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ON THE NEUMANN-POINCARÉ OPERATOR

Josef Král and Dagmar Medková, Praha

(Received August 23, 1995)

Abstract. Let Γ be a rectifiable Jordan curve in the finite complex plane � which is
regular in the sense of Ahlfors and David. Denote by L2C(Γ) the space of all complex-
valued functions on Γ which are square integrable w.r. to the arc-length on Γ. Let L2(Γ)
stand for the space of all real-valued functions in L2C(Γ) and put

L20(Γ) = {h ∈ L2(Γ) ;
∫

Γ
h(ζ)|dζ| = 0}.

Since the Cauchy singular operator is bounded on L2C(Γ), the Neumann-Poincaré operator
CΓ1 sending each h ∈ L2(Γ) into

CΓ1 h(ζ0) := Re(�i)−1 P.V.

∫

Γ

h(ζ)
ζ − ζ0

dζ, ζ0 ∈ Γ,

is bounded on L2(Γ). We show that the inclusion

CΓ1 (L20(Γ)) ⊂ L20(Γ)

characterizes the circle in the class of all AD-regular Jordan curves Γ.

Keywords: Cauchy’s singular operator, the Neumann-Poincaré operator, curves regular
in the sense of Ahlfors and David

MSC 2000 : 30E20

In what follows Γ will always be a simple closed oriented curve in the Euclidean
plane �2 which is AD-regular in the sense that

sup r−1H 1(D(z, r) ∩ Γ) < +∞,
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where H 1 denotes the usual 1-dimensional Hausdorff measure (≡ length as defined
in [12], chap. II, par. 8) and the least upper bound is taken over all discs

D(z, r) = {ζ ∈ �
2 ; |ζ − z| < r}.

Let L2C(Γ) denote the complex Banach space of all square-integrable (w.r. to H 1)

complex-valued functions f on Γ with the usual norm

‖f‖L2C(Γ)
=

(∫

Γ
|f |2 dH 1

) 1
2

.

As shown by G. David in [2], for any f ∈ L2C(Γ) the Cauchy singular integral

CΓf(z) =
1
�i
P.V.

∫

Γ

f(ζ)
ζ − z

dζ

is defined for H 1-a.e. z ∈ Γ and represents an element of L2C(Γ) again; besides that,
the operator

CΓ : f �→ CΓf

is bounded on L2C(Γ). We shall use the symbol L
2(Γ) for the space of all real-valued

functions in L2C(Γ) which is a Banach space over the reals with the norm ‖ . . . ‖L2(Γ)

given by the same expression as in L2C(Γ). The Neumann-Poincaré operator C
Γ
1

sends each h ∈ L2(Γ) into
CΓ1 h := ReC

Γh;

CΓ1 is a bounded operator on L
2(Γ). Let

L20(Γ) =

{
h ∈ L2(Γ);

∫

Γ
h dH 1 = 0

}
.

Let us recall that a Jordan curve Γ ⊂ �
2 is termed chord-arc, if it satisfies the

following Lavrentjev condition (which turns out to be stronger than AD-regularity):
There is a positive constant k such that for any z1, z2 ∈ Γ the complementary

subarcs Γ1,Γ2 of Γ with end-points z1, z2 satisfy

min{H 1(Γ1),H
1(Γ2)} � k|z1 − z2|.

Various properties of the Neumann-Poincaré operator corresponding to a chord-

arc curve have been investigated in [7]. We shall start with an elementary example
of a chord-arc curve Γ and a function h ∈ L20(Γ) such that CΓ1 h ∈ L20(Γ) and

(1) ‖CΓ1 h‖L2(Γ) > ‖h‖L2(Γ);

this answers in the negative a question posed in [8].
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Remark 1. In what follows �2 will be identified in the usual way with � ; functions
of the complex variable z = x+ iy (where i is the imaginary unit and x, y ∈ �) are
considered as functions of two real variables x, y; complex-valued functions are not
distinguished from two-dimensional vector-valued functions, etc.

Example 1. Fix α ∈
]
0, �

12

[
and consider the circular arc

Γ1 = {eiθ ; α < θ < 2�− α}

and the oriented segments

Γ2 = {−t cosα+ (1− t)e−iα ; 0 < t < 1}

(whose end-points are e−iα, − cosα) and

Γ3 = {teiα − (1− t) cosα ; 0 < t < 1}

(whose end-points are − cosα, eiα). Joining the arc and the segments with the cor-
responding end-points we arrive at an oriented simple closed curve

Γ = Γ1 ∪ {e−iα} ∪ Γ2 ∪ {− cosα} ∪ Γ3 ∪ {eiα}

which is obviously chord-arc.

Define now

h =





0 on Γ1 ∪ {− cosα},
1 on Γ3,

−1 on Γ2.

Clearly, h ∈ L20(Γ). If ζ0 is fixed in the complement of the closure of Γj , then

∆arg(ζ − ζ0 ; ζ ∈ Γj) will denote the increment of the argument of ζ − ζ0 as ζ
describes the oriented arcΓj (j = 1, 2, 3). We have

CΓ1 h(ζ0) =
1
�

[−∆arg(ζ − ζ0; ζ ∈ Γ2) + ∆arg(ζ − ζ0; ζ ∈ Γ3)] for ζ0 ∈ Γ1,

CΓ1 h(ζ0) = −1
�

∆arg(ζ − ζ0; ζ ∈ Γ2) for ζ0 ∈ Γ3,

CΓ1 h(ζ0) =
1
�

∆arg(ζ − ζ0; ζ ∈ Γ3) for ζ0 ∈ Γ2.

Denoting by ζ0 the complex conjugate of ζ0 ∈ � we have thus

CΓ1 h(ζ0) = −CΓ1 h(ζ0), ζ0 ∈ Γ,
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so that CΓ1 h ∈ L20(Γ). We are now going to compare ‖CΓ1 h‖L2(Γ) and ‖h‖L2(Γ).

Consider first ζ0 = eiθ with α < θ < � − α. Elementary geometric consideration
yields

∆arg(ζ − ζ0; ζ ∈ Γ3) = −∆arg(ζ − ζ0; ζ ∈ Γ2) + α.

Since all the half-lines emanating from ζ0 and intersecting the segment
{(1− t)ei(�+α) + tei(2�−α); 0 � t � 1} meet also Γ2, we get

−∆arg(ζ − ζ0; ζ ∈ Γ2) �
�

2
− α.

We have thus

CΓ1 h(ζ0) =
1
�

[∆ arg(ζ − ζ0; ζ ∈ Γ3)−∆arg(ζ − ζ0; ζ ∈ Γ2)]

� 1
�

(�− 2α+ α) = 1− α

�

> 1− 1
12
.

Symmetrically, if ζ0 = eiθ with �+ α < θ < 2�− α, then

CΓ1 h(ζ0) < −11
12
.

Summarizing we arrive at

∫

Γ
|CΓ1 h(ζ0)|2 dH 1(ζ0) >

(
11
12

)2
H 1({eiθ; θ ∈ ]α, �− α[ ∪ ]�+ α, 2�− α[})

=

(
11
12

)2
(2�− 4α) >

(
11
12

)2
·
(
2�− �

3

)
> 4.

On the other hand,

∫

Γ
|h(ζ0)|2 dH 1(ζ0) = 2|eiα + cosα| < 4,

which shows that Γ and h satisfy (1).

Remark 2. If K (Γ) denotes the subspace of all constant functions then

CΓ1 (K (Γ)) = K (Γ). Hence it is possible to consider CΓ1 as an operator acting
on the quotient space L2(Γ)/K (Γ) formed by the classes

f̂ = {f + c ; c ∈ K (Γ)}

with the quotient norm

‖f̂‖L2(Γ)/K (Γ) = inf{‖f + c‖L2(Γ) ; c ∈ K (Γ)}, f ∈ L2(Γ).
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Example 1 shows that this operator CΓ1 on L
2(Γ)/K (Γ) need not be contractive

for chord-arc curves Γ. Indeed, taking Γ and h from Example 1 we observe that
h ∈ L20(Γ) and C

Γ
1 h ∈ L20(Γ); as L

2
0(Γ) and K (Γ) are orthogonal subspaces w.r. to

the usual scalar product in L2(Γ), we have by (1)

‖ĥ‖L2(Γ)/K (Γ) = ‖h‖L2(Γ) > ‖CΓ1 h‖L2(Γ) = ‖CΓ1 ĥ‖L2(Γ)/K (Γ).

We include another example showing that, for general chord-arc curve Γ, the

operator CΓ1 need not act in L
2
0(Γ) (i.e. C

Γ
1 (L

2
0(Γ)) 
⊂ L20(Γ) is possible).

Example 2. Fix α ∈
]
0, �2

[
and consider the circular arc

Γ1 = {eit ; α < t < 2�− α}

with end-points eiα, e−iα and another circular arc (situated in the circumference

centered at 2 cosα on the real axis)

Γ2 = {2 cosα+ e−it ; �− α < t < �+ α}

whose end points are e−iα, eiα. Joining these arcs with the common end-points we

get the curve

Γ = Γ1 ∪ {e−iα} ∪ Γ2 ∪ {eiα}.

Define now the function f by

f =





1
�−α on Γ1,

− 1α on Γ2,

0 on {eiα, e−iα}.

Since H 1(Γ1) = 2� − 2α and H 1(Γ2) = 2α, we have f ∈ L20(Γ). We are going to
show that CΓ1 f 
∈ L20(Γ). If ζ0 ∈ Γ1, then

CΓ1 f(ζ0) =
1

�− α
Re
1
�i
P.V.

∫

Γ1

dζ
ζ − ζ0

− 1
α
Re
1
�i

∫

Γ2

dζ
ζ − ζ0

=
1

�− α
· �− α

�

− 1
α
· α
�

= 0.

If ζ0 ∈ Γ2, then
Re
1
�i

∫

Γ1

dζ
ζ − ζ0

=
2�− (�− α)

�

=
�+ α
�

,
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while

Re
1
�i
P.V.

∫

Γ2

dζ
ζ − ζ0

= −�− (�− α)
�

= −α
�

;

consequently,

CΓ1 f(ζ0) =
1

�− α
· �+ α

�

− 1
α

(
−α
�

)
=

2
�− α

.

We see that CΓ1 f does not belong to L
2
0(Γ), because it vanishes on Γ1 and remains

positive on Γ2.

This example might make the impression that the occurence of f ∈ L20(Γ) with
CΓ1 f 
∈ L20(Γ) is exceptional. Actually, the inclusion

(2) CΓ1 (L
2
0(Γ)) ⊂ L20(Γ)

characterizes the circle among all AD-regular curves Γ; this follows from Proposi-

tions 1, 2 below.

Proposition 1. If (2) holds, then the logarithmic potential

(3) u(z) :=
∫

Γ
ln

1
|z − ζ| dH

1(ζ)

remains constant on the bounded complementary domain G of Γ.

�����. Since Γ is AD-regular, the logarithmic potential (3) is defined for all
z ∈ � and represents a finite continuous function on � which is harmonic on the

complement of Γ ([1]; concerning logarithmic potentials, cf. also section 3 in [4]).
Differentiation under the integral sign yields for z ∈ � \ Γ (we denote by ∂j the

partial derivative w.r. to the j-th variable for j = 1, 2)

(4) gradu(z) := ∂1u(z) + i∂2u(z) =
∫

Γ

ζ − z

|ζ − z|2dH
1(ζ), z ∈ � \ Γ.

Consider a parametrization of Γ given by a 1–1 absolutely continuous complex-
valued function of the real parameter t

γ : [a, b[→ Γ

such that

(5)
dγ(t)
dt


= 0
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for a.e. t ∈ [a, b[. (It is possible to choose arc-length as parameter.) Then A ⊂ [a, b[
is Lebesgue measurable iff γ(A) is H 1-measurable in which case

H 1(γ(A)) =
∫

A

∣∣∣∣
dγ(t)
dt

∣∣∣∣ dt.

If (5) holds, then the unit tangent vector τ(ζ) of Γ at ζ = γ(t) may be introduced

by

τ(ζ) =
dγ(t)
dt

/ ∣∣∣ dγ(t)
dt

∣∣∣, ζ = γ(t);

τ is defined a.e. w.r. to H 1 on Γ and represents an H 1-measurable complex-valued

(≡ vector-valued) function on Γ. We have for any f ∈ L2(Γ)
∫

Γ
f dH 1 =

∫ b

a

f(γ(t)) · |γ′(t)| dt =
∫

Γ
f(ζ)τ (ζ) dζ,

where τ (ζ) is the complex conjugate of τ(ζ) and the last integral is the usual complex
curvilinear integral w.r. to the complex variable ζ ∈ Γ.
We shall now consider the function ψ of the complex variable z ∈ G given by

(6) ψ(z) :=
∫

Γ

dH 1(ζ)
ζ − z

=
∫

Γ

τ (ζ)
ζ − z

dζ =
∫

Γ

ζ − z

|ζ − z|2 dH
1(ζ) = ∂1u(z)− i∂2u(z).

According to [2], the principal value of the singular integral of the Cauchy type

P.V.
∫

Γ

τ(ζ)
ζ − ζ0

dζ = lim
ε↓0

∫

Γ\D(ζ0,ε)

τ (ζ)
ζ − ζ0

dζ

exists for H 1-a.e. ζ0 ∈ Γ. It follows from section 2.3 in chap. III in [11] that the
angular limits of ψ(z) as z ∈ G approaches ζ0 ∈ Γ (to be denoted by ψG(ζ0)) exist
for H 1-a.e. ζ0 ∈ Γ and are given by

(7) ψG(ζ0) = P.V.
∫

Γ

τ (ζ)
ζ − ζ0

dζ + �iτ (ζ0)

provided Γ is positively oriented w.r. to G. Using the notation from chap. 10 in [3]

and referring to section 7 in [2] and theorems 10.6, 10.4 in [3] we have

ψ ∈ E2(G) ∩ E1(G),(8)

ψG ∈ L2(Γ),

ψ(z) =
1
2�i

∫

Γ

ψG(ζ)
ζ − z

dζ, z ∈ G.
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Let us denote by 〈c, d〉 := Re cd the scalar product of vectors c, d ∈ �
2 ≡ � and

ν(ζ) := iτ(ζ) (= ν1(ζ) + iν2(ζ))

the unit interior normal ofG at ζ ∈ Γ (which is defined forH 1-a.e. ζ ∈ Γ); the normal
derivative ∂u

∂ν (ζ) will always be interpreted as the angular limit of the expression

〈ν(ζ), gradu(z)〉 := ν1(ζ)∂1u(z) + ν2(ζ)∂2u(z)

as z ∈ G tends to ζ ∈ Γ. It follows from (4), (6), (7) that, for H 1-a.e. ζ0 ∈ Γ,

∂u

∂ν
(ζ0) = ν1(ζ0)ReP.V.

∫

Γ

τ(ζ)
ζ − ζ0

dζ − ν2(ζ0) ImP.V.
∫

Γ

τ (ζ)
ζ − ζ0

dζ

+ ν1(ζ0) ·Re[�iτ (ζ0)]− ν2(ζ0) Im[�iτ(ζ0)]

= − �+ P.V.
∫

Γ

〈ν(ζ0), ζ − ζ0〉
|ζ − ζ0|2

dH 1(ζ).(9)

We shall now compute the last integral under the present assumption (2). Let e
denote the function which is identically equal to 1 on Γ. We shall first observe that

the operator (CΓ1 )
∗ adjoint to CΓ1 w.r. to the usual scalar product in L

2(Γ) must map
e onto ke for suitable k ∈ �. Indeed,

∫

Γ
(CΓ1 )

∗e · h dH 1 =
∫

Γ
e · CΓ1 h dH 1 =

∫

Γ
CΓ1 h dH

1 = 0

for any h ∈ L20(Γ); we conclude that (CΓ1 )∗e, being orthogonal to the subspace L20(Γ)
in L2(Γ), must be constant a.e. on Γ:

(CΓ1 )
∗e = ke.

For ε > 0 introduce the operator CΓε
1 on L

2(Γ) sending each f ∈ L2(Γ) into

CΓε
1 f(ζ0) = Re

1
�i

∫

Γ\D(ζ0,ε)

f(ζ)τ(ζ)
ζ − ζ0

dH 1(ζ), ζ0 ∈ Γ.

For any g ∈ L2(Γ) we have by Fubini’s theorem
∫

Γ
CΓε
1 f(ζ0) · g(ζ0) dH 1(ζ0) =

∫

Γ
f(ζ)Re

1
�i
τ(ζ)

∫

Γ\D(ζ,ε)

g(ζ0)
ζ − ζ0

dH 1(ζ0) dH 1(ζ)

which shows that the adjoint operator (CΓε
1 )

∗ sends g ∈ L2(Γ) into

(CΓε
1 )

∗g(ζ) = Re
τ(ζ)
�i

∫

Γ\D(ζ,ε)

g(ζ0)
ζ − ζ0

dH 1(ζ0), ζ ∈ Γ.
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It is known from [2] that, as ε ↓ 0, for any g ∈ L2C(Γ) the functions
∫

Γ\D(ζ,ε)

g(ζ0)
ζ − ζ0

dζ0

of the variable ζ ∈ Γ converge in L2C(Γ) and H 1-a.e. on Γ to the function

P.V.
∫

Γ

g(ζ0)
ζ − ζ0

dζ0.

Since |τ(ζ)| = 1 for H 1-a.e. ζ ∈ Γ, for g ∈ L2(Γ) we get that, as ε ↓ 0, the functions

(CΓε
1 )

∗g(ζ) = Re
τ(ζ)
�i

∫

Γ\D(ζ,ε)

g(ζ0)τ (ζ0)
ζ − ζ0

dζ0

converge in L2(Γ) and H 1-a.e. to the function

Re
τ(ζ)
�i
P.V.

∫

Γ

g(ζ0)τ (ζ0)
ζ − ζ0

dζ0 = Re
ν(ζ)
�

P.V.
∫

Γ

g(ζ0)
ζ0 − ζ

dH 1(ζ0)

=
1
�

P.V.
∫

Γ

g(ζ0)〈ν(ζ), ζ0 − ζ〉
|ζ − ζ0|2

dH 1(ζ).

In particular, (CΓε
1 )

∗e converge (as ε ↓ 0) to the function

ζ �→ 1
�

P.V.
∫

Γ

〈ν(ζ), ζ0 − ζ〉
|ζ − ζ0|2

dH 1(ζ0)

which is therefore in L2(Γ). We have for any f ∈ L2(Γ)
∫

Γ
kf dH 1 =

∫

Γ
kef dH 1 =

∫

Γ
(CΓ1 )

∗e · f dH 1 =
∫

Γ
e · CΓ1 f dH 1

= lim
ε↓0

∫

Γ
e · CΓε

1 f dH 1 = lim
ε↓0

∫

Γ
(CΓε
1 )

∗e · f dH 1

=
∫

Γ
f(ζ)

{
1
�

P.V.
∫

Γ

〈ν(ζ), ζ0 − ζ〉
|ζ0 − ζ|2 dH 1(ζ0)

}
dH 1(ζ),

which shows that

1
�

P.V.
∫

Γ

〈ν(ζ), ζ0 − ζ〉
|ζ − ζ0|2

dH 1(ζ0) = k for H 1 − a.e. ζ ∈ Γ.

Combining this with (9) we get

(10)
∂u

∂ν
= �(k − 1) H 1- a.e. on Γ.
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Let Φ be a conformal map of the unit disc D = D(0, 1) onto G; it is well known that

Φ extends to a homeomorphism of the closed disc clD onto clG = G ∪ Γ (cf. [11],
§4, section 4.1). Define

w(z) =
1
2�

∫
�

−�

eit + z
eit − z

u ◦ Φ(eit) dt z ∈ D,

where u ◦Φ(.) = u(Φ(.)) denotes the composition of Φ and u which is continuous on
cl D and harmonic on D. Consequently, w is holomorphic on D and

(11) Rew = u ◦ Φ on D.

Hence u = Re(w ◦ Φ−1), and the complex derivative of w ◦ Φ−1 must coincide with

(w ◦ Φ−1)′ = ∂1u− i∂2u = ψ on G

by (6). Using (8) we get from Corollary to Theorem 10.1 in [3] that

(12) w′ = [(w ◦ Φ−1)′ ◦ Φ]Φ′ = [ψ ◦ Φ] ·Φ′ ∈ H1(D).

Consequently, also the function z �→ zw′(z) of the variable z ∈ D belongs to H1(D):

(13) zw′(z) ∈ H1(D).

It follows that zw′(z) has angular limits ζw′(ζ) at H 1-almost all points ζ in the
boundary ∂D = {ζ ∈ � ; |ζ| = 1} of D. By Theorem 3.12 in [3] we have Φ′ ∈ H1(D).
According to Theorem 3.11 in [3], Φ is absolutely continuous on ∂D and

(14)
d
dθ
Φ(eiθ) = ieiθ lim

r↑1
Φ′(reiθ)

for a.e. θ ∈ [0, 2�[. Denoting by ϕ : θ �→ eiθ (0 � θ < 2�) the natural parametrization
of ∂D we have | dϕ(θ)dθ | = 1 for all θ and, consequently, for any A ⊂ [0, 2�[ ,H 1(ϕ(A))

coincides with the one-dimensional Lebesgue measure of A. Let us recall (cf. [10],
Theorem 6.8) that for E ⊂ ∂D the following equivalence holds

H 1(E) = 0⇐⇒ H 1(Φ(E)) = 0

and, for H 1- a.e. ζ ∈ ∂D, the angular limit of Φ′ at ζ (to be denoted by Φ′(ζ))
exists and satisfies

(15) Φ′(ζ) = lim
z→ζ

z∈clD

Φ(z)− Φ(ζ)
z − ζ


= 0,∞.
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It follows from these facts that, for a.e. θ ∈ [0, 2�[,
∣∣∣ d
dθ
Φ(eiθ)

∣∣∣ = |Φ′(eiθ)|,
d
dθΦ(e

iθ)

|Φ′(eiθ)| = τ(Φ(e
iθ)).(16)

Fix now a θ ∈ [0, 2�[ such that the angular limits of w′, Φ′ exist at ζ = eiθ, the
relations (14), (15), (16) hold, (10) holds at Φ(ζ) and the angular limit of ψ exists

at Φ(ζ) (all this is true for a.e. θ). We have

Re[−ζw′(ζ)] = (see(12)) = lim
r↑1
Re{i2eiθ[ψ ◦Φ(reiθ)]Φ′(reiθ)}

= (see(14)) = lim
r↑1
Re{i

[
d
dθ
Φ(eiθ)

]
· [ψ ◦ Φ(reiθ)]}

= (see(16)) = lim
r↑1
Re{i|Φ′(eiθ)|τ(Φ(eiθ)) · [ψ ◦ Φ(reiθ)]}

= |Φ′(eiθ)| lim
r↑1
Re{ν(Φ(eiθ))[ψ ◦ Φ(reiθ)]}.

Note that (15) guarantees that the radial approach to eiθ = ζ in D is transformed

by Φ into non-tangential (angular) approach to Φ(ζ) in G. Employing (6) and using
the validity of (10) at Φ(ζ) we conclude that

−Re[ζw′(ζ)] = |Φ′(eiθ)| lim
r↑1
Re{ν(Φ(ζ))[(∂1u− i∂2u) ◦ Φ(reiθ)]}

= |Φ′(eiθ)| · ∂u
∂ν
(Φ(ζ)) = |Φ′(ζ)|�(k − 1).

We have thus verified that

−Re[ζw′(ζ)] = |Φ′(ζ)| · �(k − 1)

for H 1- a.e. ζ ∈ ∂D.
Recalling (13) we employ the Theorem of Fichtengol’c (cf. [11], Th. 5.3 in chap. II)

to get

−Re[zw′(z)] = 1
2�

∫ 2�

0
|Φ′(eiθ)| · �(k − 1) 1− |z|2

|z − eiθ|2 dθ, z ∈ D.

We see that the harmonic function z �→ Re[zw′(z)] does not change sign in D;
since it vanishes at the origin it must vanish on D, so that z �→ zw′(z) is constant

on D. Taking the value at z = 0 into account again we see that w′ = 0 on D, so
that w is constant on D and, in view of (11), u is constant on G. �
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Remark 3. It follows from continuity of u that (2) implies that u remains constant
on G ∪ Γ = clG.

Proposition 2. If the logarithmic potential (3) is constant on Γ, then Γ is a
circle.

�����. Assuming
∫

Γ
ln |z − ζ| dH 1(ζ) = C, ∀z ∈ Γ,

we get using continuity of u and its harmonicity on G that
∫

Γ
ln |z − ζ| dH 1(ζ) = C, ∀z ∈ clG.

Put L =H 1(Γ) and consider the function

v : z �→ 1
L

∫

Γ
ln |z − ζ| dH 1(ζ)− C

L

which is harmonic on H = �
2 \ clG, v(z)→ 0 as z approaches Γ. Using the equality

v(z) =
1
L

∫

Γ
ln

∣∣∣1− ζ

z

∣∣∣dH 1(ζ) + ln |z| − C

L

we observe that

v(z) = ln |z| − C

L
+ O(|z|−1) as |z| → ∞,

whence it follows that v > 0 on H . We conclude from Theorem 9.8 in [10] that v
is Green’s function of H ∪ {∞} with pole at ∞ and that the transfinite diameter

(=logarithmic capacity) of Γ equals

capΓ = eC/L.

Consider now the function ψ∞ on H ∪ {∞} defined by ψ∞(∞) =∞,

(17) ψ∞(z) = e
−C/L exp

{
1
L

∫

Γ
ln(z − ζ) dH 1(ζ)

}
, z ∈ H ;

it is meromorphic on H ∪ {∞} with a simple pole at ∞, which is the only point z
in H ∪ {∞} with ψ∞(z) = ∞. Observing that |ψ∞(z)| → 1 as z approaches Γ we
conclude (cf. Theorem 1.9 in [10]) that ψ∞ is a conformal map of H ∪ {∞} onto

D∞ = {ζ ∈ � ; |ζ| > 1} ∪ {∞}.
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We have for z ∈ H

(18) ψ′∞(z) = ψ∞(z) ·
1
L

∫

Γ

dH 1(ζ)
z − ζ

.

Since the logarithmic potential (3) remains constant on clG we conclude from (6)
that ∫

Γ

1
z − ζ

dH 1(ζ) = 0, ∀z ∈ G.

Denoting, as above, by τ(ζ) the unit tangent vector of Γ at ζ (which is defined for
H 1- a.e. ζ ∈ Γ) we have

∫

Γ

τ (ζ)
z − ζ

dζ = 0, ∀z ∈ G,

whence we conclude by the Golubev-Privalov theorem (cf. section 2.3 in chap. III in

[11]) that the angular limits of the function

z �→ 1
2�i

∫

Γ

τ (ζ)
z − ζ

dζ

as z ∈ H approaches ζ ∈ Γ are forH 1- a.e. ζ ∈ Γ equal to τ(ζ). Since the conformal
map ψ∞ extends continuously from H to H ∪ Γ we get from (18) that the angular
limit of ψ′∞(z) as z ∈ H tends non-tangentially to ζ ∈ Γ (to be denoted by ψ′∞(ζ))
is for H 1- a.e. ζ ∈ Γ given by

ψ′∞(ζ) = ψ∞(ζ) ·
2�i
L
τ (ζ)

so that, in view of |τ(ζ)| = 1 = |ψ∞(ζ)|,

(19) |ψ′∞(ζ)| =
2�
L
for H 1- a.e. ζ ∈ Γ.

Let now ϕ∞ be the mapping which is inverse to ψ∞. It maps D∞ conformally onto

H ∪ {∞} (ψ∞(∞) =∞) and (cf. (17))

(20) ϕ∞(w) = eC/Lw + γ0 + γ1w−1 + . . . , |w| > 1;

by continuity, ϕ∞ extends to a homeomorphism of clD∞ onto clH , and the angular
limit of ϕ′∞(w) as w ∈ D∞ approaches ζ ∈ ∂D (to be denoted by ϕ′∞(ζ)) is available
for H 1 − a.e. ζ ∈ ∂D. We have

(21) ψ′∞(ϕ∞(w)) · ϕ′∞(w) = 1, |w| > 1.
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Recall that both the extended mappings ϕ∞ and ψ∞ are absolutely continuous w.r. to

H 1 on the corresponding boundaries ∂D and Γ. Let us now pass from the unbounded
domains D∞, H to bounded domains D,G∗ by means of the inversion; we shall
suppose (as we may) that 0 ∈ G. The mapping z �→ ϕ∞(1z )(0 �→ ∞) maps D onto
H ∪ {∞}, and the mapping

Φ(z) =
1

ϕ∞(1/z)
, z ∈ D,

maps D onto the bounded complementary domain G∗ of the curve Γ∗ = { 1p ; p ∈ Γ}
which is obtained by inversion from Γ. For H 1- a.e. ζ ∈ ∂D the angular limit of

Φ′ at ζ (to be denoted by Φ′(ζ)) exists and satisfies (15). If such a ζ is fixed and
z tends radially to ζ from D, then Φ(z) tends to 1/ϕ∞(ζ) along a path which is

non-tangential to Γ∗, w = 1
z tends radially to ζ from D∞ and ϕ∞(w) = 1

Φ(z) tends
to ϕ∞(ζ) along a path which is non-tangential to Γ at ϕ∞(ζ). Using (21), (19) and

the above mentioned absolute continuity w.r. to H 1 we get

|ϕ′∞(ζ)| =
1

|ψ′∞(ϕ∞(ζ))|
=

L

2�
for H 1- a.e. ζ ∈ ∂D

and from

(22) Φ′(z) =
ϕ′∞(1/z)
z2ϕ2∞(1/z)

, z ∈ D,

we obtain

(23) |Φ′(ζ)| = L

2�
· 1
|ζ2ϕ2∞(1/ζ)|

for H 1- a.e. ζ ∈ ∂D.

Since Γ is AD-regular, the same holds of Γ∗ (cf. [2], Corollary to Proposition 2 on
p. 160) and G∗ is a Smirnov domain (cf. 7.3 in [10]), so that

(24) ln |Φ′(z)| = 1
2�

∫

∂D

ln |Φ′(ζ)|1 − |z|2
|ζ − z|2 dH

1(ζ), z ∈ D.

It follows from (20) that the function

(25) z �→ zϕ∞(1/z) = eC/L + γ0z + γ1z2 + . . .

does not vanish at z = 0. Since ϕ∞ maps D∞ conformly onto H ∪ {∞} and 0 ∈ G,
the function (25) is holomorphic and 
= 0 on D, so that

z �→ ln |zϕ∞(1/z)|
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is harmonic on D and continuously extendable to clD, whence

1
2�

∫

∂D

ln
∣∣∣ζϕ∞

(1
ζ

)∣∣∣1− |z|2
|ζ − z|2 dH

1(ζ) = ln |zϕ∞(1/z)|, z ∈ D.

Combining this with (24), (23) we get

ln |Φ′(z)| = ln L
2�

− 1
�

∫

∂D

ln
∣∣∣ζϕ∞

(1
ζ

)∣∣∣1− |z|2
|ζ − z|2 dH

1(ζ) = ln
L

2�
− 2 ln |zϕ∞(1/z)|.

According to (22)

ln |Φ′(z)| = ln |ϕ′∞(1/z)| − 2 ln |zϕ∞(1/z)|,

so that
ln |ϕ′∞(1/z)| = ln

L

2�
, z ∈ D,

|ϕ′∞(w)| =
L

2�
, |w| > 1.

Since ϕ′∞ is a holomorphic function with constant absolute value on the domain

{w ; |w| > 1}, ϕ′∞ itself must be constant there. Consequently, ϕ∞ is linear and as
it extends by continuity to clD∞, we have

ϕ∞(w) = cw + d, |w| � 1

for suitable constants c, d ∈ � . Hence Γ = ϕ∞(∂D) is a circle. �

Remark 4. We have used the inversion to pass to bounded domains in the above
proof in order to be able to refer to some results which are formulated for bounded do-
mains in the literature we use. Actually, the above proof could be shortened treating

ϕ∞ directly without passing to Φ. A short proof of Proposition 2 for smooth curves
of class C(2) has been kindly communicated to the authors by Prof. E. Martensen

who also obtained an alternate proof of Proposition 2 for curves with continuously
varying curvature based on an new integral identity involving the density of the
equilibrium distribution [9].

It is well known (cf. [5]) that if Γ is a circle then CΓ1 maps L
2(Γ) onto the subspace

K (Γ) of all constant functions on Γ, so that CΓ1 (L
2
0(Γ)) = {0} is the trivial subspace.

Combining Propositions 1, 2 and Remark 3 we thus obtain the following

Theorem. The inclusion

CΓ1 (L
2
0(Γ)) ⊂ L20(Γ)

characterizes the circle in the class of all AD-regular Jordan curves Γ.

Remark 5. Another characterization of the circle in terms of the Cauchy operator
CΓ is given in [6].
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