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SINGULAR DIRICHLET BOUNDARY VALUE PROBLEMS II:
RESONANCE CASE

DoNAL O’REGAN, Galway
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Abstract. Existence results are established for the resonant problem 3" 4+ Am ay = f(t,v)
a.e. on [0, 1] with y satisfying Dirichlet boundary conditions. The problem is singular since f

is a Carathéodory function, a € L{. .(0,1) with a > 0 a.e. on [0, 1] and fol z(l1—z)a(z)dz <
0.

1. INTRODUCTION

This paper presents existence results for the Dirichlet resonant second order prob-
lem

(1.1) { y' + Ana(t)y = f(t,y) a.e.on [0,1],

y(0) =y(1) =0

where f: [0,1] x R — R is a Carathéodory function, a € L{ (0,1) with a > 0 a.e.
on [0,1] and f01 z(1 — z)a(z) dz < oco.

Remark. ), (which is the (m + 1)* eigenvalue of an appropriate problem) will
be described later in the introduction.

Equations of the type (1.1), with a € L*[0, 1], have been studied extensively in the
literature [2-3, 5-8, 10-11]. However very little attention has been given to the case
when a ¢ L1[0,1] (see [3, 5, 11] for results concerning upper and lower solutions).
We remark here that the eigenvalue problem (which is singular) has been studied [1,
4, 9]. In this paper we use a well known technique, initiated by Mawhin and Ward
[8] in the early 1980’s and extended by Iannacci and Nkashama [6] in the late 1980’s,
to establish some new existence results for (1.1). The results here rely on a new
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existence principle established by the author in [12]. For convenience we now recall
the results in [12] which will be used in this paper.
Our first result is an existence principle for

y'+pat)y = f(t,y) ae on [0,1],
y(0) =y(1) =0, u a constant

(1.2)

which was established using fixed point methods. First recall f: [0,1] x R — R is a
Carathéodory function if

(i) t — f(t,y) is measurable for all y € R,

(ii) y — f(t,y) is continuous for a.e. ¢t € [0, 1].

Theorem 1.1. Let f: [0,1] x R — R be a Carathéodory function with

(1.3) for any r > 0 there exists h, € Li _(0,1) Wlth |f(t,uw)] < h(t) for al-

loc
most all t € [0,1] and all |u| < r; also fo — 2)hy(z)dz < oo with
Jim (1 t)h, (1) = ol'ffol(kx)h (z)dx = ooand Jim 4(1-1)%h,(8) = 0
Jffo zhy(z)de =

satisfied. Also assume

(14) a € L (0,1) with a > 0 a.e. on ( ,1) and fo z(1 — z)a(x)dr < oo; also
11%1 t2(1 —t)a(t) = 0 if fol(l —z)a(x )da: = 0o and hrfl t(1 —t)%a(t) =0
t—1—
1ff0 za(x)dr =

holds and suppose i is such that
{ vy +pat)y=0 ae. on [0,1],
y(0) =y(1)=0

has only the trivial solution. In addition assume there is a constant My, independent
of \, with |y|o = sup |y(t)| # My for any solution y (herey € AC[0,1]NC(0,1) with
[0,1]

(1.5)

Y € AC1c(0,1)) to

(1.6) {y”+ua(t>y= Af(t,y) ae on [0,1],

y(0) =y(1) =0
for each \ € (0,1). Then (1.2) has at least one solution u € AC[0,1] N C*(0,1) with
u € AC]OC(O, 1).

Remark. In [12] we showed that if h, € L'[0,1] in (1.3) then in fact the solution
u described above has the additional properties au? € L'[0,1], v/ € L?[0,1] and
lim w(t)u/(t) = lim wu' = 0.
t—0+ t—1-
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We now establish a more general result. Suppose the conditions of theorem 1.1
are satisfied and in addition assume

(1.7)  there exist p, ¢, with 0 < p,¢ < %, and 2P (1 — x)9h, € L1[0,1]; here h, is
as described in (1.3)

and
(1.8) o' P(1—x)'"%a € L0,1]

hold. Then the solution u described in theorem 1.1 satisfies au? € L1[0,1], v’ €
L?[0,1] and 1ir(r)1+ u(t)u'(t) = lm w(t)u'(t) = 0.
t— t—1—
Recall [12],

w(t) = cows(t)(1— 1) /0 sw1 () (5, u(s)) ds + co wi () /t (1= s)ws(s) £ (s, u(s)) ds

(co, w1 and wsy are as described in theorem 2.1 in [12]). If we show

2

/01 a(t)(1 —t)? (/Ot shy(s) ds> dt < oo

2

/Ola(t) t? (/tl(l — 8)h(s) ds) dt < o

(here h,. is as described in (1.3)) then of course au? € L'[0,1]. Immediately we have

and

/Ola(t)(l _ </Ot shy(s) ds)2 dt

< /01 a(t) 24P (1 — 1)2(-a) (/Ot sP(1 — 5)7h,(s) ds) dt < oo

so au? € L1[0,1].
Also recall for t € (0,1) that

W (t) = co (1) / swi(s) (s, u(s)) ds + ol (t) / (1~ s)wn(s)f (s, u(s)) ds.

We show

(1.9) /01 <y;(t) /Ot shy(s) ds>2 dt < oo
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where

1

(1.10) yo(t) =1+ ;A/t (1 - z)a(z)ws(x) dz.

Now (1.9) is immediate since

2

/ 1 (w0 [ tsms)ds) at
<2/01 (/Otshr(s)ds>2 ar
ol | 1 (/ (1~ 2)a(e) d

<2/01ﬁ </0t5(1—s)qm(s)ds d

1 1 ¢
+ 202 |lwo 2 / </ (1—2)" 92 "Pa(x) dx / sP(1—s)%h, ds) dt.
o \Je 0

2

/01 <y’1(t)/tl(1_s)hr(8)d8) & < oo

sou’ € L0, 1]. Finally we show lim+ u(t)u’(t) = 0. This is immediate once we show
t—0

t 2
shy(s) ds) dt

S~

Similarly

(1.11) tliré1+ yg(t)/o sh,(s)ds y’z(t)/o shy(s)ds =0,
(1.12) tli%l+ yl(t)/t (1—s)hr(s)ds yé(t)/o shy(s)ds = 0,
(1.13) Tim (1) /0 shy(s)ds ,(t) /t (1= )hn(s)ds = 0
and

(1.14) Jim yl(t)/t (1— $)ho(s) ds y’l(t)/ (1— $)hy(s) ds = 0.

t—0+ t

Now (1.11) is true since (see (1.10))

2 2

(/Ot sh(s) dS) /tl(l —z)a(z)dz < (/Ot sPhy.(s) ds) /tl 22079 (1 — )a(z) da

< (/Otsphr(s)ds)Q/tlxlp(l—x)lqa(a:)dx
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and (1.7) implies lim fot sPh,(s)ds = 0.
t—0
Also we know (1.4) implies li%1+ y1(t) ftl(l — z)h,(xz)dz = 0 and thus (1.12) is
t—

immediately true since

1 (1—-2x)a(z)de t shy(s)ds
[ |
< /t z17P(1 — ) " a(x) da /Ot sP(1—s)2h,(s)ds < oo.

Now (1.13) follows from the fact that

/Ot xh,(7)ds /tl(l — 8)h.(s)ds < /Ot 2P h,.(z) ds /tl s17P(1 — s)h,(s)ds
< /0 P () ds /t " (1 9)Th(s) ds.

2
Finally (1.14) follows once we show 11%1+ y1 (1) (ftl(l — 8)h.(s) ds) = 0. This is
t—

immediate since

durto) ([ (1= s)ho(s) as) =il ([ Lo h(s) as)

Thus lim+ u(t)u’(t) = 0. Similarly lim w(t)u/(t) =
t—0 t—1-

Next we recall some results [12] concerning the eigenvalue problem. In particular

consider
Ly = \y, a..on [0,1],

y(0) =y(1)=0
where Ly = —é y". Assume (1.4) holds for the remainder of this section. Now L2[0, 1]

denotes the space of functions v with fol a(t)|u(t)]? dt < oo; also for u,v € L2[0,1]
define (u,v) = fol a(t)u(t)v(t) dt. Let

1
D(L) = {u € Cl0,1): we AC[D, 1], u' € ACic(0,1) with —u” € L2[0,1]

w(0) =u(1) =0 and lim w()d/(t) = lim w(t)d/(t) = o}.

t—0+t t—1—

In [12] we showed using the spectral theorem for compact self adjoint operators
that L has a countably infinite number of real eigenvalues \; with corresponding
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eigenfunctions ¢; € D(L). Also the eigenvalues \; are simple and A; > 0 for all 4, so
we may arrange the eigenvalues so that

/\0</\1 <A< ...
In addition the eigenfunctions ; may be chosen so that they form an orthonormal

set. Also {¢;} form a basis for L2[0,1] so if » € L2[0, 1] then r has a fourier series

representation

LS
r= Z <Ta §02> Pi
=0

?

and r satisfies Parseval’s equality

1 o0
/0 a2t =3 [(r o)
1=0

Next consider functions u € AC0,1], u(0) = u(1) = 0 with v € L2[0,1] and v/ €
L2[0,1]. Then u = Y c;¢; where ¢; = (u, ¢;). In [12] we showed
i=0

oo
! /
u = E Ci P;
=0
(convergence is understood to be in L?).

2. EXISTENCE THEORY
In this section we use theorem 1.1 to establish existence results for

2.1) { Y+ Amay+yg(ty) =h(t,y) +v(t) ae onl0,1],

y(0) =y(1) =0
where m € {0,1,2,...} and A, is as described in section 1.

Remark. For the remainder of this paper let f(¢,y) = h(t,y) —yg(t,y).
Theorem 2.1. Let f: [0,1] x R — R be a Carathéodory function with

(2.2) for any r > 0 there exists h, € L*[0, 1] with |f(t,u)| < h,(t) for almost all
t €1[0,1] and all |u| < r
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holding. In addition assume (1.4) holds with

1
(2.3) v € L'0,1] and there exists p, 0 < p < 3 with 2P(1 —z)Pa € L*[0,1]
(2.4) there exists T € C[0,1] with ar € L'[0,1] and 0 < g(t,u) < 7(t)a(t) for

ae. t € [0,1] and u € R; here 7(t) < Amt1 — Ay, for ae. t € [0, 1] with
7(t) < Am+1 — A\m on a subset of [0, 1] of positive measure

(2.5) |h(t,y)] < q1(t) + q2(t)|y|” for a.e t € [0,1] with 0 <y <1
and
(2.6) ¢ € L'0,1], i=1,2

are satisfied.
(i) Suppose there exists a constant k > v with 1 > k = %, where (8 is odd and «

is even, and

r—00

(2.7) 0< /1+ [Apy, ()" liminf (2! % g(¢, z)) dt

+/ [Apy, (£)]" T limsup (2! % g(t, 2)) dt
for all constants A # 0; here IT = {t € [0,1]: Ap,(t) > 0} and I~ = {t:
Apm(t) < 0}.
Then (2.1) has at least one solution.
(ii) Suppose v = 0 and

(2.8) A /0 o(B)pm (D) dt < A /I em(O)liminf (2 g(t,2)) de

Tr—00

+A / o () Tim inf[—h (¢, 2)] dt
I+

r—00

xr— —0Q

(t)
JrA/I ©m (t) limsup (z g(¢, x)) dt
®)

+A/ ©m (t) lim sup[—h(t, z)] dt
-

xr— —00

for all constants A # 0.
Then (2.1) has at least one solution.
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Proof. Choose p such that A\, < g < Am+1 and look at the boundary value
problem

(2.9) {y” +pay=9d[h(ty) +o(t) —yg(t,y) + (k. — Am)ay] a.e. on [0,1],
Tl =y =0

for § € (0,1). Suppose y is a solution of (2.9)s. If we show that there exists a
constant My, independent of A, with |y|o < M then existence of a solution to (2.1)
will be guaranteed from theorem 1.1.

Now L2[0,1] = Q @ QF where Q = {¢o, ..., om}. Let

[e%e] m m—1
w = E CiPi, U= E Cipi, Ug = E Cipi, U1 = CmPm and Y = w + ug
i=mt1 i=0 =0

where ¢; = (y, ¢;).

Remarks. (i) Notice from section 1 that ay? € L'[0,1] and y’ € L?[0,1].
(ii) Note g =y —u; and y = w + u.

Multiply the differential equation in (2.9)5 by v — w and integrate from 0 to 1 to
obtain

@ = o (1= 9= Ao + (e )
— [ = D (1= 8) (= A+ dg(e. )
= 5/0 [A(t,y) + v(t)](u — w) dt.

Remark. Now w — u = y — 2u and we claim lim+ y'(y — 2u) = 0. To see this we
t—0
show lim u(t)y’(t) = 0. This will be established by showing lirn+ wi(t)y'(t) = 0 for
t—0 t—0
1=0,1,...,m. Fix i € {0,1,...,m}. Then

0i(t) = N (1— 1) /Ot sa(s)ei(s) ds + \; t/tl(l — s)a(s)ei(s) ds
and
y'(t) = dcoys(t) /Ot swi(s)[f(s,y(s)) +v(s) + (1 — Am)a(s)y(s)] ds
+dcoyi(t) /tl(l — s)wa(s)[f(s,y(s)) + v(s) + (1 — Am)a(s)y(s)] ds.
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Now 1ir(1]1+ wi(t)y'(t) = 0 if we show
t—

2

fm [ za(e)ds [(1—8)@(5) ds—0 and lim ¢ </tl(1—x)a(x)da:) ~0.

t—0t Jo t—0t

The first limit is immediate since
¢ 1 ¢ 1
/ za(x)dz / (1 —9)a(s)ds < / 2Pa(z) dz / s'7P(1 — s)a(s) ds
0 ¢ 0 ¢
¢ 1
< / 2Pa(z) dz / sP(1 — s)Pa(s)ds
0 0

and noting (2.3) implies lim fot zPa(x) dz = 0; the second limit follows since
t—0

t (/tl(l — 2)a(z) dx>2 <t </01 2P(1 — z)a(z) dx)

Thus lim+ y'(y — 2u) = 0. Similarly lim y'(y — 2u) = 0.
t—0 t—1-

2

Now use (2.4) to obtain
(2.10) /0 ([W')? = A + 7(0)]aw?) dt — (1 — A\ /0 aw?dt

1 1
— [ = Amand) de < [ i) + ool - w)la.
0 0
Let . )
R(G) = / (0] = P + 7(0)]aw?) dt — / ([uh]? = A atd) dt.
0 0
We claim that there exists € > 0 with

(2.11) R(§) = € ([lwll? + [lw'[I* + uoll? + lluo]?) ;

here [|z|? = folaZQ dt and ||2/||* = fol[z’]2dt where z = w or ug. Next notice a
standard argument, using (2.4), implies R(§) > 0 and if R(§) = 0 then § = 0.
If (2.11) is not true then there exists a sequence {g,} = {wy, + uo n} with

(2.12) lwnll + 1wl + lluonlly + llug,lI* =1
and
(2.13) R(Jn) — 0 as n — oo.
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Now (2.12) implies that there is a subsequence S of integers with

(2.14) w, — w in C[0,1] and w/, —w' in L?[0,1] as n — oo in S
and
(215)  won —ug in C[0,1] and uf, — uy in L?[0,1] as n—oo in S;

here — denotes weak convergence.
Since weak and strong convergence are the same in finite dimensional spaces we

have
(2.16) Uo, — up in WH2[0,1] as n — oo in S.
Also
1 1
(2.17) / [w']? dt < lim inf / [w!]? dt.
0 0

Now (2.13), (2.14), (2.15), (2.16), (2.17) (and the Lebesgue dominated convergence
theorem with ay? € L'[0,1] and 7 € C[0,1]) and the fact that liminf[s, + t,] >
liminf s,, + liminf ¢, for sequences s,, and t,, yields (with § = w + uo),

R(%) < liminf/ dt—l—hm/ 1A + 7(8)w? dt
fhm/ dt+hm/ yu? dt < liminf R(§,) < 0.
Hence y = 0. However
w3 + llwn I + oz + Il .2

1
= R() + [ (2,0 + avd, ~ Anaid, + aud
0

+ A +7)aw?]dt -0 as n— oo in S,

which is impossible. Hence (2.11) holds for some £ > 0 (note ¢ is independent of ).
Put (2.11) into (2.10) to obtain

1
e (lwll? + llw'lI* + lluollz + Ilup]1*) —(M—)\m)/ aw?dt
0

1
< / |h(t,y) +v(t)||lu — w|dt.
0

278



SAmti where e is chosen sufficiently small so that A\, + E)"’T‘“ <

2
. —Am
Ama1. Then since (1 — A\p)||w||? < %HMHQ

Now choose = A\, +

we have

1
3
(2.18) 5 (1wllg + [1e'II* + lluollg + lug]l*) </0 At y) +o(@)||u — w|dt.

Notice also for ¢ € [0, 1] that

t
wlt) = u(o)] = | [ 1w/(6) — (o) ds| < ! =) and (O] < !+
0
Thus
1 1 1
(2.19) /ql(t)\w—u\dtg\w—u\o/ qldt<||w’—u'\|/ o dt
0 0 0
1 1
= (I + upll? + st 12) / g dt
1 1 1
(2.20) /0 \U(t)\|w—u\dt<(HU/HQJF||U6||2+||u'1||2)2/0 o] dt

and

1 1
(2.21) / aa(Olw — ully] dt < |w — ulolyly / g2 dt
0 0

< /112 112 112 WT-H ! dt
< (117 A+ [l l* + luq %) |
since
[’ — ' * = [ I + |/ [I* = [lg11> = 171 + a1 = o[ + [luol® + [[ug ]|,
Put (2.19), (2.20) and (2.21) into (2.18) to obtain
€
5(||w\|3 + [’ |12 + [uoll? + [ull®)
i 1 1
< P+ 1l + 1t 2)* ([ e [ olar)
0 0
1112 7012 112 %H !
+ (Jw' 1%+ gl + llui ) g2 dt.
0
Now since 0 < 7 < 1 there exist constants A; and Ay with
(2.22) wll + [luoll + oI + lugll® < A1 + Agflug |+
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Consequently

(2.23) 1312 + 17112 < A1 + Al |7+,

We next claim that (2.23) implies that there is a constant My > 0 with
(2.24) 112 + 11y'1I* < Mo.

Suppose the claim is false. Then there is a sequence (J,) in (0,1) and a sequence
(yn) with for a.e. t € [0,1],

(225) 4+ Amayn + (1= 82) (1 — An)ayn + Snyn g(t, yn) = Snlh(t, yn) + v(t)]
and

(2.26) lynllz + llynl* — oo

From (2.23), with y, = §n + ©1,n, we have

(2.27) lurnllz + lluy pl* — oo

Also (2.23) and (2.27) imply

lurnllZ + [[ui,[?
Let
Tn = on T — Tp + T1,n
(lurnll2 + fluy %) 2
where
fn = Yn and T1in = U1

1 1=
(uanllZ + llui ,)12)* (lanll? + llw ,11%) *

Now (2.28) implies there is a subsequence S* of integers with

(2.29) 7 — 0 in C[0,1] and 7, =0 in L?*[0,1] as n — oo in S*.
Now 2 /12 REERIAL
ynlla + lynl® [1Gnlla + 195
2 ro2 T 1+ 2 r2
[wr,nllZ + llui | [l + [[un ]
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together with (2.28) and (2.29) implies that there is a subsequence S of integers and
a constant A # 0 with

(2.30) rn — Apm in C[0,1] as n— oo in S
and
(2.31) rn — Apy in C[0,1] as n — oo in S.

Remark. Note as well that r,, — Ag,, in W2[0,1] as n — oo in S and 1, —
Ay, in WH2[0,1] as n — oo in S.

Multiply (2.25) by = and integrate from 0 to 1 (noting that fol[rlmyg +

AmT1.n0Yn] dt = 0), to obtain

1 1 1
(2.32) / vryy, dt = —/ T1n h(t,yn)dt—i—/ T1n Yn 9(t, yn) dt
0 0 0

1- n - \m !
Wb do) [y
2)2 0

On (lwnll? + llui

and so

1 1 1
(2.33) / vrypdt > — / 71, h(t, yn) dt + / 71, Yn 9(t, yn) dt.
0 0 0

Case (i). Suppose (2.7) holds.
Multiply (2.33) by (|lu1.n 12 + [Juf ,[I?)

1 ! ! h(t
& / vry,dt > — / "1n hlt Yn) 7 dt
(llernll2 4 [Juf ,)12) % o O (flur,nll2 + lluf ,[12) 2

+/1 Tl,nyng(t,yn) dt
% .
0 (lurnll2 + lluy,ll?) 2

—k
2 to obtain

Now since (2.30) holds then there exists a constant By with |11 »|o < Bo for all n so
we may apply the Lebesgue dominated convergence theorem to deduce

1 1 1
(2.34) lim inf/ vryndt = lim/ v, dt = A/ VP dt.
0 0 0

Now (2.27) and (2.34) imply

[N

1
lim inf/ YTn dt = 0.
O ([Jurnll2 + llug . lI%)
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and so

(2.35)
1 1
ndJn ta n
0>liminf/ dt+1iminf/ T1nY g( Y )
° 0 (fusnll2 + . 12)

Remark. In (2.35) we have n — oo in S.

1 [=h(t yn)]

1+ luynl?)

dt.

N[
[N

w1,

Now
1
—h(t
(2.36) liminf/ ralzhon)l g
0 (Jlurnll2 + lluy ,lI?)
since

[N

1
Og/ |r1,nh(tayn)| dt
0 (Jlurnll2 + [lug u11%)

1 1 1
< _ ( / gtus.n] dt + / qzul,nmnmt)
(s a2 + e f12) F Mo 0

together with
1 1 1 1
/ @il ] dt < [uu1 nlo / g1 dt < (Jlurall? + [0 ]12) / ¢ dt
0 0 0

and (here we use (2.23)),

1
/ Goltn| i1
0

dt < (Jluz,n

1
1 ol
2+ 1) (w2 + 19402) / 0o dt

441 1
< (lurnllf + luy ol + 102 + 150012) 2 /Odet

~t1 1
< (lunnll2 + el + Ay + Aslla 1) / Gt
0

implies that (2.36) is true (note k > and v < 1). This together with (2.35) yields
(2.37)

t t
0> hmlnf/ T1,n Yn g( ayn) . dt+liminf/ T1,n Yn g( ,yn) . dt.
I ([lunl2 + [l ,01%) 2 I ([lur,nll2 + flug o l12) 2

Remark. Notice since ¢, has at most a finite number of zero’s [1,4] and ar €
L'[0,1] then, with J = [0,1]/{IT U I~ }, we have

/|u1’nyn|a7dt< [u1,nlo |yn\0/ aTdt =0 foreach n e S.
J J
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Consequently

t
/ "0 Yn 9(t Yn) zdt =0 for each n e S.
T ([lurnll2 + [luf,11%) 2

We next want to apply Fatou’s lemma in (2.37). To justify this we need to show
that there exists g € L'[0,1] with

T1,n Yn g(t, yn)
(lluanll2 + [l 012)

To see this first notice

(2.38) > o(t) for ae. t€]0,1].

E
2

[n (D1 < [1Gnl1* + 15117 < Az + Al [
so there exists Az > 0 (since k >~ and (2.27) holds) with

[Gn (1))

(lurnll2 + [y o 12) 2

(2.39)

N

As.

Also for a.e. t € [0, 1],

—_

gt y)lyn tuin —32] _ 1 9(t,yn) Jn

k+1 =
= 2
(w2 + llui ,[12) 2 (lurnll + l1f

1 a(t)r(t) g2 1
-5 P > = 5 Asa) T(0).
(llexnll2 + lluf,11%)

Thus (2.38) is true since a7 € L1[0,1]. Apply Fatou’s lemma to (2.37) to obtain

n Jn ta n . . nJn t, n
02/ liminf< 1.0 Yo 9(t: Yn) k)dtJr/ hmmf( 1.0 Y 9, Yn) >dt
™ (lurnll2 + v, 012) 2 - (a2 + [l 012)
k
:/ 1iminf<r1,n< Yn ;) y;—kg(t,yn)) dt
” (luanll2 + flug ,[12) 2

k
+/ lim inf <r1’n< “Yn 1> [[yn]lkg(t,yn)o dt.
B (llur,nl12 4 [Juf ,)12)

This together with (2.30) and (2.31) implies

T1,n Yn g(t, yn)

1+ 1w nl1?)

PES

|2> 2

1
£ 2

(Hul,n

[N

(2.40) 0> [ [Apn(®) limin (43" g(t,1.)) d
I+
+ / [Apy ()" limsup (yh " g(t, yn)) dt.
-
Remark. Note (—1)" = (—=1)7 =1 and —(—1)!"% =1.
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Let t € I'". Then (2.31) implies there is an integer ny (i.e. ni(t)) with

1 1
(2.41) ya(t) > 5 Apm(t) (lun 2+ ) for 0>y,
Let ¢t € I~. There is an integer ny with

1 1
(2.42) n(t) < 5 Aem(®) (luanllz + [urul?)? for n>mn,.

This together with (2.40) implies

0> / [Agm, (1)]F+! liminf (z' " g(t, z)) dt
I+

Tr—00

+ /7 [Apm (1)]F ! limsup (z' % g(¢,2)) dt,

Tr——00

which contradicts (2.7). Thus (2.24) holds and so |y|3 < M. Theorem 1.1 now
guarantees that (2.1) has a solution.

Case (ii). Suppose (2.8) holds.
Now (2.33) together with (2.34) yields

1
A / v oy dt > lim inf/ T1,n Yn 9(t, yn) dt + lim inf/ T1,m Yn 9(t, yn) dt
0 I+ -

+liminf/ 1 n[—h(t, yn)] dt—l—liminf/ 1,0 [—h(t, yn)] dt.
I+

As in case (i) there exists o € L]0, 1] with
T1nYn 9, yn) = o(t) for ae. te(0,1]

and so Fatou’s lemma together with (2.41) and (2.42) implies

1
A / VP dt > A/ ©m(t) liminf (zg(t, z)) dt + A/ ©m () limsup (zg(t,z)) dt

- T——00

+liminf/ rl’n[fh(t,yn)]dt+liminf/ rin|—h(t, yn)] dt.
I+
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Also |h(t,y)| < q1(t) + q2(t) a.e. so we may apply Fatou’s lemma (together with
(2.41) and (2.42)) to deduce

1
A/O v(t)om (t) dt > A/I+ ©m(t) liminf (zg(t, z)) dt

r—00

+ A/_ ©m (t) limsup (zg(t,z)) dt

Tr— —0Q

+ A / (0l inf A, )]

T—00

+A/7 ©m (t) lim sup[—h(¢, z)] dt,

T——00

which contradicts (2.8). Thus (2.24) holds. O

Remark. One can obtain in addition a result if £ = 7 in case (i). Of course (2.36)
does not necessarily hold in this case so we need to adjust (2.7) using the ideas in
case (ii).

We now obtain an extra existence result if fol vy, dt =0 and a € L]0, 1].

Theorem 2.2. Let f: [0,1] x R — R be a Carathéodory function and assume
(1.4), (2.2), (2.3), (2.4), (2.5) and (2.6) are satisfied. In addition assume

1

(2.43) / v(t)pm(t)dt =0 and a € L'[0,1],
0

(2.44) h(t,u) <0 for a.e. t€[0,1],u >0

and

(2.45) h(t,u) >0 for a.e. t €[0,1],u <0

hold. Then (2.1) has a solution.

Proof. Suppose y is a solution to (2.9)s. Follow the arguement in theorem 2.1
to equation (2.32). In this case (since (2.43) is true) we have

1 1
(2.46) 0= —/ T1n h(t,yn)dtJr/ 1,0 Yn 9(t, yn) dt
0 0

1—6,) (1t — A !
n ( ) (1 ) l/ an , dt.
On (urnll2 + fuf ,112)2 /o
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Now [1,4 section 4] implies ¢,, has a finite number of zeros so

(2.47) 0> / (P (8 ) + raal=h(t ) de

+ /7 ("1 Yn 9t Yn) + r1n[—h(t, yn)]) dt.

We now claim that for ¢ € I there exists an integer n; (independent of ¢) with
(2.48) rin(t) >0 and y,(t) >0 for n>n; and neS.

Similarly we claim for ¢ € I~ there is a integer ny (independent of t) with
(2.49) rin(t) <0 and y,(t) <0 for n>ny and ne€ S.

To see the first part of (2.48) let 71, = B1.npm. Fix t1 € I'T. Then (2.30) implies
that there is an integer my (i.e mq(t1)) with

1 1
rin(t) 2 §A<Pm(t1) (Jlu1,n )% for n>m;.

o+ llh

Thus % > 0 for n > my since BL&" Apm(t1) = r1,0(t1) > 0 for n > m4. Conse-

quently for any s € I'™ we have ry ,(s) = an Apm(s) > 0 for n = my. The proof of
the second part of (2.48) is more involved. Notice (2.25), (2.27), (2.31) and the ideas
used in (2.19), (2.20) and (2.21) immediately guarantee the existence of w € L0, 1]
(w independent of n) with, for n sufficiently large,

(2.50) 7" (t)| < w(t) for a.e. t€[0,1].

Remark. a € L'[0,1] is needed to guarantee w € L'[0,1].

Notice also [10] since a € L[0, 1] that ¢,, € C1[0,1]. Now (2.50) implies (see also
(2.31)) that there is a subsequence S* of integers with

(2.51) Ty — Apm in C0,1] as n — oo in S*.

Notice ¢},(0) # 0 (i.e. if ¢,,(0) = 0 then ¢! = =A@ ©m, Pm(0) = ¢, (0) =0
which implies ¢, = 0, a contradiction). Also we know ¢,, has a finite number of
zero’s in (0,1); let s; denote these zero’s and let so be the smallest one. Without
loss of generality assume Ay, > 0 on (0,so) with ¢,,(0) = @ (so) = 0. Since
Ol = —Am apm a.e. then Al (0) > 0. Thus there exists t; € (0, sg) with Ag!, (t) >
AL ©!,(0) for t € [0,¢1]. Also (2.51) implies that there is an integer ki with 7/, (t) —
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Apl () > — 1 A, (0) forn > ky. Thusr/,(t) > 1 A, (0) forn > ky and t € [0,1,].
Consequently

t 1
_ / 7 (s)ds (urnll? + [ al?)? >0 for n>k and t € (0,4,
0

Similarly there exists to with t; < t5 < sp and there exists an integer ko with
yn(t) > 0 for n > kg and ¢ € [ta,50) (note in this case for a fixed t3 € (t2,50)
then (2.41) implies that y,(t3) > 0 for n sufficiently large; now consider ¢ € [ta,t3)
and t € (t3,$0)). Finally since r, — Ap,, in C[0,1] as n — oo in S* there exists

(since [{nitn] Apmn(t) > 0) an integer k3 with y,(t) > 0 for n > ks and ¢ € [t1,12].
1,2

Consequently for n > max{k, k2, k3} we have y,(¢) > 0 on (0,s0). Since ¢,, has
only a finite number of zero’s s; in (0, 1) then there exists an integer ny with y,,(t) > 0
for n > ny and t € I, so (2.48) is true. A similar argument shows (2.49) is also
true.

Now (2.44), (2.45), (2.48) and (2.49) yield for n € S* and n > max{ni,na},

0< / (Pin Yo (s yn) + T1m—h(t, y]) dt
It

+ /_ (rl,n Yn g(tayn) + rl,n[fh(tayn)}) dt.

This contradicts (2.47). O

The above results have “dual” versions. We will just give the dual version of
theorem 2.1.

Theorem 2.3. Let f: [0,1] x R — R be a Carathéodory function and assume
(1.4), (2.2), (2.3), (2.5) and (2.6) hold. In addition suppose

(2.52) there exists T € C[0,1] with ar € L'[0,1] and —7(t)a(t) < g(t,u) < 0 for
a.e. t € [0,1] and w € R; here 7(t) < A\p, — Am—1 for a.e. t € [0,1] with
7(t) < Am — Am—1 on a subset of [0, 1] of positive measure

is satisfied.
i) Suppose there exists a constant k > ~y wi >k = %, where (3 is odd and «
i) S th ist ttk’y'thlkgh is odd and
is even, and

(2.53) 0> /1+ [Apy, ()" limsup (2! % g(t, 2)) dt

r—00

+ /_ [Apy, ()" liminf (2! % g(¢, z)) dt

xr— —00
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for all constants A # 0; here IT = {t € [0,1]: Apy(t) > 0} and I- = {t:
Apm (t) < 0}.

Then (2.1) has at least one solution.

(ii) Suppose v = 0 and

(2.54) A/o v(t)pm (t) dt > A/H ©m (t) limsup (z g(t, x)) dt

Tr—00

+

+A/ ©m (t) lim sup[—h(t, z)] dt

I r—00

®)
+ A/I ©m (t) iminf (xg (¢, z)) dt
®)

a
I
for all constants A # 0.
Then (2.1) has at least one solution.

©m () lim inf[—hA(t, z)] dt

xr— —0Q

Proof. In this case choose p such that A\,,—1 < g < A, and suppose y is a
solution to

Y +pay=0[ht,y) +u(t) —ygt,y) + (1 —Am)ay] a.e. on [0,1],
y(0) =y(1) =0
for 6 € (0,1). Let

e} m—1 e}
w = E CZ'QDZ', u = E CZ'QDZ', wo = E CiSDia and w1 = Cm(pm
i=m i=0 i=m+1

in this case. The same type of analysis as that in theorem 2.1 establishes the result.
O

Example. Let f: [0,00) x R — R and v,a: [0,00) — R. Suppose f: [0,1]]xR —
R is a Carathéodory function with (2.2) holding. In addition assume (1.4) and (2.3)
hold and also that f has the decomposition f(¢,u) = h(t,u) —y g(t,u). Now suppose
(2.4), (2.5) and (2.6) are satisfied and that there exists a constant k& > +, where
1>k= % with $ odd and « even, with (2.7) holding. Finally assume

(2.55) f(,0)+v(t) =0 and a(t) € R forae t>1

is satisfied. Then
y"' +Amay = f(t,y) +v(t) ae. on[0,00),
y(0) = y(o0) =0

has a solution in C[0, c0).

(2.56)
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To see this notice theorem 2.1 (i) guarantees that

Y+ Anay = f(t,y) +v(t) ae. on[0,1],
y(0) =y(1) =0

has a solution y € C]0,1] (the other smoothness properties in theorem 2.1 (i) also

hold). Let
N y, 0<t<1,
y =
0, t>1.

Notice y* € C[0,00) and y* satisfies y"" + A\pnay = f(t,y) + v(t) a.e. on [0, 00).

Remark. We can also obtain analogue results for (2.56) when the conditions of
theorem 2.1 (ii) or theorem 2.2 are satisfied.
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