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Czechoslovak Mathematical Journal, 48 (123) (1998), 793–808

ANTIATOMIC RETRACT VARIETIES OF MONOUNARY

ALGEBRAS

Danica Jakubíková-Studenovská, Košice

(Received May 24, 1996)

Retracts of monounary algebras were investigated in the papers [2]–[4].
The notion of the retract variety of monounary algebras was introduced in [5] by

applying an analogy with the notion of the order variety of partially ordered sets
studied in [1].

The collection R of all retract varieties of monounary algebras was investigated
in [5]. This collection is considered to be partially ordered by the class-theoretical

inclusion. A retract variety V is called atomic if V �= ∅ and, whenever V ′ is a retract
variety with ∅ �= V ′ ⊆ V , then V ′ = V . It was proved that there are exactly 2ℵ0

atomic retract varieties in R.
A retract variety V of R is said to be antiatomic if V �= ∅ and there is no atomic

variety V1 of R with V1 ⊆ V .
In view of the relation ⊆ for pairs of retract varieties V1, V2 of R, we apply also

the symbols inf {V1, V2} and sup {V1, V2} in the usual way. Namely, if V1, V2, V3
belong to R and

(i) V1 ⊆ V3, V2 ⊆ V3,

(ii) if V belongs to R, V1 ⊆ V , V2 ⊆ V , then V3 ⊆ V ,

then we write V3 =sup{V1, V2}. The notion inf {V1, V2} is defined dually.
The description of all antiatomic retract varieties of R is given in Theorem 3.2.

Further we investigate the collection Ant of all antiatomic retract varieties of R; the
following results will be proved:

(a) Ant is closed with respect to the operations of inf and sup.
(b) There is a proper class O of ordinals with the following properties:

(b1) For each α ∈ O there exists Wα ∈ Ant such that, whenever α, β ∈ O,
α �= β, then Wα � Wβ .
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(b2) For each α ∈ O there exists Vα ∈ Ant such that, whenever α, β ∈ O, β < α,

then Vβ � Vα.

1. Preliminaries

The symbol U will denote the class of all monounary algebras. Let A = (A, f) ∈
U . A nonempty subsetM of A is said to be a retract of A if there is a mapping h of

A onto M such that h is an endomorphism of A and h(x) = x for each x ∈ M . The
mapping h is then called a retraction endomorphism corresponding to the retract

M .
ForK ⊆ U let R(K ) (P (K )) be the class of monounary algebras whose elements

are all retracts (direct products) of members of K and their isomorphic images.
A class K of monounary algebras is said to be retract (product) closed if it is

closed with respect to isomorphisms and if it contains all retracts (direct products)
of members of K . A class K is said to be a retract variety if it is retract closed and

product closed. By a retract variety V (K ) generated by K (cf. [5]) we understand
the class of all monounary algebras such that any of them is a member of every

retract variety C such that C ⊇ K .

1.1. Lemma. ([5], 1.3) If K ⊆ U , then V (K ) = RP (K ).

In what follows we will use the notion of the degree of an element x ∈ A, where
(A, f) ∈ U ; for this notion cf. e.g. [7], [6] and [2]. The degree of x ∈ A is an ordinal
or the symbol ∞ and is denoted by sf (x).

We will use without quotation the following properties of sf (x):

(A) Let (A, f) =
∏
i∈I

(Ai, f), x ∈ A. Then sf (x) � sf (x(i)) for each i ∈ I.

(B) If ϕ is a homomorphism of (A, f) into (B, g) and x ∈ A, then sg(ϕ(x)) �
sf(x).

1.2. Definition. Let (A, f) be a connected monounary algebra. We say that
(A, f) is unbounded, if

(i) sf(x) �=∞ for each x ∈ A,

(ii) if x ∈ A, n ∈ �, then there is m ∈ � such that f−(m+n)(fm(x)) �= ∅.

1.3. Lemma. Let (A, f) be a connected monounary algebra. Then (A, f) is

unbounded if and only if

(i) sf(x) �=∞ for each x ∈ A,

(ii′) there is x ∈ A such that if n ∈ �, then there ism ∈ � with f−(m+n)(fm(x)) �=
∅.
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�����. Obviously, if (i) and (ii) hold, then (i) and (ii′) hold. Suppose that (i)

and (ii′) are valid. Let x1 ∈ A, n1 ∈ �. The algebra (A, f) is connected, thus there
are k, l ∈ � ∪ {0} with

(1) fk(x) = f l(x1).

There is j ∈ � such that l − k + j � 0. Put n = n1 + l − k + j. According to (ii′),

there are m ∈ � and y ∈ A such that

(2) fm+n(y) = fm(x).

Denote m1 = m+ l − k + j. Then m1 ∈ � and (1) and (2) imply

fm1(x1) = fm+l−k+j(x1) = fm+j(x)

= fm+n+j(y) = f (m1−l+k−j)+(n1+l−k+j)+j(y)

= fm1+n1(f j(y)).

Therefore

(3) f−(m1+n1)(fm1(x1)) �= ∅,

which implies that (ii) is valid. �

Remark. It can be shown that the conditions (ii) and (ii′) are equivalent for each
connected monounary algebra.

We will apply the following notation introduced in [5]:

1.4. Notation. Let � be the set of all positive integers, � the set of all integers.
�= (�, f), where f(k) = k + 1 for each k ∈ �,
� = (�, f), where f(k) = k + 1 for each k ∈ �.

1.5. Lemma. Let (A, f) be a monounary algebra such that sf (x) �= ∞ for

each x ∈ A. If (B, f) is a connected component of (A, f), then (B, f) fails to be
unbounded if and only if there exist distinct elements ek ∈ B for k ∈ � such that
f(ek) = ek+1 and f−k(ek) = ∅ for each k ∈ �.

�����. Suppose that (B, f) is a connected component of (A, f) and that (B, f)

fails to be unbounded. Then in view of 1.2, either

(1) sf (x) =∞ for some x ∈ B
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or

there are x ∈ B, n ∈ � such that if m ∈ �, then(2)

f−(m+n)(fm(x)) = ∅.

The assumption yields that (2) is valid. We can suppose that n is the least positive
integer with the above property, i.e., that

there are x ∈ B, n ∈ � such that if m ∈ �, then(2′)

f−(m+n)(fm(x)) = ∅ and f−(m+n−1)(fm(x)) �= ∅.

Let x and n satisfy (2′). Take a fixed m ∈ � and an arbitrary element

e1 ∈ f−(m+n−1)(fm(x)).

Further, put

(3) ek = fk−1(e1) for each k ∈ �, k > 1.

The elements ek (for k ∈ �) are then distinct by (1) and

(4) f(ek) = ek+1 for each k ∈ �.

Suppose that there is y ∈ f−k(ek) for some k ∈ �. We get

fk(y) = ek = fk−1(e1) ∈ f−n(fk(x)),

y ∈ f−(k+n)(fk(x)),

a contradiction to (2). Hence f−k(ek) = ∅ for each k ∈ �.
Conversely, let there exist distinct elements {ek : k ∈ �} with f(ek) = ek+1 and

f−k(ek) = ∅ for each k ∈ �. If we take x = e1, n = 1, then, for m ∈ �,

f−(m+1)(fm(x)) = f−(m+1)(fm(e1))

= f−(m+1)(em+1) = ∅.

Therefore (B, f) satisfies (2) and we obtain that (B, f) fails to be unbounded. �

1.6. Corollary. Let (A, f) be a monounary algebra such that sf (x) �= ∞ for
each x ∈ A. If (B, f) is a connected component of (A, f), then (B, f) is unbounded

if and only if � /∈ R(B, f).

�����. The assertion is a consequence of 1.5 and of [3], 3.2. �
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1.7. Lemma. Let (A, f) be a monounary algebra such that sf (x) �=∞ for each
x ∈ A. The following conditions are equivalent:

(i) if (B, f) is a connected component of (A, f), then (B, f) fails to be un-

bounded;

(ii) � ∈ R(A, f).

�����. Suppose that � ∈ R(A, f). Then there is a subalgebra (E, f) of (A, f)

with (E, f) ∼= � such that E is a retract of (A, f).

Hence E = {en : n ∈ �}, where ei �= ej for i, j ∈ �, i �= j and f(en) = en+1

for each n ∈ �. Let (B, f) be a connected component of (A, f). Then there is an

endomorphism ϕ of (B, f) into (E, f) and there is i ∈ � such that

ϕ−1(ej) ∩B = ∅ for each j ∈ �, j < i,(1)

ϕ−1(ej) ∩B �= ∅ for each j ∈ �, j � i.(2)

Denote by b1 an arbitrary element of ϕ−1(ei) ∩ B and, for each n ∈ �, n > 1, put
bk = fk−1(b1). Obviously,

(3) f(bk) = bk+1 for each k ∈ �.

Let k ∈ � and suppose that there is y ∈ f−k(bk). Then fk(y) = bk, which implies

fk(ϕ(y)) = ϕ(fk(y)) = ϕ(bk) = ϕ(fk−1(b1))

= fk−1(ϕ(b1)) = fk−1(ei) = fk−1(f i−1(e1))

= fk+i−2(e1).

Thus

ϕ(y) ∈ f i−2(e1),

which yields that i > 1 and

ϕ(y) = ei−1.

Therefore

y ∈ ϕ−1(ei−1) ∩B,

which contradicts (1). According to (3) and 1.5 we obtain that (i) is valid.

Now let (i) hold. By 1.6, for each connected component (B, f) of (A, f) we have

� ∈ R(B, f), hence � ∈ R(A, f). �
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2. sf (x) =∞ for some x

In 2.1 – 2.6 we suppose that V ∈ R and that there exist A = (A, f) ∈ V and
x0 ∈ A such that sf (x0) =∞.
The definition of sf (x) implies

2.1. Lemma. There is a subalgebra of A such that either it is isomorphic to �
or it is a cycle.

2.2. Lemma. Assume that each connected component of A is a cycle. Further

suppose that

(i) if (B, f), (C, f) are cycles of A , card B �= card C, then card B does not

divide card C.

Then V /∈ Ant.

�����. Let the assumption hold. There is a subalgebra (E, f) of (A, f) such

that

if (B, f), (C, f) are cycles of (E, f) then card B �= card C;(1)

if (B, f) is a cycle of A , then there is a cycle (C, f) of (E, f)(2)

with card B = card C.

By [2], 1.3 we obtain

(3) (E, f) ∈ R(A, f),

which implies

(4) V (E, f) ⊆ V (A, f) ⊆ V .

Further, (E, f) satisfies (i), hence [5], 3.9 yields that V (E, f) is atomic. According
to (4) we get that V /∈ Ant. �

2.3. Lemma. If each connected component of A is a cycle, then V /∈ Ant.

�����. Suppose that each connected component of A is a cycle. For x ∈ A let
n(x) be the cardinality of the cycle C (x) with x ∈ C (x). Further let E be the set of
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all x ∈ A such that if y ∈ A−C (x), then either n(y) = n(x) or n(y) does not divide

n(x). The algebra (E, f) satisfies the condition (i) of 2.2, hence

(1) V (E, f) /∈ Ant.

Further, the definition of (E, f) implies (according to [2],1.3) that we have

(2) (E, f) ∈ R(A, f).

By (2), V (E, f) ⊆ V (A, f) ⊆ V , hence (1) yields that V /∈ Ant. �

2.4. Lemma. If each connected component of A contains a cycle and there is

x ∈ A which does not belong to any cycle, then V /∈ Ant.

�����. Let the assumption hold and let D be the set–theoretical union of all
cycles of A . Then [2], 1.3 implies (D, f) ∈ R(A, f), thus

V (D, f) ⊆ V (A, f) ⊆ V .

Further, V (D, f) /∈ Ant with respect to 2.3, hence we obtain that V /∈ Ant, either.

�

2.5. Lemma. Suppose that (A, f) contains a subalgebra which is a cycle. Then
V /∈ Ant.

�����. Let B be the set of all elements of connected components of (A, f)
which contain a cycle. By the assumption, B �= ∅. From 2.3 and 2.4 we get

(1) V (B, f) /∈ Ant.

Further, [2], 1.3 implies (B, f) ∈ R(A, f), hence

(2) V (B, f) ⊆ V (A, f) ⊆ V .

Then (1) and (2) yield that V /∈ Ant. �

2.6. Lemma. Suppose that no subalgebra of (A, f) is a cycle. Then V /∈ Ant.

�����. By 2.1, there is a subalgebra B of A such that B ∼= �. Then [2], 1.3
implies �∈ R(A ), thus

V (�) ⊆ V (A ) ⊆ V .

Since V (�) is atomic, we obtain that V /∈ Ant. �
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2.7. Proposition. If V ∈ R and there are (A, f) ∈ V and x ∈ A with

sf (x) =∞, then V /∈ Ant.

�����. Let the assumption hold. By 2.1, there is a subalgebraB of (A, f) such
that either

(1) B is a cycle of (A, f)

or

(2) B ∼= �.

If (1) is valid, then 2.5 yields that V /∈ Ant. If no subalgebra of (A, f) is a cycle,

then the required assertion is obtained by virtue 2.6. �

3. The collection Ant

In this section we will describe all antiatomic retract varieties of R. Further, it

will be proved that Ant is closed with respect to the operations of inf and sup. It is
obvious that if V1, V2 ∈ Ant, then

inf{V1, V2} = V1 ∩ V2

and that inf {V1, V2} belongs to Ant. We have to show that if V1, V2 ∈ Ant, then

sup {V1, V2} belongs to Ant, as well.

3.1. Lemma. Let V1, V2 ∈ Ant. Then sup {V1, V2} = RP (V1 ∪ V2).

�����. The assertion is a consequence of 1.1. �

3.2. Theorem. Let V ∈ R. The following conditions are equivalent:

(i) V ∈ Ant;

(ii) if (A, f) ∈ V , then sf (x) �= ∞ for each x ∈ A and there is a connected

component B of (A, f) such that B is unbounded.

�����. Let (i) hold and let (ii) be not valid. There exists (A, f) ∈ V such that

either

(1) there is x ∈ A with sf (x) =∞
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or

(2) if B is a connected component of (A, f), then B fails to be unbounded.

From 2.7 it follows that (1) is not valid, thus (2) holds. Then 1.7 implies that

� ∈ R(A, f), therefore
V (� ) ⊆ V (A, f) ⊆ V .

Since V (� ) is atomic, we obtain that V /∈ Ant, a contradiction.

Conversely, suppose that (ii) is valid and that (i) fails to hold. Then there is an
atomic retract variety V (A ) in R such that V (A ) ⊆ V . By (ii),

(1) sf (x) �=∞ for each x ∈ A.

Therefore [5], 3.9 implies

(2) V (A ) = V (� ).

According to (2) we have � ∈ V . Moreover, � is the unique connected component
of � and � fails to be unbounded, which is a contradiction to (ii). �

3.3. Lemma. Let V1, V2 ∈ Ant, (A, f) ∈ P (V1 ∪ V2). Then sf (x) �=∞ for each
x ∈ A.

�����. By assumption, there are (A1, f) ∈ V1 and (A2, f) ∈ V2 with (A, f) =

(A1, f)× (A2, f). Let x = (x1, x2) ∈ A1 ×A2. Then

(1) sf (x) � sf (x1).

Since x1 ∈ A1, (A1, f1) ∈ V1 ∈ Ant, we obtain according to 3.2

(2) sf (x1) �=∞.

Hence (1) and (2) yield sf (x) �=∞. �

3.4. Lemma. Let the assumption of 3.3 hold. There is x ∈ A such that if

n ∈ �, then there is m ∈ � with f−(m+n)(fm(x)) �= ∅.

�����. Analogously as in 3.3, (A, f) = (A1, f) × (A2, f), where (A1, f) ∈ V1,
(A2, f) ∈ V2. Further, 3.2 implies that there are connected components (B1, f) of

(A1, f) and (B2, f) of (A2, f) which are unbounded. Hence

there is x1 ∈ B1 such that if n ∈ �, then there is(1)

m1 ∈ � with f−(m1+n)(fm1(x1)) �= ∅.
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Let the analogous assertion for B2 be denoted by (2). Put

x = (x1, x2) ∈ B1 × B2.

Let n ∈ �. According to (1) and (2) there are m1, m2 ∈ � with

f−(m1+n)(fm(x1)) �= ∅, f−(m2+n)(fm2(x2)) �= ∅;

take y1 ∈ f−(m1+n)(fm1(x1)), y2 ∈ f−(m2+n)(fm2(x2)). Denote y = (y1, y2), m =

max {m1, m2}. Then we have

fm+n(y1) = f (m−m1)+(m1+n)(y1) = fm−m1(fm1(x1)) = fm(x1),

fm+n(y2) = fm(x2),

i.e., y ∈ f−(m+n)(fm(x)) �= ∅. �

3.5. Corollary. Let the assumption of 3.3 hold. Then there is a connected
component B of (A, f), which is unbounded.

3.6. Lemma. Let V1, V2 ∈ Ant, (A, f) ∈ RP (V1 ∪ V2). There is a connected

component B of (A, f), which is unbounded.

�����. By assumption, (A, f) ∈ R(A′, f), where (A′, f) ∈ P (V1∪V2). Then 3.3
implies that sf (x′) �= ∞ for each x′ ∈ A′, thus sf (x) �= ∞ for each x ∈ A, because

(A, f) ∈ R(A′, f). Further, 3.5 yields that there is a connected component B′ of
(A′, f) such that B′ is unbounded. Consider a retraction endomorphism ϕ of (A′, f)

onto (A, f) and let B be the connected component of (A, f) with ϕ(B′) ⊆ B. Then
it is obvious that B is unbounded. �

3.7. Theorem. The collection Ant is closed with respect to the operations of

inf and sup.

�����. It suffices to prove that if V1, V2 ∈ Ant, then sup {V1, V2} ∈ Ant. Let

V1, V2 ∈ V . By 1.1, sup {V1, V2} = RP (V1∪V2). Let (A, f) ∈ RP (V1∪V2). We have
(A, f) ∈ R(A′, f) for some (A′, f) ∈ P (V1 ∪ V2). Then 3.3 implies that sf (x′) �= ∞
for each x′ ∈ A′ and since (A, f) is isomorphic to a subalgebra of (A′, f), sf (x) �=∞
for each x ∈ A as well. Further, there is a connected component B of (A, f) which

is unbounded in view of 3.6. Hence 3.2 yields that sup {V1, V2} ∈ Ant. �
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4. Large antichain of antiatomic retract varieties

In [5], for each ordinal α, a connected monounary algebra Pα = (Pα, g) was
described such that there are distinct elements pα, cα ∈ Pα with the following prop-

erties:

(a) g(pα) = g(cα) = cα;

(b) if x ∈ Pα − {cα}, then there is n ∈ � ∪ {0} with gn(x) = pα;
(c) sg(pα) = α.

4.1. Notation. For α ∈ Ord and n ∈ � we denote nα = (n, α). Let α ∈
Ord. Put �α = {nα : n ∈ �}. Further, we denote by Aα = (Aα, f) the monounary

algebra such that

Aα = �α ∪ Pα,

f(nα) = (n+ 1)α for each n ∈ �,

f(x) =

{
g(x) if x ∈ Pα − {cα},
1α if x = cα.

4.2. Lemma. If α is an infinite ordinal, then Aα is unbounded.

�����. The assertion follows from the definition of Aα and from the definition

of the degree. �

4.3. Lemma. If α is an infinite ordinal, then V (Aα) ∈ Ant.

�����. Let α be an infinite ordinal. We will apply 3.2. Suppose that (A, f) ∈
V (Aα). By 1.1, (A, f) ∈ RP (Aα), i.e., there are a nonempty set I and a monounary

algebra (D, f) such that

(A, f) ∈ R(D, f),(1)

(D, f) = A card I
α .(2)

Let x ∈ A. By (1), (A, f) is isomorphic to a subalgebra of (D, f), thus the property
(B) of sf (x) implies that there is y ∈ D with

(3) sf (x) � sf (y).

Let y(i) be the i–th projection of y into Aα. We have

(4) sf (y) � sf (y(i)).
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Further, 4.1 implies sf (y(i)) �=∞, thus (3) and (4) yield

(5) sf (x) �=∞ for each x ∈ A.

Define an element d ∈ D by putting d(i) = 1α for each i ∈ I. The algebra Aα is
unbounded, thus for each n ∈ � there is m ∈ � with

(6) f−(m+n)(fm(1α)) �= ∅.

Since card fm(1α) = 1 for each m ∈ �, the relation (6) implies

(6’) f−n(1α) �= ∅,

i.e.,

(6′′) f−n(d(i)) �= ∅.

Thus we obtain

(7) f−n(d) �= ∅ for each n ∈ �.

Then obviously f−(n+1)(f(d)) �= ∅ for each n ∈ �, i.e.,

there is d ∈ D such that if n ∈ �, then there is(8)

m(= 1) with f−(n+m)(fm(d)) �= ∅.

According to (1), (8) holds in (A, f) as well, thus in view of 3.2, (5) and (8) yield
that V is antiatomic. �

4.4. Lemma. Let α be an ordinal, x ∈ Aα. Then there is n ∈ � ∪{0} such that
sf (x) � α+ n.

�����. We have x ∈ �α ∪ Pα. If x ∈ Pα − {cα}, then the definition of sf (x)
implies sf (x) = sg(x) � sg(pα) = α. If x = cα, then sf (x) = sf (cα) = sf (pα) + 1 =

α+ 1. If x = kα, k ∈ �, then sf (x) = α+ k + 1. �

4.5. Lemma. Let α be an ordinal. If (C, f) ∈ V (Aα), x ∈ C, then there is

n ∈ � ∪ {0} such that sf (x) � α+ n.

�����. Since V (Aα) = RP (Aα), it suffices to show that if x ∈ Acard I
α , I �= ∅,

then sf (x) � α+ n for some n ∈ � ∪ {0}. Let x ∈ Acard I
α , I �= ∅. Then

sf (x) � sf(x(i)) for each i ∈ I

and 4.4 yields that there is n ∈ � ∪ {0} with sf (x) � α+ n. �
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4.6. Lemma. There is a collection O of ordinals such that

(i) O is a proper class,

(ii) if α ∈ O, then α is infinite,

(iii) if α, β ∈ O,α �= β, k ∈ �, then α �= β + k.

�����. The assertion is obvious. �

In what follows let O be as in 4.6.

4.7. Lemma. Let α, β ∈ O. If α < β, then Aβ /∈ V (Aα).

�����. If Aβ ∈ V (Aα), then according to 4.5 the relation pβ ∈ Aβ implies

(1) sf (pβ) � α+ n for some n ∈ � ∪ {0}.

Further, by the definition of Aβ , we have

(2) sf (pβ) = β.

Then(1), (2) and the assumption yield

(3) α < β � α+ n.

Thus β = α+ k for some k ∈ �, which contradicts 4.6. �

4.8. Lemma. Let α, β ∈ O. If α > β, then Aβ /∈ V (Aα).

�����. Suppose that α > β and Aβ ∈ V (Aα). Then Aβ ∈ RP (Aα) and there

are I �= ∅ and A ′
β = (A

′
β , f) ∼= (Aβ , f) such that A ′

β is a retract of A
card I
α . Denote

by ϕ a retraction endomorphism of A card I
α onto A ′

β. Further let p ∈ Acard I
α , where

p(i) = pα for each i ∈ I. Then

(1) sf (p) = α.

Since ϕ is an endomorphism, (1) implies

(2) sf (ϕ(p)) � sf (p) = α.

Further, A ′
β
∼= Aβ, thus 4.4 yields

(3) if x ∈ A ′
β , then sf(x) � β + n for some n ∈ � ∪ {0}.
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By (2) and (3) we obtain

(4) α � sf (ϕ(p)) � β + n for some n ∈ � ∪ {0}.

According to (4) the assumption α > β implies

β < α � β + n for some n ∈ � ∪ {0},

which contradicts the relation {α, β} ⊆ O. �

4.9. Corollary. If α, β ∈ O, α �= β, then Aβ /∈ V (Aα).

4.10. Corollary. If α, β ∈ O, α �= β, then V (Aβ) � V (Aα).

4.11. Theorem. There is a proper class O of ordinals such that for each α ∈ O

there exists Wα ∈ Ant with the property that if α, β ∈ O, α �= β, then Wα � Wβ.

�����. Let O be as in 4.6. Consider all Aα, α ∈ O and put, for α ∈ O,

Wα = V (Aα).

According to 4.3 and 4.6, if α ∈ O, then Wα ∈ Ant. Let α, β ∈ O, α �= β. By 4.10

we have Wα � Wβ. �

5. Large chain of antiatomic retract varieties

In this section we will apply the algebras Aα for α ∈ O defined in the previous
section.

5.1. Notation. If α ∈ O, then we denote

Vα = V ({Aβ : β � α}).

5.2. Lemma. If α, β ∈ O, β < α, then Vβ ⊆ Vα.

�����. The assertion follows from 5.1. �
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5.3. Lemma. If α ∈ O, then Vα ∈ Ant.

�����. We shall prove the assertion by means of 3.2. Let α ∈ O, (A, f) ∈ Vα.

By 1.1,
(A, f) ∈ RP ({Aβ : β � α}),

i.e., there are a nonempty set I and monounary algebras (D, f) and (Bi, f) for each

i ∈ I such that

(A, f) ∈ R(D, f),(1)

(D, f) =
∏

i∈I

(Bi, f),(2)

{(Bi, f) : i ∈ I} ⊆ {Aβ : β � α}.(3)

Let x ∈ A. Since (A, f) is isomorphic to a subalgebra of (D, f), by (B) there is
y ∈ D with sf (x) � sf (y). Further, (A) yields that sf (y) � sf (y(i)) for each

i ∈ I. According to 3.2, (Bi, f) is unbounded for i ∈ I, hence sf (y(i)) �= ∞, thus
sf (x) �=∞, too.
The relation (3) implies that if i ∈ I, then (Bi, f) = Aβi for some βi ∈ O. Consider

the element d ∈ D such that d(i) = 1βi for each i ∈ I. The remaining part of the

proof is analogous as in 4.3. �

5.4. Lemma. Let α ∈ O, x ∈ D, (D, f) ∈ Vα. Then there is n ∈ � ∪ {0} such
that sf (x) � α+ n.

�����. It suffices to show that if I �= ∅ and (D, f) satisfies (2) and (3) of 5.3,

then the assertion is valid. In the case under consideration we have

sf (x) � sf (x(i)) for each i ∈ I.

By 4.4, sf (x(i)) � βi + n for some n ∈ � ∪ {0}, where βi � α, hence we obtain

sf (x) � α+ n for some n ∈ � ∪ {0}. �

5.5. Lemma. Let α, β ∈ O. If β < α, then Aα /∈ Vβ.

�����. Suppose that β < α and Aα ∈ Vβ. By the definition of Aα we have

(1) sf (pα) = α.

Further, 5.4 implies

(2) sf (pα) � β + n for some n ∈ � ∪ {0}.

Thus β < α � β + n, α = β + k for some k ∈ �, which contradicts 4.6. �
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5.6. Corollary. If α, β ∈ O, β < α, then Vβ � Vα.

�����. It is a consequence of 5.2 and 5.5. �

5.7. Theorem. There is a proper class O of ordinals such that for each α ∈ O

there exists Vα ∈ Ant with the property that if α, β ∈ O, β < α, then Vβ � Vα.

�����. The assertion follows from 5.3 and 5.6. �
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