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Czechoslovak Mathematical Journal, 48 (123) (1998), 821–831

ON COVERS IN THE LATTICE OF REPRESENTABLE �-VARIETIES

N. Ya. Medvedev, S. V. Morozova, Barnaul1

(Received July 10, 1996)

In the work [1] the first example of representable �-variety V without covers in the
lattice of representable �-varieties �0 was discovered. In connection with this result

the natural question on the existence of new examples of representable �-varieties
with this property arises.

In this paper the existence of at least five representable �-varieties without covers
in the lattice of representable �-varieties �0 is shown (Theorems 1, 2, 4). Some

properties of these �-varieties are described (Theorems 3, 5, 6).

1. Preliminaries

In this paper � denotes the set of natural numbers, [b, a] = b−1a−1ba; |x| = x∨x−1.
x � y(x, y > e) denotes xn � y for all n ∈ N . If |x|n � |y| and |x| � |y|m for some
n, m ∈ �, then the elements x, y are archimedean equivalent and this fact is denoted
by x ∼a y.

The �-variety R defined by the identity

(1) (x ∧ y−1x−1y) ∨ e = e

is called the �-variety of representable �-groups. Any �-variety X in which the
identity (1) is valid is called a representable �-variety. Since each �-group in R is a

subdirect product of totally ordered groups, any �-variety X , X ⊆ R is uniquely
determined by the totally ordered groups contained in X (in fact, any subdirectly
irreducible �-group ofR is totally ordered). The set �0 of all representable �-varieties

is a complete lattice under naturally defined operations of join and meet [2].

1 This work was done under financial support of Russian Fund of Fundamental Research
(code of project 96-01-00088) and grant No. 5 of Grant Center of Novosibirsk University
of RF State Committee on Higher Education.
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Let V1, V2 ∈ �0 . V1 is said to cover V2 in the lattice �0 if V1 ⊇ V2, V1 �= V2 and

the inclusions V1 ⊇ U ⊇ V2, where U ∈ �0 , imply V1 = U or V2 = U .

The basic facts on groups and �-groups can be found in [2, 3] and [4, 5] respectively.

Let Aβ be a subgroup of the additive group of reals, let 1 �= β be a positive real
number such that a ∈ Aβ implies βa, β−1a ∈ Aβ . Let Bβ be an infinite cyclic

subgroup of the multiplicative group of positive reals generated by the number β.
Then the set Tβ = {(r, a) | r ∈ Bβ , a ∈ Aβ} with the operation of multiplication
defined by the rule

(r, a)(r′, a′) = (rr′, ra+ a′)

is a group. The group Tβ is a totally ordered group under the lexicographic order:
(r, a) � 0 if r = βp and p > 0 or p = 0 and a � 0.

Lemma 1 [1]. Let G be a nonabelian totally ordered group with a convex

archimedean normal subgroup A such that the quotient group G/A is an infinite

cyclic group. Then G is isomorphic to a totally ordered group Tβ for some positive

real number β �= 1 and for some subgroup Aβ of the additive group of reals.

Lemma 2 [1]. Let Uβ = var�(Tβ) and Uβm = var�(Tβm) for m � 2. Then
Uβm ⊆ Uβ and Uβm �= Uβ .

Corollary. Tβ ∈ Uβ \ Uβm .

In the work [6] the automorphism ϕ of order 2 of the lattice of �-varieties � is
defined. It is also described how to rewrite the basis of identities of any �-varietyX

to the basis of identities of the �-variety ϕ(X ). More precisely, with any �-group G

we associate the �-group GR which is obtained from G by reversing order, and with

any �-variety ϕ(X ) we associate the �-variety ϕ(X ) =X R = {GR | G ∈X }.

Proposition 1. (Tβ)R ∼= Tβ−1.

The ����� is straightforward. �
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2. New examples of �-varieties without covers

In this section new examples of representable �-varieties without covers in the
lattice of representable �-varieties �0 will be constructed.

Let H be the �-variety defined by the identities

(x ∧ y−1x−1y) ∨ e = e,(1)
∣∣(|[x, y]|2 ∨ (|x| ∨ |y|)|[x, y]|(|x| ∨ |y|)−1

)
|[x, y]|−2

∣∣(2)

∧
∣∣(|[x, y]|m ∧ (|x| ∨ |y|)|[x, y]|(|x| ∨ |y|)−1

)
|[x, y]|−m

∣∣ = e

(m ∈ �;m � 3).

Lemma 3. Let β be a positive real number such that 0 < β < 1. Then 1) Tβ /∈H ,

2) H �⊇ Uβ = var�(Tβ).

�����. Let 0 < β < 1. Then there are t, m ∈ � such that 2 < β−t < m. We
claim that the identities of the �-variety H are not valid in Tβ where x = (β−t, c),

y = (β−t, 0), c > 0. Then |[x, y]| = (1, c(β−t − 1)) �= e in view of β−t > 2. Let
c(β−t − 1) = d. Thus, |[x, y]|2 = (1, 2d), |x| ∨ |y| = (βt,−cβt) ∨ (βt, 0) = (βt, 0).

Therefore, (|x| ∨ |y|)|[x, y]|(|x| ∨ |y|)−1 = (βt, 0)(1, d)(β−t, 0) = (1, β−td). It is clear
that (1, 2d) < (1, β−td) < (1, md). Hence, Tβ /∈H for any real number β, 0 < β < 1,

and H �⊇ Uβ = var�(Tβ). �

Corollary 1. Let β be a positive real number such that 0 < β < 1. Then

H �⊇ U m
β = var�(Tβm) for any positive integer m.

The ����� is similar to that of Lemma 3. �

Lemma 4. Let β be a positive real number such that β > 1. Then Tβ ∈H .

�����. Let x, y ∈ Tβ . Then x = (βt1 , c), y = (βt2 , d) and [x, y] = (1, c(βt2 −
1) + d(1 − βt1)). Let c(βt2 − 1) + d(1 − βt1) = a. Then |[x, y]| = (1, |a|), |x| ∨
|y| = (βt, k) where t > 0 or t = 0, k � 0 and (|x| ∨ |y|)|[x, y]|(|x| ∨ |y|)−1 =
(βt, k)(1, |a|)(β−t,−kβ−t) = (1, |a|β−t).

Therefore,

|[x, y]|2 ∨ (|x| ∨ |y|)|[x, y]|(|x| ∨ |y|)−1 = (1, 2|a|) ∨ (1, |a|β−t) = (1, 2|a|).

Since β > 1, it follows that the identities of the �-variety H are valid in Tβ . �

823



Theorem 1. The �-variety H has no covers in the lattice �0 .

�����. Assume, on the contrary, that there is an �-varietyH ∈ �0 which covers
H . SinceH is a representable �-variety, there is a totally ordered groupG ∈H \H
such that the identities of the �-variety H are not valid in it. Therefore, there are

x0, y0 ∈ G and a natural number m, m � 3 such that

(|x0| ∨ |y0|)|[x0, y0]|(|x0| ∨ |y0|)−1 > |[x0, y0]|2,(3)

|[x0, y0]|m > (|x0| ∨ |y0|)|[x0, y0]|(|x0| ∨ |y0|)−1.

This clearly yields |[x0, y0]| ∼a (|x0| ∨ |y0|)|[x0, y0]|(|x0| ∨ |y0|)−1. Thus, the jump
Gα ≺ Gα in the system of convex subgroups of G determined by the element |[x0, y0]|
is invariant under conjugation by (|x0| ∨ |y0|)−1 and Gα/Gα is isomorphic to a sub-

group of the additive group of real numbers. By Hölder’s Theorem [2, Theorem 3.2.1.]
the automorphism of conjugation by (|x0|∨|y0|) is the multiplication by some positive
real number β. From (3) we have β < 1.
Let G1 = gp(Gα, (|x0| ∨ |y0|)) be the subgroup of G generated by Gα and (|x0| ∨

|y0|). Then Gα � G1,
G1/Gα � Gα/Gα,

where Gα/Gα is a normal convex archimedean subgroup. By the Homomorphism
Theorem we have

G1/Gα/Gα/Gα
∼= G1/Gα

∼= (|x0| ∨ |y0|),

where |x0| ∨ |y0| = |x0|Gα ∨ |y0|Gα and (|x0| ∨ |y0|) denotes the infinite cyclic group
generated by the element |x0| ∨ |y0|. From Lemma 1 it follows that G1/Gα

∼= Tβ

where 0 < β < 1.

Hence, the �-variety H contains the �-variety Uβ = var�(Tβ) for some positive
real number β such that β < 1.

By Lemma 2 there is an �-variety Uβm such that Uβ ⊃ Uβm . By Lemma 3
and Corollary of Lemma 3, Uβ �⊆ H , Uβm �⊆ H . According to Lemma 3 and

Corollary of Lemma 2, we have Tβ /∈H , Uβm . Therefore, H ⊇ Uβ ∨H ⊃H and
H ⊇ Uβm∨H ⊃H . SinceH coversH , it follows thatH = Uβ∨H = Uβm∨H .
By Proposition 9.1.1 from the book [2] we have Tβ ∈ Uβm or Tβ ∈ H . These

inclusions contradict Lemma 3 and Corollary 1 of Lemma 3. �

M. Anderson, M. Darnel, T. Feil in their work [7] introduced (for some other

purposes) the representable �-variety C which is defined by the following identical
inequalities:

(4) ([b, a] ∨ e) ∧ b� b ∨ a−1ba, for all e � b � a.
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Now we will prove that the �-variety C has no covers in the lattice of representable

�-varieties �0 .

Our proof starts with rewriting the system of identical inequalities (4) defining

the �-variety C in the standard form of identities

(([|x|, |x| ∨ |y|] ∨ e) ∧ |x|)n ∧ (|x| ∨ (|x| ∨ |y|)−1|x|(|x| ∨ |y|))(5)

= (([|x|, |x| ∨ |y|] ∨ e) ∧ |x|)n, n ∈ �.

Lemma 5. Let β be any positive real number such that β < 1. Then Tβ ∈ C .

�����. Let y, x ∈ Tβ . Then |x| ∨ |y| = (βt1 , c), |x| = (βt2 , d).

Case 1. Let 0 < t2 � t1. Then

[|x|, |x| ∨ |y|] = (β−t2 ,−dβ−t2)(β−t1 ,−cβ−t1)(βt2 , d)(βt1 , c)

= (1, d(βt1 − 1) + c(1− βt2)).

Let d(βt1 − 1) + c(1− βt2) = c̄. Then [|x|, |x| ∨ |y|] = (1, c̄) and

([|x|, |x| ∨ |y|] ∨ e) ∧ |x| = (1, c̄ ∨ 0),
(|x| ∨ |y|)−1|x|(|x| ∨ |y|) = (βt2 , c(1− βt2) + dβt1).

Let c(1− βt2) + dβt1 = d. Then (|x| ∨ |y|)−1|y|(|x| ∨ |y|) = (βt2 , d) and

|x| ∨ (|x| ∨ |y|)−1|x|(|x| ∨ |y|) = (βt2 , d ∨ d).

Thus, (1, c̄ ∨ 0)� (βt2 , d ∨ d).

Case 2. Let now 0 = t2 � t1. Calculations similar to the previous ones prove this

case.

Thus, Tβ ∈ C in view of 0 < β < 1. �

Lemma 6. Let β be a positive real number such that β > 1. Then Tβ /∈ C and

C �⊇ Uβ = var�(Tβ).

�����. Let β > 1. Then there are t, n ∈ �, such that 2 < βt < n. The direct

verification shows that the identities (5) are violated in Tβ. In fact, let |x| = (1, d),
|x| ∨ |y| = (βt, c).
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Then:

[(1, d), (βt, c)] = (1, d(βt − 1)),
(1, d(βt − 1)) ∨ (1, 0) = (1, d(βt − 1)),
(1, d(βt − 1)) ∧ (1, d) = (1, d),
(βt, c)−1(1, d)(βt, c) = (1, dβt),

(1, dβt) ∨ (1, d) = (1, dβt).

Since βt < n, we have

(1, nd) ∧ (1, dβt) = (1, dβt), (1, nd) �= (1, dβt).

Therefore,

(([(1, d), (βt, c)] ∨ e) ∧ (1, d))n ∧ ((1, d) ∨ (βt, c)−1(1, d)(βt, c))

�= (([(1, d), (βt, c)] ∨ e) ∧ (1, d))n

and Tβ /∈ C for any positive real number such that β > 1. �

Corollary 1. For any positive integer m � 1 and positive real number β > 1 we

have Uβm = var�(Tβm) �⊆ C .

The ����� follows immediately from Lemma 6. �

Theorem 2. The �-variety C has no covers in the lattice of representable �-

varieties �0 .

�����. Assume, on the contrary, that there is an �-variety C ∈ �0 such that

C covers C . Since C is a representable �-variety, there is a totally ordered group G

such that G ∈ C \ C . Thus, there are x0, y0 ∈ G and a positive integer n > 1 such

that

(([|x0|, |x0| ∨ |y0|] ∨ e) ∧ |x0|)n ∧ (|x0| ∨ (|x0| ∨ |y0|)−1|x0|(|x0| ∨ |y0|))(6)

�= (([|x0|, |x0| ∨ |y0|] ∨ e) ∧ |x0|)n.

Since

([|x0|, |x0| ∨ |y0|] ∨ e) ∧ |x0| � |x0|, (|x0| ∨ (|x0| ∨ |y0|)−1|x0|(|x0| ∨ |y0|) � |x0|,

we have

([|x0|, |x0| ∨ |y0|] ∨ e) ∧ |x0| �� |x0| ∨ (|x0| ∨ |y0|)−1|x0|(|x0| ∨ |y0|).
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From this we deduce that

(([|x0|, |x0| ∨ |y0|] ∨ e) ∧ |x0|) ∼a (x0 ∨ (|x0| ∨ |y0|)−1|x0|(|x0| ∨ |y0|)).

Case 1. [|x0|, |x0| ∨ |y0|] = e. Since en � |x0|, it follows that the inequality (6) is
violated.

Case 2. [|x0|, |x0| ∨ |y0|] < e. Then the inequality (6) is violated, too.

Case 3. [|x0|, |x0| ∨ |y0|] > e. Then (|x0| ∨ |y0|)−1|x0|(|x0| ∨ |y0|) > |x0|. If
(|x0| ∨ |y0|) ∼a |x0|, then [|x0|, |x0| ∨ |y0|] � (|x0| ∨ |y0|) ∨ |x0| ∼a |x0|, and
the inequality (6) is violated. This implies that |x0| � (|x0| ∨ |y0|). If |x0| �
(|x0| ∨ |y0|)−1|x0|(|x0| ∨ |y0|), then the inequality (6) is not valid. Hence, |x0| ∼a

(|x0| ∨ |y0|)−1|x0|(|x0| ∨ |y0|). Consequently, the jump Gα ≺ Gα in the system of

convex subgroups of G defined by the element |x0| is invariant under conjugation
by (|x0| ∨ |y0|), and Gα/Gα is isomorphic to a subgroup of the additive group of

real numbers. By Hölder’s Theorem [2, Theorem 3.2.1.] the automorphism of con-
jugation by (|x0| ∨ |y0|) is the multiplication by some positive real number β > 0.

Hence, |x0| = r and |x0|(|x0|∨|y0|) = βr. If β = 1, then |x0|(|x0|∨|y0|)Gα = |x0|Gα

and |x0|−1|x0|(|x0|∨|y0|)Gα = Gα. Then [|x0|, |x0| ∨ |y0|] � |x0|, |x0|(|x0|∨|y0|). Since
([|x0|, |x0| ∨ |y0|]∨ e)∧|x0| = [|x0|, |x0| ∨ |y0|]∧|x0| = [|x0|, |x0| ∨ |y0|]� |x0| ∨ (|x0| ∨
|y0|)−1|x0|(|x0| ∨ |y0|), the inequality (6) is violated. Thus, β �= 1.
Now arguments similar to the proof of Theorem 1 show that G1/Gα

∼= Tβ. Since
|x0| < (|x0|∨|y0|)−1|x0|(|x0|∨|y0|), we can conclude that β > 1. Hence, the �-variety

C contains the �-variety Uβ = var�(Tβ) for some positive real number β such that
β > 1.

By Lemma 2 there exists an �-variety Uβm such that Uβ ⊃ Uβm . By Lemma 6
and Corollary of Lemma 6 we have Uβ �⊆ C , Uβm �⊆ C . According to Lemma 6 and

Corollary of Lemma 2, we have Tβ /∈ C , Uβm . Therefore, C ⊇ Uβ ∨ C ⊃ C and
C ⊇ Uβm ∨ C ⊃ C . Since C covers C , it follows that C = Uβ ∨ C = Uβm ∨ C . By

Proposition 9.1.1 from the book [2] we have Tβ ∈ Uβm or Tβ ∈ C . These inclusions
contradict Lemma 6 and Corollary 1 of Lemma 6. �

Lemmas 3, 6 imply that H �= C .

Let V [1] be the �-variety defined by the following infinite basis of identities:

(x ∧ y−1x−1y) ∨ e = e,(7)

|(|[x, y]|2 ∨ y−1|[x, y]|y)|[x, y]|−2| ∧ |(|[x, y]|2 ∨ x−1|[x, y]|x)|[x, y]|−2|
∧ |((|x| ∨ |y|)−1|[x, y]|(|x| ∨ |y|) ∧ |[x, y]|n)|[x, y]|−n|
∧ |((|x| ∨ |y|)|[x, y]|(|x| ∨ |y|)−1 ∧ |[x, y]|m)|[x, y]|−m| = e

(m, n ∈ �;n, m � 2).
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It is known [1] or [2] (Lemma 12.5.8) that V has no covers in the lattice �0 and

Tβ /∈ V for any positive real number β, β �= 1. Hence, V �=H , V �= C .
Let ϕ be the automorphism of order 2 of the lattice of �-varieties � which is defined

in [6].

Proposition 2. ϕ(V ) = V .

�����. In [6] the method of rewriting the basis of identities of any �-variety

X to the basis of identities of the �-variety ϕ(X ) is described. Now the direct
application of this method shows that the bases of the �-varieties ϕ(V ) and V are

the same. �

Now let us consider the �-varieties ϕ(C ) and ϕ(H ). Since ϕ(R) = R, it is clear
that these �-varieties have no covers in the lattice of representable �-varieties �0 , and

therefore, we have five possible different representable �-varieties without covers in
the lattice �0 .

3. Properties of l-varieties V , C , H , ϕ(C ), ϕ(H )

In this section we will prove that all these �-varieties V , C , H , ϕ(C ), ϕ(H ) are

distinct and we will also establish some of its properties.

Proposition 3. Let G1, G2 be totally ordered groups from the �-variety C (ϕ(C )).

Then the lexicographic product G1
←−×G2 is contained C (ϕ(C )).

�����. Let G1, G2 ∈ C and b, a ∈ G1
←−×G2 be such that e � b � a. Then

b = (b1, b2), a = (a1, a2) for some b1, a1 ∈ G1 and b2, a2 ∈ G2. Thus, [b, a] =

([b1, a1], [b2, a2]).

We claim that the following inequalities are valid in G1
←−×G2:

(8) (([b1, a1], [b2, a2]) ∨ e) ∧ (b1, b2)� (b1, b2) ∨ (a−11 b1a1, a
−1
2 b2a2).

Let [b2, a2] �= e, then the validity of the system of identities (8) on the elements b,

a is equivalent to the validity of (6) on the elements b2, a2 ∈ G2. Since G2 ∈ C , it
follows that the system (6) is true.
Let now [b2, a2] = e, then b2 = a−12 b2a2.

The groupG1
←−×G2 is a totally ordered group under the lexicographic order. There-

fore, if b2 > e in G2, then (b1, b2) > (g1, e) in the group G1
←−×G2 for any element

g1 ∈ G1. Thus

(([b1, a1], e) ∨ e) ∧ (b1, b2) = ([b1, a1] ∨ e, e) ∧ (b1, b2) = ([b1, a1] ∨ e, e).
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If b2 �= e, then the system of inequalities (8) has the following form:

(9) ([b1, a1] ∨ e, e)� (b1 ∨ a−11 b1a1, b2).

The validity of (9) is evident.

If b2 = e, the verification of (8) is reduced to its verification on the elements

b1, a1 ∈ G1. Since G1 ∈ C , it follows that the system (8) is true.
Therefore, the elements b, a satisfy the system of identities (5) of the �-variety C ,

and G1
←−×G2 ∈ C .

Now let us assume that G1, G2 ∈ ϕ(C ). Then GR
1 , GR

2 ∈ ϕ2(C ) = C , and by the

previous arguments GR
1
←−×GR

2 ∈ C .

Direct verification shows that (G1
←−×G2)R = GR

1
←−×GR

2 . From the above it follows

that (G1
←−×G2)R ∈ C and (G1

←−×G2) ∈ ϕ(C ). �

Theorem 3. The �-variety V is strictly contained in the �-variety H .

�����. Since V is a representable �-variety, it suffices to show that any totally

ordered group of the �-variety V belongs to the �-variety H .

On the contrary, assume that there exists a totally ordered group G ∈ V \H

such that the identities of the �-variety H are not valid in it. Therefore, there are

x0, y0 ∈ G and a natural number m such that

(|x0| ∨ |y0|)|[x0, y0]|(|x0| ∨ |y0|)−1 > |[x0, y0]|2,(10)

|[x0, y0]|m > (|x0| ∨ |y0|)|[x0, y0]|(|x0| ∨ |y0|)−1.

Hence, |[x0, y0]| ∼a (|x0| ∨ |y0|)|[x0, y0]|(|x0| ∨ |y0|)−1.
As in the proof of Theorem 1, this yields that Tβ ∈ V for some positive real

number β < 1, which is impossible by Lemma 12.5.7 form the book [2].
Consequently, V ⊆ H and by Lemma 4, the �-variety V is strictly contained

in H . �

Theorem 4. All �-varieties V , C , H , ϕ(C ), ϕ(H ) are distinct.

�����. By Lemma 5, Tβ ∈ C for any positive β, β < 1. Then Proposition 1
implies that (Tβ)R ∼= Tβ−1 ∈ ϕ(C ). Similarly, by Lemma 4, Tβ ∈H for any positive

β, 1 < β and (Tβ)R ∼= Tβ−1 ∈ ϕ(H ). By Lemma 12.5.8 form the book [2] we obtain
the inequalities V �= C , ϕ(C ), H , ϕ(H ).

From Lemma 3 it follows thatH �= ϕ(H ) and Lemmas 5 and 6 imply C �= ϕ(C ).

By the same argument H �= C and ϕ(H ) �= ϕ(C ).
So we need only to prove the remaining cases ϕ(H ) �= C and H �= ϕ(C ).
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Let T3
←−×T3 be the lexicographic product of two totally ordered groups T3. By

Proposition 3, T3
←−×T3 ∈ ϕ(C ). Direct verification shows that the identity

|(|[x, y]|2 ∨ (|x| ∨ |y|)|[x, y]|(|x| ∨ |y|)−1)|[x, y]|−2|
∧ |(|[x, y]|5 ∧ (|x| ∨ |y|)|[x, y]|(|x| ∨ |y|)−1)|[x, y]|−5| = e

is violated in T3
←−×T3 on x = ((1, 4), (1, 0)), y = ((13 , 4), (3, 0)).

Thus, T3
←−×T3 ∈ ϕ(C ) \H and ϕ(C ) �= H . Since ϕ is an automorphism of the

lattice of �-varieties �, it follows that ϕ(H ) �= C . �

It is worth pointing out that the �-variety V is strictly contained in the �-variety
C . This fact is proved in [8].

Theorem 5. V = C ∧H = C ∧ ϕ(C ) =H ∧ ϕ(H ) = ϕ(C ) ∧ ϕ(H ).

�����. We first prove that (C ∧H ) ⊆ V . Assume, on the contrary, that there

is a totally ordered group G ∈ (C ∧H ) \V . Thus, there are x0, y0 ∈ G and natural
numbers m, n such that

1) |[x0, y0]|2 < y−10 |[x0, y0]|y0;
2) |[x0, y0]|2 < x−10 |[x0, y0]|x0;
3) |[x0, y0]|n > (|x0| ∨ |y0|)−1|[x0, y0]|(|x0| ∨ |y0|);
4) |[x0, y0]|m > (|x0| ∨ |y0|)|[x0, y0]|(|x0| ∨ |y0|)−1.

Let |x0| < |y0|. Then 3) and 4) can be rewritten in the form

3.1) |y0|−1|[x0, y0]||y0| < |[x0, y0]|n,
4.1) |y0||[x0, y0]||y0|−1 < |[x0, y0]|m.

Hence,

|[x0, y0]| < |y0|−1|[x0, y0]|m|y0| = (|y0|−1|[x0, y0]||y0|)m < |[x0, y0]|mn.

Therefore, the elements |[x0, y0]| and |y0|−1|[x0, y0]||y0| are archimedean equivalent.
Consider the jump Gα ≺ Gα in the system of convex subgroups of G defined by the
element |[x0, y0]|. As in the proof of Theorem 1, it yields that Tβ ∈ (C ∧H ) for

some positive β, β �= 1. This fact contradicts Lemmas 3, 6. Thus, (C ∧H ) ⊆ V .
The converse statement is obvious.

The other equalities are proved similarly. �

Theorem 6. The �-varieties V , C , H , ϕ(C ), ϕ(H ) have the following proper-

ties: first, they have no independent basis of identities, and second, they contain all

representable covers of the abelian �-variety.
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�����. The first property follows from Proposition 12.7.1 [2]. The second

follows immediately from the distributivity of the lattice of �-varieties � and from
the non-existence of covers in the lattice of representable �-varieties �0 of all these
�-varieties. �

Remark. Theorem 1 was proved by the first author, Theorems 2, 3 by the second
and all other results were obtained in common discussions.
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