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NONOSCILLATION AND ASYMPTOTIC BEHAVIOUR FOR THIRD

ORDER NONLINEAR DIFFERENTIAL EQUATIONS
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Abstract. In this paper we consider the equation

y′′′ + q(t)y′
α
+ p(t)h(y) = 0,

where p, q are real valued continuous functions on [0,∞) such that q(t) � 0, p(t) � 0
and h(y) is continuous in (−∞,∞) such that h(y)y > 0 for y �= 0. We obtain sufficient
conditions for solutions of the considered equation to be nonoscillatory. Furthermore, the
asymptotic behaviour of these nonoscillatory solutions is studied.
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1. Introduction

Finding sufficient conditions for nonoscillation of solutions is a problem of general

interest in the theory of ordinary and delay differential equations ([6], [13], [16]). In
this paper, we consider

(1) y′′′ + q(t)y′α + p(t)h(y) = 0,

where p, q are real valued continuous functions on [0,∞) such that p(t) � 0, q(t) � 0
and h(y) is continuous on (−∞,∞) subject to h(y)y > 0 for y �= 0 while α > 0 is

the ratio of odd integers.
In recent years, third order homogeneous differential equations (linear and non-

linear) have been the main stream of investigations for many authors. Barrett [1],
Bobrowski [2], Cecchi and Marini [3], Erbe ([4], [5]), Greguš ([7], [8]) are just some
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of them. They have given sufficient conditions for oscillation and nonoscillation and

studied asymptotic behaviour of the solutions. The study of properties of nonlinear
equations is not as extensive as for the linear case. Moreover, some results for linear
cases fail in some nonlinear cases [12].

For the third order equation (1) much less work has been done. Motivation for

the study of this equation comes from the works of Greguš, M. and Greguš Jr.M ([9],
[10]) and Heidel [11] who studied qualitative behaviour of solutions of the special

cases of (1), and the work of Parhi, N. and Parhi S. [14] who studied the nonhomo-
geneous equations with the remark that some of their results are not valid for the

homogeneous case.

In the present paper, first we give sufficient conditions under which solutions of
(1) are nonoscillatory. Secondly, we are concerned with asymptotic behaviour of

nonoscillatory solutions.

We restrict our considerations to those real solutions y of (1) which exist on the
half line [T,∞), where T � 0 depends on the particular solution, and are nontrivial
in any neighbourhood of infinity. We may recall that a solution y of (1) on [T,∞) is
said to be nonoscillatory if there exists a t1 � T such that y(t) �= 0 for t � t1; y(t)
is said to be oscillatory if for any t1 � T there exist t2 and t3 satisfying t1 < t2 < t3

such that y(t2) > 0 and y(t3) < 0; it is said to be of Z-type if it has arbitrarily large
zeros but is ultimately nonnegative or nonpositive.

2.

In this section we give sufficient conditions under which solutions of (1) are
nonoscillatory.

Theorem 2.1. Suppose that q(t) � p(t) for t ∈ [0,∞) and q(t) �≡ 0 on any
subinterval of [0,∞). If y is a solution of (1) defined on [T,∞), T � 0, such that
it satisfies z′α + h(z) < 0 on the subinterval of [T,∞) on which y′(t) > 0, while

z′α+h(z) > 0 on the subinterval of [T,∞) on which y′(t) < 0, then y is nonoscillatory

on [T,∞).

�����. Let y be a solution of (1) on [T,∞), T � 0. Multiplying (1) by y′(t) we

get

(2) y′′′(t)y′(t) = −q(t)y′α(t)y′(t)− p(t)h(y(t))y′(t)

Let us assume that y′(t) > 0 on some subinterval of [T,∞). Then the condition
y′α+h(y) < 0 yields h(y) < 0, and so y(t) < 0. Thus we cannot have simultaneously
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y(t) > 0 and y′(t) > 0. Therefore oscillatory or nonnegative Z-type solutions cannot

exist, and in the proof it is sufficient to exclude nonpositive Z-type solutions.

Let y be a nonpositive Z-type solution with consecutive double zeros at a and
b(a < b). So there exists a c ∈ (a, b) such that y′(c) = 0 and hence y′(t) > 0 for

t ∈ (c, b). Now integrating (2) from c to b yields

0 = y′′(t)y′(t) |bc

�
∫ b

c

y′′2(t) dt−
∫ b

c

q(t)
[
y′

α(t) + h(y(t))
]
y′(t) dt > 0,

which is a contradiction.

When y′(t) < 0, the above argument can be repeated to complete the proof of the
theorem. �

Now we give an example to illustrate the above theorem.

Example 1.

y′′′ +
1
2
y′
3 +

2e3t + et

2(e3t + et)
(y + y3) = 0, t � 0.

y(t) = e−t and y(t) = −e−t are nonoscillatory solutions of this equation.

Theorem 2.2. Let 1 � q(t). If y is a solution of (1) on an interval on which

y′′2(t)− y′α+1(t) < 0 holds, then y is nonoscillatory.

�����. Let y(t) be of nonnegative Z-type with consecutive double zeros at a
and b(a < b). So there exists a c ∈ (a, b) such that y′(c) = 0. Integrating (2) from a

to c, we get

0 = y′′(t)y′(t) |ca
�

∫ c

a

q(t)
[
y′′2(t)− y′

α+1(t)
]
dt−

∫ c

a

p(t)hy(y(t))y′(t) dt.

Since h(y(t)) is positive for y(t) > 0 we arrive at

0 �
∫ c

a

q(t)
[
y′′2(t)− y′

α+1(t)
]
dt−

∫ c

a

p(t)h(y(t))y′(t) dt < 0,

which is a contradiction.

Next suppose that y(t) is nonpositive Z-type with consecutive double zeros at a

and b(a < b). So there exists a c ∈ (a, b) such that y′(c) = 0 and y′(t) < 0 for
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t ∈ (a, c). Now integrating (2) from a to c, we obtain

0 = y′′(t)y′(t) |ca
�

∫ c

a

q(t)
[
y′′2(t)− y′

α+1(t)
]
dt−

∫ c

a

p(t)h(y(t))y′(t) dt.

As in the above case we get a contradiction.
Finally, to complete the proof, suppose that y(t) is oscillatory. Let a, b and a′

(a < b < a′) be any three consecutive zeros of y(t) such that y′(a) � 0, y′(b) � 0,
y′(a′) � 0; so y(t) < 0 for t ∈ (a, b) and y(t) > 0 for t ∈ (b, a′). So there exist
c ∈ (a, b) and c′ ∈ (b, a′) such that y′(c) = 0 = y′(c′) and y′(t) > 0 for t ∈ (c, b)
and t ∈ (b, c′). We consider two cases, namely, y′′(b) � 0 and y′′(b) > 0. First, let
y′′(b) � 0. Integrating (2) between b and c′, we obtain

0 � y′′(t)y′(t) |c′
b

�
∫ c′

b

q(t)
[
y′′2(t)− y′

α+1
(t)

]
dt−

∫ c′

b

p(t)h(y(t))y′(t) dt < 0,

a contradiction. Hence y′′(b) > 0. Since y′′(t) is continuous, y′′(t) > 0 for t ∈
[b, b + δ1), 0 < δ1 < c′ − b. So y′(t) is increasing on [b, b + δ1). Again y′(c′) = 0

and y′(t) > 0 for t ∈ (b, c′) imply that y′(t) is decreasing on [c′ − δ2, c
′], where

0 < δ2 < c′ − b. This in turn implies that y′′(t) < 0 for t ∈ [c′ − δ2, c
′]. Hence

y′′(d) = 0 for some d ∈ (b, c′). Integrating (2) from d to c′ we get a contradiction
again. �

Example 2.

y′′′ + t10/3y′
5/3 +

t4 + 6
2t4 + 4t3 + 3t2 + t

(y + y3) = 0, t > 8.

Here y(t) = 1 + 1/t is a nonoscillatory solution of the above equation satisfying
the conditions of Theorem 2.2.

Theorem 2.3. Any solution y of (1) satisfying the inequality

z′′2 − q(t)z′α+1 − p(t)h(z)z′ > 0

on an interval on which y′(t) > 0, is nonoscillatory.

�����. Let y be a solution of (1) satisfying conditions of the theorem. If

possible, assume that y is of nonnegative Z-type. Let a and b (a < b) be any two
consecutive double zeros of y. So there exists a c ∈ (a, b) such that y′(c) = 0 and
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y′(t) > 0 for t ∈ (a, c). Now multiplying (1) by y′2(t) and integrating the resulting

identity from a to c, we get

0 = y′′(t)y′2(t) |ca
= −

∫ c

a

q(t)y′α(t)y′2(t) dt−
∫ c

a

p(t)h(y(t))y′2(t) dt+ 2
∫ c

a

y′(t)y′′2(t) dt

> 0,

a contradiction.
Similarly we can show that y(t) cannot be of nonpositive Z-type.

Suppose that y(t) is oscillatory. Let a, b and a′ (a < b < a′) be any three consec-
utive zeros of y(t) such that y′(a) � 0, y′(b) � 0, y′(a′) � 0; so y(t) < 0 for t ∈ (a, b)

and y(t) > 0 for t ∈ (b, a′). Thus there exist c ∈ (a, b) and c′ ∈ (b, a′) such that
y′(c) = 0 = y′(c′) and y′(t) > 0 for t ∈ (c, b) and t ∈ (b, c′). We consider two cases,
namely, y′′(b) � 0 and y′′(b) > 0. Integrating (2) from b to c′ in case y′′(b) > 0 and
from c to b in case y′′(b) � 0, we get the required contradictions. �

Example 3.

y′′′ +
1
27

t−3y′
3 +
1
4
t−6y3 = 0, t > 0.

This example illustrates the above theorem. Clearly y(t) = t3/2 is a nonoscillatory
solution of the equation.

3.

In this section we are concerned with the asymptotic behaviour of nonoscillatory

solutions of (1). In [11], Heidel gave sufficient conditions under which a nonoscillatory
solution of the equation (1) with h(y) = yr tends to zero as t →∞. In the following
we extend some of Heidel’s results to (1).
First we recall.

Lemma 3.1. Consider

(3) z′′ + q(t)z = 0

where q(t) � 0. If z is a nonoscillatory solution of (3) such that z(t) �= 0 for
t ∈ [a,∞), a > 0, and if u is a continuously differentiable function on [a,∞) such
that u(b) = 0 = u(c), a < b < c, and u(t) �≡ 0 on [b, c], then

∫ c

b

[u′2(t)− q(t)u2(t)] dt > 0.

For the ����� of this lemma the reader is referred to [15]. �
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Remark 3.1. q(t) need not be nonnegative in Lemma 3.1. If q(t) � 0 then all
solutions of (3) are nonoscillatory. For q(t) �� 0, sufficient conditions were given by
Moore [16, p. 73], Winter [17] and Potter [16, p. 81] for nonoscillation of all solutions
of (3).

Now we prove

Lemma 3.2. Let
∫∞
0 p(t) dt =∞ and let h(y) be nondecreasing. If y is a nonoscil-

latory solution of (1) and y(t) �= 0 on [t0,∞) then |y| is not nondecreasing on [t0,∞).

�����. Let y(t) > 0 and y′(t) � 0 for t � t0 > 0. Integrating the inequality

y′′′(t) � −p(t)h(y(t))

from t0 to t, we get

y′′(t) � y′′(t0)− h(y(t0))
∫ t

t0

p(s) ds.

This in turn implies that y′(t) < 0 for large t, which yields a contradiction.

If y(t) < 0 and y′(t) � 0 for t � t0 > 0, proceeding as above we obtain a similar

contradiction. �

Theorem 3.1. Let α = 1 in equation (1). Let q(t) � M , M > 0 and let the

hypothesis of Lemma 3.2 hold. If y is a nonoscillatory solution of (1) such that
y(t)y′(t) < 0 for t ∈ [t0,∞), t0 � 0, then lim

t→∞
y(t) = 0.

�����. Let y(t) > 0 for t � t0. So y′(t) < 0 for t � t0 and hence lim
t→∞

y(t)

exists. Let us assume lim
t→∞

y(t) > 0. Integrating (1) from t0 to t, we obtain

y′′(t) � y′′(t0)−M(y(t)− y(t0))−
∫ t

t0

h(y(s))p(s) ds

� y′′(t0)−M(y(t)− y(t0))− h(y(t))
∫ t

t0

p(s) ds.

This yields that y(t) < 0 for large t, giving a contradiction.

Similarly, when y(t) < 0, y′(t) > 0 for t � t0 and lim
t→∞

y(t) < 0 we get a contra-

diction.

This completes the proof of the theorem. �
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In the above proof; the assumption employed is weaker then in Heidel [11, Theo-

rem 3.7], if t0 > 1.

Theorem 3.2. Let α = 1 in equation (1). Let the hypothesis of Lemma 3.2 hold
and let equation (3) be nonoscillatory. If y is a nonoscillatory solution of (1) and
y(t) �= 0 on [t0,∞) t0 � 0, then y(t)y′(t) < 0 for all t ∈ [t0,∞).

�����. Let y(t) < 0 for t � t0. From Lemma 3.2 it follows that y′(t) �� 0.
Assume that y′(t) is oscillatory or nonnegative Z-type with consecutive zeros at a

and b (t0 < a < b) such that y′(t) > 0 for t ∈ (a, b). Integrating (2) from a to b, we
get

0 > y′′(t)y′(t) |ba +
∫ b

a

p(t)h(y(t))y′(t) dt

=
∫ b

a

[
y′′2(t)− q(t)y′2(t)

]
dt

and by Lemma 3.1 we arrive at a contradiction. So y′(t) > 0.

Let y(t) > 0 for t � t0. It is clear from Lemma 3.2 that y′(t) �� 0. Let y′(t) be
oscillatory or nonpositive Z-type. Let a and b (t0 < a < b) be consecutive zeros of

y′(t) such that y′(t) < 0 for t ∈ (a, b). Integrating (2) from a to b, we obtain

0 >

∫ b

a

p(t)h(y(t))y′(t) dt

=
∫ b

a

[
y′′2(t)− q(t)y′2(t)

]
dt

> 0,

which is a contradiction. So y′(t) < 0.

Hence the theorem. �

Example 4.

y′′′ +
1
4t2

y′ +
4t2β3 + β

4t2(1 + e−2βt)
(y + y3) = 0, t > 1, β > 0 is a constant.

Note that this example illustrates Lemma 3.2, Theorem 3.1 and Theorem 3.2.
Clearly y(t) = e−βt is a positive solution of this equation. On the other hand

z′′ + 1
4t2 z = 0 t � 1 is nonoscillatory because z(t) =

√
t ln t is a nonoscillatory

solution of the equation.

In the following an attempt has been made to remove the restriction on α in
Theorem 3.1.
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Theorem 3.3. Let the suppositions of Theorem 2.1 and Lemam 3.3 hold. If y is
a solution of (1) having the properties as in Theorem 2.1, then lim

t→∞
y(t) = 0.

�����. Let y(t) > 0 for t � t0 > 0. From Lemma 3.2 it follows that y′(t) �� 0.
Let y′(t) be oscillatory or nonpositive Z-type with consecutive zeros at a and b

(t0 < a < b) such that y′(t) < 0 for t ∈ (a, b). Now integration of (2) from a to b

yields

0 = y′′(t)y′(t) |ba

� −
∫ b

a

q(t)
[
y′

α(t) + h(y(t))
]
y′(t) dt

> 0,

a contradiction. So y′(t) < 0. Consequently, lim
t→∞

y(t) exists. Now let us assume

lim
t→∞

y(t) > 0. From (1) it follows that y′′(t) is monotonic decreasing. We claim that

there exists a t1 � t0 such that y′′(t) > 0 for t � t1. If not, for every t1 � t0 there
exists a t2 � t1 such that y′′(t2) � 0. So t � t2 implies that y′′(t) � 0. Hence
y(t) < 0 for large t. This is a contradicition. So our claim holds. Now integrating
(1) from t1 to t, we get

y′′(t) = y′′(t1)−
∫ t

t1

q(s)y′
α
(s) ds−

∫ t

t1

p(s)h(y(s)) ds

� y′′(t1)− y′
α(t1)

∫ t

t1

q(s) ds− h(y(t))
∫ t

t1

p(s) ds,

which in turn implies y′′(t) < 0 for large t, contradicting y′′(t) > 0. Hence lim
t→∞

y(t) =
0.

When y(t) < 0 for t � t0 > 0, the above argument can be repeated to complete
the proof of the theorem. �

Remark 3.2. The results obtained here can be extended to the equation

(r(t)y′′)′ + q(t)y′α + p(t)h(y) = 0

where r is a continuous and positive function. The only assumption needed for minor
manipulations is ∫ ∞

0

dt
r(t)

=∞

to hold, whenever necessary.
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