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BEST SIMULTANEOUS Lp APPROXIMATIONS

Yusuf Karakuş, Adana

(Received November 22, 1995)

Abstract. In this paper we study simultaneous approximation of n real-valued functions
in Lp[a, b] and give a generalization of some related results.

1. Best simultaneous Lp approximations

The problem of simultaneous approximation to two or more real-valued functions
belonging to Lp [a, b] by elements of a subset S of Lp [a, b] has been studied by several

authors. Phillips and Sahney [3] gave results for the L1 and L2 norms.The problem of
the best simultaneous approximation to an arbitrary number of functions discussed

by Holland and Sahney [1], who generalized the results in [3] for the L2 norms. Ling
[2] considered simultaneous Chebyshev approximation in the Sum norm. Holland,

McCabe, Phillips and Sahney [4] considered the best simultaneous L1 approximations
and studied the relation between the best simultaneous approximations and the

best L1 approximations to the arithmetics mean of n functions. The problem of
simultaneous Lp approximation to two real valued functions f1 and f2 when p is an

odd natural number was discussed by Karakuş in [5] and when p is non-integer real
number by Karakuş-Atacik in [6].

In this paper we study the best simultaneous Lp approximation to n functions.

Definition 1. Let p � 1 be real number and S ⊂ Lp[a, b] a non-empty set of
real-valued functions. Let us assume that real-valued functions f1, f2, . . ., fn and all

s ∈ S are Lp integrable. If there exists an element s∗ ∈ S such that

(1) inf
s∈S

n∑

i=1

‖fi − s‖p
p =

n∑

i=1

‖fi − s∗‖p
p,
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then s∗ is said to be a best simultaneous approximation to the functions f1, f2, . . ., fn

in the Lp norm.

Theorem 1. Let fi, i = 1, 2, . . ., n (n � 2) and s be as defined above.

a) If p is an even natural number, then

inf
s∈S

n∑

i=1

‖fi − s‖p
p(2)

= inf
s∈S

{
2

n− 1

p/2∑

k=0

(
p

2k

) ∑

i<j

∫ b

a

[
fi(x) + fj(x)

2
− s(x)

]p−2k

×
[
fi(x)− fj(x)

2

]2k
dx

}

b) If p is an odd natural number, the

inf
s∈S

n∑

i=1

‖fi − s‖p
p = inf

s∈S

{
2

n− 1

(p−1)/2∑

k=0

(
p

2k

)
(3)

×
∑

i<j

∫ b

a

[
max

{∣∣∣fi(x) + fj(x)
2

− s(x)
∣∣∣,

∣∣∣fi(x)− fj(x)
2

∣∣∣
}]p−2k

×
[
min

{∣∣∣fi(x) + fj(x)
2

− s(x)
∣∣∣,

∣∣∣fi(x) − fj(x)
2

∣∣∣
}]2k

dx

}
.

We first prove the following lemma.

Lemma 1. Let n � 2 be a natural number and let 1 � i < j � n. For arbitrary

real numbers ai, aj and p � 1 let

(4) Aij =

(
p

2k

) (
ai + aj

2

)p−2k (
ai − aj

2

)2k
.

a) If p is an even natural number, then

(5)
n∑

i=1

ap
i =

2
n− 1

p/2∑

k=0

∑

i<j

Aij .

b) If p is an odd natural number, then

(6)
n∑

i=1

ap
i =

2
n− 1

(p−1)/2∑

k=0

∑

i<j

Aij .
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c) If p is a non-integer real number, ai + aj = 1 and −1 � ai − aj � 1, then

(7)
n∑

i=1

ap
i =

2
n− 1

∞∑

k=0

∑

i<j

Aij .

�����. a) To prove Lemma 1(a), we use the identity

(8) (a+ b)p + (a− b)p = 2
p/2∑

k=0

(
p

2k

)
ap−2kb2k

where p is an even natural number and a, b are arbitrary real numbers. Let us choose

a+ b = ai, a− b = aj. Then we have

(9) ap
i + ap

j = 2
p/2∑

k=0

Aij .

By using (9), we obtain

2
n− 1

p/2∑

k=0

∑

i<j

Aij =
2

n− 1

p/2∑

k=0

{(A12 +A13 + . . .+A1n)(10)

+ (A23 + . . .+A2n) + . . .+ (A(n−1)n)}

=
2

n− 1
{(ap

1 + ap
2

2
+

ap
1 + ap

3

2
+ . . .+

ap
1 + ap

n

2

)

+
(ap
2 + ap

3

2
+ . . .+

ap
2 + ap

n

2

)
+ . . .+

(ap
n−1 + ap

n

2

)}

= ap
1 + ap

2 + . . .+ ap
n.

b) In this case, we have

(11) ap
i + ap

j = 2
(p−1)/2∑

k=0

Aij .

The proof of part (b) is similar to part (a).

c) By using the series

(12) (1 + y)p + (1− y)p = 2
∞∑

k=0

(
p

2k

)
y2k, −1 � y � 1

and writing ai + aj = 1, ai − aj = y we have

(13) ap
i + ap

j = 2
∞∑

k=0

Aij .

Using this result, we obtain (7). �
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����� �� ������� �. We first show the existence of the right hand side of

(2) in the sense of the Lp norm. From the Hölder inequality

∫ b

a

|g(x)h(x)| dx �
[∫ b

a

|g(x)|r dx
]1/r[∫ b

a

|h(x)|t dx
]1/t

where 1/r + 1/t = 1, g ∈ Lr and h ∈ Lt. If any s ∈ S, 1/r = (p − 2k)/p and
1/t = 2k/p we have

2
n− 1

p/2∑

k=0

(
p

2k

) ∑

i<j

∫ b

a

[fi(x) + fj(x)
2

− s(x)
]p−2k [

fi(x) − fj(x)
2

]2k
dx

� 2
n− 1

p/2∑

k=0

(
p

2k

) ∑

i<j

{∫ b

a

[
fi(x) + fj(x)

2
− s(x)

]p

dx

}(p−2k)/p

×
{∫ b

a

[
fi(x) − fj(x)

2

]p

dx

}2k/p

=
2

n− 1

p/2∑

k=0

(
p

2k

) ∑

i<j

∥∥∥fi + fj

2
− s

∥∥∥
p−2k

p

∥∥∥fi − fj

2

∥∥∥
2k

p
,

which implies the existence of the right hand side of (2). On the other hand, for any
s ∈ S and a pair (i, j) we define

gs(x) = max
{∣∣∣fi(x) + fj(x)

2
− s(x)

∣∣∣,
∣∣∣fi(x) − fj(x)

2

∣∣∣
}
,

hs(x) = min
{∣∣∣fi(x) + fj(x)

2
− s(x)

∣∣∣,
∣∣∣fi(x) − fj(x)

2

∣∣∣
}
.

We have gs, hs ∈ Lp. The existence of the right hand side of (3) in the sense of the

Lp norm is shown as in the proof of (2).

a) Let s ∈ S and ai = fi − s. Then by Lemma 1(a)

n∑

i=1

[fi(x) − s(x)]p =
2

n− 1

p/2∑

k=0

(
p

2k

)
(14)

×
∑

i<j

[
fi(x) + fj(x)

2
− s(x)

]p−2k [
fi(x) − fj(x)

2

]2k
.

Integrating each side from a to b and then taking the infimum over all s ∈ S, we
obtain (2).
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b) Let s ∈ S and ai = |fi − s|. Then by Lemma 1(b)
n∑

i=1

|fi(x) − s(x)|p(15)

=
2

n− 1

(p−1)/2∑

k=0

(
p

2k

) ∑

i<j

[ |fi(x)− s(x)| + |fj(x)− s(x)|
2

]p−2k

[ |fi(x)− s(x)| − |fj(x)− s(x)|
2

]2k
.

For arbitrary real numbers m and n we have identities

|m+ n|+ |m− n| = 2max{|m|, |n|},(16)
∣∣|m+ n| − |m− n|

∣∣ = 2min{|m|, |n|}.

If we replace m+n and m−n in (16) by fi(x)− s(x) and fj(x)− s(x), respectively,
and use (15), we obtain

n∑

i=1

|fi(x) − s(x)|p

=
2

n− 1

(p−1)/2∑

k=0

(
p

2k

) ∑

i<j

[
max

{∣∣∣fi(x) + fj(x)
2

− s(x)
∣∣∣,

∣∣∣fi(x)− fj(x)
2

∣∣∣
}]p−2k

×
[
min

{∣∣∣fi(x) + fj(x)
2

− s(x)
∣∣∣,

∣∣∣fi(x)− fj(x)
2

∣∣∣
}]2k

.

Integrating both sides of this equality from a to b and taking the infimum over all
s ∈ S, we have the result of Theorem 1(b).

Remark 1. In Theorem 1(a):
a) If we take p = 2 we see that Theorem 1 in [1] is a special case of Theorem 1(a).

On the other hand, if we take n = 2, we obtain Theorem 3 in [2].

b) If p is an even natural number, then for n = 2 Theorem II in [1] is a special
case of Theorem 1(a).

Remark 2. In Theorem 1(b):
a) If we replace [a, b] by [0, 1] put p = 1 and n = 2, then ve obtain Theorem 2

in [3].
b) If we take p = 1, we see that Theorem 5 in [4] is a special case of Theorem 1(b).

Really, sgn(fi(x) − s(x)) is always positive or negative according to the hypothesis

of Theorem 5 in [4]. Hence

max
{∣∣∣fi(x) + fj(x)

2
− s(x)

∣∣∣,
∣∣∣fi(x) − fj(x)

2

∣∣∣
}
=

∣∣∣fi(x) + fj(x)
2

− s(x)
∣∣∣.
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Then (3) implies

inf
s∈S

n∑

i=1

‖fi − s‖1 = inf
s∈S

{
2

n− 1

∫ b

a

∑

i<j

(fi(x) + fj(x)
2

− s(x)
)
dx

}

= inf
s∈S

n

∥∥∥∥
1
n

n∑

i=1

fi − s

∥∥∥∥
1

.

c) If p is an odd natural number, then for n = 2 Theorem 1 in [5] is a special case

of Theorem 1(b).

Theorem 2. Let f1, f2, . . ., fn and s be as in Definition 1 and let p > 1 be a

non-integer real number. If fi(x)− s(x) �= 0, then

inf
s∈S

n∑

i=1

‖fi − s‖p
p

= inf
s∈S

{
2

n− 1

∞∑

k=0

(
p

2k

) ∑

i<j

∫ b

a

[
max

{∣∣∣fi(x) + fj(x)
2

− s(x)
∣∣∣,

∣∣∣fi(x)− fj(x)
2

∣∣∣
}]p−2k

×
[
min

{∣∣∣fi(x) + fj(x)
2

− s(x)
∣∣∣,

∣∣∣fi(x)− fj(x)
2

∣∣∣
}]2k

dx

}
.

�����. The existence of the right hand side of the equality in the sense of the

Lp-norm is shown as in the proof of Theorem 1(b) and using the absolute convergence
of the series on the right hand side under the given hypothesis. To prove Theorem 2

it is sufficient to take ai = |fi(x) − s(x)| in Lemma 1(c). �

Remark 3. In Theorem 2, if we take n = 2, we see that Theorem in [6] is a

special case of Theorem 2.
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Author’s address: University of Çukurova, Faculty of Arts and Sciences, Department of
Mathematics, 01330 Adana, Turkey.

463


		webmaster@dml.cz
	2020-07-03T11:43:26+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




