Tωp

N
p
2

[ 1
αN2

(Bp ∩ Kp
2 )

]
∩ . . .

∩ Tωp

N
p
p

[ 1
αNp

(Bp ∩ Kp
2 )

]
.

Then

X =
( 1

α0
KA

)
\
{[( 1

α0
KA

)
\ 1

α0
(KA∩A)

]
∪

p⋃

i=1

p⋃

j=2

[ 1
α0

KA\Tωi

Ni
j

( 1
αNj

(Bi∩Ki
2)

)]}
.
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Hence

|X | �
∣∣∣ 1
α0

KA

∣∣∣−
[∣∣∣ 1

α0
KA \ 1

α0
A

∣∣∣+
p∑

i=1

p∑

j=1

{∣∣∣ 1
α0

KA \ Tωi

Ni
j

( 1
αNj

(Bi ∩ Ki
2)

)∣∣∣
}]

=
∣∣∣ 1
α0

KA

∣∣∣−
[∣∣∣ 1

α0
(KA \A)

∣∣∣+ p2
∣∣∣ 1
α0

KA

∣∣∣−
p∑

i=1

p∑

j=1

∣∣∣Tωi

Ni
j

( 1
αNj

(Bi ∩ Ki
2)

)∣∣∣
]

=
∣∣∣ 1
α0

KA

∣∣∣−
∣∣∣ 1
α0
(KA \A)

∣∣∣ − p2
∣∣∣ 1
α0

KA

∣∣∣+
p∑

i=1

p∑

j=1

∣∣∣Tωi

Ni
j

( 1
αNj

(Bi ∩Ki
2)

)∣∣∣

>
∣∣∣ 1
α0

KA

∣∣∣−
∣∣∣ 1
α0
(KA \A)

∣∣∣ − p2
∣∣∣ 1
α0

KA

∣∣∣+ p
1

|α0|N
p∑

i=1

∣∣[Ki
2 \ {Ki

2 \Bi}]
∣∣− p2ε1

=
1

|α0|N
|KA| −

1
|α0|N

|KA \A| − p2
1

|α0|N
|KA|

+ p
1

|α0|N
p∑

i=1

[
|Ki
2| − |Ki

2 \Bi|
]
− p2ε1

>
1

|α0|N
|KA| −

1
|α0|N

ε|KA| − p2
1

|α0|N
|KA|+ p

1
|α0|N

[
p|K2| −

p∑

i=1

ε|KBi |
]
− p2ε1

=
1

|α0|N
|KA| −

1
|α0|N

ε|KA| − p2
1

|α0|N
|KA|+ p2

1
|α0|N

|K2| −
p2ε

|α0|N
|KA| − p2ε1

=
1

|α0|N
|KA| −

1
|α0|N

ε|KA| −
p2

|α0|N
[
|KA| − |K2|

]
− p2

|α0|N
|KA| − p2ε1

>
1

|α0|N
p

1 + p
|K2| −

1
|α0|N

ε
p

1 + p
|K2| −

p2

|α0|N
[ p

1 + p
|K2| − |K2|

]

− p2ε

|α0|N
p

1 + p
|K2| − p2

1ε
αN
0

|K2|

=
1

|α0|N
p

1 + p
|K2| −

1
|α0|N

ε
p

1 + p
|K2| − p

p2

|α0|N
[ p

1 + p
− 1

]
|K2|

− p3

|α0|N
ε
|K2|
1 + p

− p2

|α0|N
ε|K2|

=
1

|ao|N
[ p

1 + p
+

p2

1 + p

]
|K2| −

1
|α0|N

ε
[ p

1 + p
+

p3

1 + p
+ p2

]
|K2|

=
p

|α0|N
|K2| −

p

|α0|N
ε
1 + p+ 2p2

1 + p
|K2|

=
p

|α0|N
1 + p+ 2p2

1 + p

[ 1 + p

1 + p+ 2p2
− ε

]
|K2|

> 0, since 0 < ε <
1 + p

1 + p+ 2p2
.
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Hence X is a set of positive measure and so by (II), for N i
1, N

i
2, . . . , N

i
p, Ni � N0

(i = 1, 2, . . . , p) the set

1
α0

A ∩ Tω1
N1
1

( 1
αN1

B1

)
∩ Tω1

N1
2

( 1
αN2

B1

)
∩ . . . ∩ Tω1

N1p

( 1
αNp

B1

)

∩ Tω2
N21

( 1
αN1

B2

)
∩ Tω2

N22

( 1
αN2

B2

)
∩ . . . ∩ Tω2

N2p

( 1
αNp

B2

)
∩ . . .

∩ Tωp

N
p
1

( 1
αN1

Bp

)
∩ Tωp

N
p
2

( 1
αN2

Bp

)
∩ . . . ∩ Tωp

N
p
p

( 1
αNp

Bp

)

is a set of positive measure.
This completes the proof. �
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