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Affine completeness of algebraic systems was studied in [3], [5], [6], [8]–[13]. In
the present paper we prove that a nonzero abelian linearly ordered group fails to be

affine complete. Then by applying Proposition 2.2, [9] we obtain that an abelian
projectable lattice ordered group G is affine complete if and only if G = {0}; this is
a generalization of Theorem (A) from [9].

1. Preliminaries

For lattice ordered groups we apply the usual terminology and notation (cf., e.g.,

[1]).
Let A be a universal algebra. We denote by ConA the set of all congruences of

A. Next, let P (A) be the set of all polynomials of A.
Let N be the set of all positive integers and n ∈ N . A mapping f : An → A is

said to be compatible with ConA if, whenever Θ ∈ ConA, ai, bi ∈ A and aiΘbi for
i = 1, 2, . . . , n, then f(a1, . . . , an)Θf(b1, . . . , bn).

The algebra A is called affine complete if each mapping f : An → A which is
compatible with ConA belongs to P (A).

1.1. Lemma. Let G be an abelian lattice ordered group and let p(x) ∈ P (G)
be such that p(x) fails to be a constant. There exist a, x0 ∈ G and an integer n such
that, whenever x1 ∈ G and x1 � x0, then p(x1) = a+ nx1.

�����. This is a consequence of Lemma 3 and Remark 3.1 in [9]. �

1.2. Proposition. ([9], Proposition 2.2.) Let G be a projectable lattice ordered
group. Assume that G is abelian and that it is not linearly ordered. Then G is not

affine complete.
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2. The case of linearly ordered groups

If I is a linearly ordered set and for each i ∈ I, Gi is a linearly ordered group, then

the lexicographic product of the indexed system (Gi)i∈I will be denoted by Γi∈IGi

(cf., e.g., [4], Chap. II).

Let R be the additive group of all reals with the natural linear order. If Gi = R

for each i ∈ I, then we put
Γi∈IGi = V (I).

2.1. Theorem. (Hahn [7].) Let G be an abelian linearly ordered group. Then
there exists a linearly ordered set I and an isomorphism ϕ of G into V (I).

For a more general result and a shorter proof cf. Conrad, Harvey and Holland [2].
If G, I and ϕ are as in 2.1, then for each 0 �= x ∈ G there exists i0 ∈ I such that

ϕ(x)(i0) �= 0, and ϕ(x)(i) = 0 whenever i ∈ I, i < i0. We denote

i(x) = i0.

Next, let I1 be the set of all i1 ∈ I such that i(x) = i1 for some x ∈ G. In what

follows we suppose that G �= {0}. Hence I1 �= ∅. Put

ϕ1(x)(i) = ϕ(x)(i) for each i ∈ I1.

Then ϕ1 is a homomorphism of G into V (I1).

Let 0 �= x ∈ G. We have ϕ1(x)(i1) �= 0 for i1 = i(x), whence ϕ1(x) �= 0 and thus
ϕ1 is an isomorphism of G into V (I1).

Hence without loss of generality we can suppose that I = I1.
Let I ′ be a subset of I such that either I ′ = ∅ or I ′ is an ideal of I. For x, y ∈ G

we put xΘ(I ′)y if for each i′ ∈ I ′ the relation

ϕ(x)(i′) = ϕ(y)(i′)

is valid. From the definition of Θ(I ′) we immediately obtain

2.2. Lemma. Θ(I ′) is a congruence relation on G.

For a congruence relation Θ on G and for x ∈ G we denote by x(Θ) the class in

Θ containing x (i.e., x(Θ) = {y ∈ G : yΘx}).

2.3. Lemma. Let Θ ∈ ConG such that Θ is not the greatest element of ConG.
Then there is an ideal I ′ of I such that Θ = Θ(I ′).
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�����. We denote by I ′ the set of all i′ ∈ I having the property that there

exists x ∈ G with x /∈ 0(Θ) such that i(x) = i′. From the fact that Θ is not the
greatest element of ConG we obtain that I ′ �= ∅.
Let i′ ∈ I ′, i1 ∈ I and i1 < i′. There exists y ∈ G with i(y) = i1. If y ∈ 0(Θ),

then i(|y|) = i(y), |y| ∈ 0(Θ) and

−|y| < x < |y|,

whence x ∈ 0(Θ), which is a contradiction. Thus y ∈ 0(Θ) and hence y1 ∈ I ′.
Therefore I ′ is an ideal in I.

Now let 0 �= x ∈ 0(Θ), x(i) = i1. Assume that i1 ∈ I ′. Hence there is z ∈ G such
that z(i) = i1 and z /∈ 0(Θ). But then there is a positive integer n with

−n|x| < z < n|x|,

implying that z ∈ 0(Θ), which is a contradiction. Thus i1 ∈ I ′. This yields that

xΘ(I ′)0.

Hence Θ � Θ(I ′).
Next, let 0 �= z ∈ 0(Θ(I ′)), i1 = i(z). In other words, zΘ(I ′)0, and hence i1 /∈ I ′.

Suppose that z /∈ 0(Θ); then i1 ∈ I ′, which is a contradiction. Thus z ∈ 0(Θ) and
therefore Θ(I ′) � Θ.
Summarizing we obtain that Θ = Θ(I ′).

It is clear that if Θ is the greatest element of ConG, then Θ = Θ(I ′), where
I ′ = I. �

Using the relation I ′ = I we conclude that for each i1 ∈ I there exists t ∈ G such
that i(t) = i1. Hence by applying the Axiom of Choice we obtain that there exists a

mapping ψ : I → G having the property that whenever i1 ∈ I, then ψ(i1) = t is an
element of G with

i(ψ(i1)) = i1.

For each i1 ∈ I we denote ψ(i1) = xi1 .

We define a mapping f : G → G as follows. We put f(0) = 0. Let x ∈ G, x �= 0.
Denote i(x) = i1; we set

f(x) =

{
xi1 if ϕ(x)(i1) = ϕ(kxi1 )(i1) and k is an odd integer,

2xi1 otherwise.

2.4. Lemma. f(x) does not belong to P (G).
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�����. By way of contradiction, assume that f(x) belongs to P (G). Then

there exist a, x0 and n with the properties as in 1.1. Next, there exist i1 ∈ I and a
positive integer m0 such that

m0x
i1 > x0.

Let m1 be a positive integer, m1 > m0. In view of the definition of f ,

f(2m0x
i1) = f(2m1x

i1) = 2xi1 .

On the other hand, 1.1 yields

f(2m0xi1 ) = a+ n.2m0xi1 ,

f(2m1xi1 ) = a+ n.2m1xi1 ,

whence

2n(m1 −m0)xi1 = 0.

Since m1 − m0 > 0 we obtain that n = 0, thus f(x) = a for x > x0. We have
2m0xi1 > x0, (2m0 + 1)xi1 > x0 and

f(2m0xi1) �= f((2m0 + 1)xi1 ),

which is a contradiction. �

2.5. Lemma. The mapping f is compatible with ConG.

�����. Let x, y ∈ G and Θ ∈ ConG. Suppose that xΘy is valid. In view of
2.3 there exists I1 ⊆ I such that either I1 = ∅ or I1 is an ideal of I, and Θ = Θ(I1).
Hence

(1) ϕ(x)(i) = ϕ(y)(i) for each i ∈ I1.

We have to verify whether the relation

ϕ(f(x))(i) = ϕ(f(y)(i))

holds for each i ∈ I.
The case x = y is trivial. Suppose that x �= y.
First let x = 0. Put i(y) = i2. In view of (1) we have i2 /∈ I1 and f(y) ∈ {xi2 , 2xi2}.

Thus f(y)(i) = 0 for each i ∈ I1.
Next, let x �= 0 �= y and let i2 be as above. Put i(x) = i1. If i1, i2 ∈ I \ I1, then

ϕ(f(x))(i) = 0 = ϕ(f(y))(i) for each i ∈ I1.
Suppose that i1 ∈ I. Then in view of (1) we have i2 = i1 and, at the same time,

f(x) = f(y). This completes the proof. �
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2.6. Theorem. Let G be a nonzero abelian linearly ordered group. Then G is
not affine complete.

�����. This is a consequence of 2.4 and 2.5. �

Now we proceed to the case of projectable lattice ordered groups.

2.7. Theorem. Let H be an abelian projectable lattice ordered group. Then
the following conditions are equivalent:

(i) H is affine complete.
(ii) H = {0}.

�����. The implication (ii)⇒(i) is trivial. From 2.6 and 1.2 we infer that
(i)⇒(ii) holds. �

Since each complete lattice ordered group is abelian and projectable, the above
theorem generalizes Theorem (A) from [9].
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