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AN ALGEBRAIC CHARACTERIZATION OF GEODETIC GRAPHS1

Ladislav Nebeský, Praha

(Received November 13, 1995)

Abstract. We say that a binary operation ∗ is associated with a (finite undirected) graph
G (without loops and multiple edges) if ∗ is defined on V (G) and uv ∈ E(G) if and only
if u �= v, u ∗ v = v and v ∗ u = u for any u, v ∈ V (G). In the paper it is proved that
a connected graph G is geodetic if and only if there exists a binary operation associated
with G which fulfils a certain set of four axioms. (This characterization is obtained as an
immediate consequence of a stronger result proved in the paper).

In the present paper we will prove that a connected graph G is geodetic if and

only if there exists a binary operation associated—in a certain sense—with G and
fulfilling a set of four axioms. We will obtain this characterization of geodetic graphs

as a trivial consequence of a stronger result.

(Note that in [4] and [5] the present author proved that a connected graph G is
geodetic if and only if there exists a set of paths in G which fulfils certain axioms.)

In the present paper the letters f, g, h, i, j, k, m and n are reserved for denoting

integers.

By a graph we mean a graph in the sense of [1], [2], or [3] (i.e. a finite undirected
graph without loops and multiple edges). Let G be a graph with a vertex set V (G)

and an edge set E(G). If u, v ∈ V (G), then we say that a sequence

(0) (w0, . . . , wn),

where n � 0, is a u − v path in G if w0, . . . , wn are mutually distinct vertices of G,

u = w0, v = wn, and if n � 1, then w0w1, . . . , wn−1wn ∈ E(G).

1Research supported by Grant No. 405/95/1554 from Grant Agency of the Czech Republic.
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Let G be a graph, and let ∗ be a binary operation defined on V (G). We will say

that ∗ is associated with G if

uv ∈ E(G) if and only if u �= v, u ∗ v = v and v ∗ u = u

for any u, v ∈ V (G). Obviously, every binary operation defined on a finite nonempty
set is associated with exactly one graph.

Let G be a connected graph. We denote by d the distance function of G. If
u, v ∈ V (G) and (0) is an u− v path in G, then we say that (0) is a shortest path (or

a geodesic [2]) in G if n = d(u, v). We denote by N the mapping of V (G) × V (G)
into the set of all subsets of V (G) defined for every (u, v) ∈ V (G)×V (G) as follows:

N(u, v) = {u} if u = v, and

N(u, v) = {w ∈ V (G) ; d(u, w) = 1 and d(w, v) = d(u, v)− 1} if u �= v.

Note that if u �= v, then N(u, v) is the same as N1(u, v) in the sense of [3].

A graph G is called geodetic if it is connected and there exists exactly one shortest
u − v path in G for each ordered pair of vertices u and v of G. Proceeding by

induction on the distance of vertices, we see that a connected graph G is geodetic if
and only if |N(u, v)| = 1 for each ordered pair of vertices u and v of G.

Let G be a geodetic graph. We will say that a binary operation ∗ defined on V (G)
is the proper operation of G if u ∗ v is the only vertex of N(u, v) for each ordered

pair of vertices u and v of G. Obviously, every geodetic graph has exactly one proper
operation and this operation is associated with it. Moreover, every binary operation

is the proper operation of at most one geodetic graph.

We will prove a theorem asserting that if G is a graph and ∗ is a binary operation
associated with G, then G is geodetic and ∗ is the proper operation of G if and only
if G is connected and the operation ∗ fulfils Axioms I–IV stated below. As a trivial
consequence we will obtain the following characterization of geodetic graphs: A
connected graph G is geodetic if and only if there exists a binary operation associated

with G which fulfils Axioms I–IV.

For proving our theorem we will need five lemmas.

Lemma 1. Let G be a geodetic graph, and let ∗ be its proper operation. Then
the operation ∗ fulfils the following Axioms I–IV:
I (u ∗ v) ∗ u = u for all u, v ∈ V (G);

II if (u ∗ v) ∗ v = u, then u = v for all u, v ∈ V (G);

III if v ∗ u �= u, then u ∗ (v ∗ u) = u ∗ v for all u, v ∈ V (G);

IV if w ∗ v = v, then either u ∗ w = u ∗ v or w ∗ (u ∗ v) = v for all u, v, w ∈ V (G).
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�����. It is very easy to verify Axioms I–III. We will verify Axiom IV. Consider

u, v, w ∈ V (G) such that w∗v = v and u∗w �= u∗v. Then d(v, w) = 1. If u ∈ {v, w},
then w ∗ (u ∗ v) = v. Let v �= u �= w. Then d(u, v) = d(u, w). Moreover, we see that
d(u ∗ v, w) > d(u ∗ v, v). Since d(v, w) = 1, we have d(u ∗ v, w) = d(u ∗ v, v)+ 1. This

implies that w ∗ (u ∗ v) = v, which completes the proof.

In Lemmas 2–5 we will assume that a graph G and a binary operation ∗ associated
with G are given. Moreover, we will assume that the operation ∗ fulfils Axioms I–IV.

�

Lemma 2. Let r and s be vertices of G. Then

(1) r ∗ s = r if and only if r = s

and

(2) r ∗ s = s if and only if s ∗ r = r.

�����. Axioms I and II imply (1). Axiom I implies (2). �

Lemma 3. Let h � 1, let r1, . . . , rh+1, s0, s1 be vertices of G, let

(3) r1 �= r2, . . . , rh �= rh+1,

(4) r1 ∗ s0 = r2, . . . , rh ∗ s0 = rh+1,

and let

(50) s1 ∗ r1 = s0.

Then

(5f ) rf ∗ s1 = rf+1 and s1 ∗ rf+1 = s0

for each f , 1 � f � h.

�����. We will prove that (5g) holds for each g, 0 � g � h. We proceed by

induction on g. We know that (50) holds. Let 1 � g � h. According to (5g−1),
s1 ∗ rg = s0. As follows from (4), rg ∗ s0 = rg+1.
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If rg = s0, then, by (1), rg+1 = rg ∗ s0 = rg, which contradicts (3). We have

rg �= s0 and therefore, s1 ∗ rg �= rg. By virtue of Axiom III,

rg ∗ (s1 ∗ rg) = rg ∗ s1.

Since s1 ∗ rg = s0, we have rg ∗ s1 = rg ∗ s0 = rg+1. Since s1 ∗ rg �= rg , (2) implies
that rg ∗ s1 �= s1. By Axiom III,

s1 ∗ (rg ∗ s1) = s1 ∗ rg.

Hence s1 ∗ rg+1 = s1 ∗ rg = s0. We see that (5g) holds, which completes the proof of
the lemma. �

Lemma 4. Let k � 1, let u0, u1, . . . , uk+1, v0, . . . , vk be vertices of G, let

u0 �= u1, u1 �= u2, . . . , uk �= uk+1,(6)

u0 ∗ v0 = u1, u1 ∗ v0 = u2, . . . , uk ∗ v0 = uk+1,(70)

and let

(8) v1 ∗ u1 = v0, . . . , vk ∗ uk = vk−1.

Then

(7i) ui ∗ vi = ui+1, . . . , uk ∗ vi = uk+1

for each i, 1 � i � k.

�����. We will prove that (7j) holds for each j, 0 � j � k. We proceed by

induction on j. We know that (70) holds. Let 1 � j � k. According to (7j−1),

uj ∗ vj−1 = uj+1, . . . , uk ∗ vj−1 = uk+1.

As follows from (8), vj ∗ uj = vj−1. By (6),

uj �= uj+1, . . . , uk �= uk+1.

Lemma 3 implies that (7j) holds, which completes the proof of the lemma. �
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Lemma 5. Assume that G is connected. Let n � 1, and let x0, x1, x2, . . . be

vertices of G such that

(9) (xn, xn−1, . . . , x0)

is a shortest path in G and

(10) xn+f+1 = xn+f ∗ x0 for each f � 0.

Then there exists m � n such that xn+m = x0.

�����. Combining (10), Axiom I and (2) we get

(11) xn+f+1 ∗ xn+f = xn+f and xn+f ∗ xn+f+1 = xn+f+1 for each f � 0.

First, we want to prove that there exists m � 0 such that xn+m = x0. Suppose,
to the contrary, that

(12) xn+f �= x0 for each f � 0.

Combining (10), (12) and (1), we get

(13) xn+f+1 �= xn+f for each f � 0.

Recall that ∗ is a binary operation associated with G and that (9) is a path in G.
Combining these facts with (11), we get

(14) xg+1 ∗ xg = xg for each g � 0.

Recall that V (G) is finite. This implies that there exist h and i such that n � h < i

and xi = xh. By virtue of (13), h+2 � i. Moreover, using Axiom II we get h+3 � i.

By (10),
xh ∗ x0 = xh+1, . . . , xi−1 ∗ x0 = xi

and by (1) and (13),

xh ∗ xh �= xh+1.

This means that there exists j, 0 � j � h− 1, satisfying

(15) xh ∗ xj = xh+1, . . . , xi−1 ∗ xj = xi

and there exists k, h � k � i− 1, such that

(16) xk ∗ xj+1 �= xk+1.
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By (14), xj+1 ∗ xj = xj and by (15), xk ∗ xj = xk+1. We have xk ∗ xj+1 �= xk ∗ xj .

Axiom IV implies that

xj+1 ∗ (xk ∗ xj) = xj .

Hence

(17) xj+1 ∗ xk+1 = xj .

Recall that xi = xh. It is not difficult to see that (13), (15) and (17) together with

Lemma 3 imply that xk ∗ xj+1 = xk+1, which contradicts (16).

Thus we have proved that there exists m � 0 such that xn+m = x0. Since (9) is
a shortest path in G, we get d(xn, x0) = n. Since ∗ is associated with G, it follows

from (11) that

d(xn, xn+f ) � f for each f � 0.

Thus m � n, which completes the proof of the lemma.

Now we will state the theorem which is the main result of the present paper. �

Theorem. Let G be a graph, and let ∗ be a binary operation associated with G.

Then the following statements (A) and (B) are equivalent:

(A) G is geodetic and ∗ is its proper operation;
(B) G is connected and operation ∗ fulfils Axioms I - IV .

�����. If (A) holds, then, by virtue of Lemma 1, (B) also holds.

Conversely, let (B) hold. Then G is connected. We will prove that

(18n) N(u, v) = {u ∗ v} for arbitrary vertices u and v of G fulfilling d(u, v) � n

for each n � 0. As follows from (1) and from the fact that ∗ is associated with G,
both (180) and (181) hold.

Let n � 2. If there exist no vertices y and z of G such that d(y, z) = n, then (18n)

is a trivial consequence of (18n−1). Assume that there exist such vertices y and z.

Consider arbitrary vertices u and v of G such that d(u, v) = n. Obviously,

N(u, v) �= ∅. Moreover, consider an arbitrary w ∈ N(u, v). There exist vertices
x0, . . . , xn−1, xn of G such that x0 = v, xn−1 = w, xn = u and (9) is a shortest path
in G. Thus xn−1 ∈ N(xn, x0). We define vertices xn+1, xn+2, xn+3, . . . as in (10).

By Lemma 5, there exists m � n such that xn+m = x0. Without loss of generality
we assume that

(19) xn+1 �= x0, . . . , xn+m−1 �= x0.
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Recall that xn+1 = u∗v and xn−1 ∈ N(u, v). We want to prove that xn−1 = xn+1.

Suppose, to the contrary, that

(20) xn−1 �= xn+1.

We now will show that

(21) xm ∗ x0 �= xm−1.

If m = n, then (21) is an immediate consequence of (20). Let m > n. By virtue of
(10), xm = xm−1 ∗ x0. If xm ∗ x0 = xm−1, then

(xm ∗ x0) ∗ x0 = xm

and, by Axiom II, xm = x0, which contradicts (19). Thus (21) holds. We have

xm ∗ xn+m �= xm−1.

This means that there exists k, 0 � k < m, such that

(22) xk+1 ∗ xn+k+1 �= xk

and if k � 1, then

(23) x1 ∗ xn+1 = x0, . . . , xk ∗ xn+k = xk−1.

Recall that ∗ is associated with G and

xn ∗ x0 = xn+1, . . . , xn+k ∗ x0 = xn+k+1.

As follows from (1), (2), (10), (19) and Axiom I,

(24) xnxn+1, . . . , xn+kxn+k+1 ∈ E(G).

Thus xn �= xn+1, . . . , xn+k �= xn+k+1. Lemma 4 implies that if k � 1, then

xn+1 ∗ x1 = xn+2, . . . , xn+k ∗ xk = xn+k+1.

Since xn ∗ x0 = xn+1, we have

(25) xn+f ∗ xf = xn+f+1 for each f, 0 � f � k.

707



Recall that d(xn, x0) = n and xn−1 �= xn+1. There exists j, 0 � j � k, such that

(26) d(xn+j , xj) = n and xn+j−1 �= xn+j+1,

and

(27) if j < k, then either d(xn+j+1, xj+1) � n− 1 or xn+j = xn+j+2.

Recall that (9) is a path. Combining this fact with (24), we have xjxj+1 ∈ E(G).

We distinguish two cases.

Case 1. Let j < k. Then k � 1 and by (23),

(28) xj+1 ∗ xn+j+1 = xj .

Assume that d(xn+j+1, xj+1) � n− 1. By virtue of (18n−1),

N(xj+1, xn+j+1) = {xj+1 ∗ xn+j+1}.

According to (28), N(xj+1, xn+j+1) = {xj}. This implies that d(xn+j+1, xj) � n−2.
We have d(xn+j , xj) � 1 + d(xn+j+1, xj) � n − 1, which contradicts (26). Hence
d(xn+j+1, xj+1) = n.

Since j < k, it follows from (27) that xn+j = xn+j+2. By (10),

xn+j+2 = (xn+j ∗ x0) ∗ x0.

Thus (xn+j ∗ x0) ∗ x0 = xn+j . By virtue of Axiom II, xn+j = x0, which is a
contradiction.

Case 2. Let j = k. By (22), xj+1 ∗ xn+j+1 �= xj . Thus, as follows from (25),

(29) xj+1 ∗ (xn+j ∗ xj) �= xj .

Recall that xjxj+1 ∈ E(G). This implies that xj+1 ∗ xj = xj . Combining this fact

with (29) and Axiom IV, we get

xn+j ∗ xj+1 = xn+j ∗ xj .

Therefore, by (25),

(30) xn+j ∗ xj+1 = xn+j+1.
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According to (26), d(xn+j , xj) = n. Thus d(xn+j , xj+1) = n − 1. By virtue of
(18n−1),

(31) N(xn+j , xj+1) = {xn+j ∗ xj+1}.

Since d(xn+j , xj+1) = n− 1 � 1, we have d(xn+j−1, xj+1) = n− 2. This implies that

xn+j−1 ∈ N(xn+j , xj+1).

As follows from (31), xn+j−1 = xn+j ∗ xj+1. By virtue of (30), xn+j−1 = xn+j+1,
which contradicts (26).

We have proved that w = xn−1 = xn+1 = u ∗ v. Thus (18n) holds. This implies
that G is geodetic and ∗ is its proper operation. Hence (A) holds, which completes
the proof of the theorem. �

The following corollary is an immediate consequence of our theorem.

Corollary. Let G be a connected graph. Then G is geodetic if and only if there

exists a binary operation ∗ associated with G which fulfils Axioms I–IV.

Remark 1. Let G be a connected graph. We will say that an ordered triple

(u, v, w) of vertices in G is a step in G if u �= w and v ∈ N(u, w). An axiomatic
characterization of the set of all steps in G was given by the present author in [6].

(Note that some ideas in the present paper were inspired by the paper [6].)

Remark 2. Let G be a graph with exactly n � 2 components, say G1, . . ., and

Gn. Assume that for each i, 1 � i � n, Gi is a geodetic graph different from a tree.
Consider arbitrary j, 1 � j � n. Let ∗j denote the proper operation of Gj . Since Gj

is connected and different from a tree, there exists a unicyclic graph Fj which spans
Gj . Let C(j) denote the cycle of Fj . Orient each edge of Fj in such a way that for

the resulting digraph, say Hj , we have:

if r ∈ V (Fj) and s ∈ V (C(j)), then there exists a directed path from r to s in Hj .

Clearly, for every u ∈ V (Gj) there exists exactly one vertex fj(u) of Gj such that

(u, fj(u)) is an arc in Hj .

Let ∗ denote a binary operation defined on V (G) as follows. Consider arbitrary
x, y ∈ V (G). Then there exist k, m ∈ {1, . . . , n} such that x ∈ V (Gk) and y ∈
V (Gm). If k = m, then we put x ∗ y = x ∗k y. If k �= m, then we put x ∗ y = fk(x).
It is easy to see that operation ∗ is associated with G and that ∗ fulfils Axioms I–IV.
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Thus we see that the assumption that G is connected cannot be deleted from our

corollary.
On the other hand, if G is disconnected and at least one of the components of G

is a tree, then it is not difficult to show that no binary operation associated with G

fulfils Axioms I and II. Therefore, our corollary can be complemented as follows:
Let G be a disconnected graph. Then each component of G is a geodetic graph

different from a tree if and only if there exists a binary operation ∗ associated with
G which fulfils Axioms I–IV.

Remark 3. If G is a geodetic graph of diameter not exceeding two and ∗ is its
proper operation, then ∗ fulfils the following Axiom ĨI:
ĨI (u ∗ v) ∗ v = v for all u, v ∈ V (G).

Obviously, Axiom II is an immediate consequence of Axiom ĨI. The following
characterization can be easily derived from our corollary:

A graph G is a geodetic graph of diameter not exceeding two if and only if there
exists a binary operation ∗ associated with G which fulfils Axioms I, ĨI, III and IV.

Remark 4. The author’s interest in the proper operation of a geodetic graph is
connected to his research in semiotics.
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